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We obtain a sufficient condition for the analyticity and the univalence of a class of functions defined by an integral operator. The
well-known univalence criteria of Alexander, Noshiro-Warschawski, Nehari, Goluzin, Ozaki-Nunokawa, Becker, and Lewandowski
would follow upon specializing the functions and the parameters involved in the main result. The results obtained not only reduce
to those earlier works, but they also extend the previous results.

1. Introduction

LetU
𝑟
= {𝑧 ∈ C : |𝑧| < 𝑟}, 0 < 𝑟 ≤ 1, be the disk of radius 𝑟

centered at 0, letU = U
1
be the unit disk, and let 𝐼 = [0,∞).

Denote by A the class of analytic functions in U which
satisfy the usual normalization 𝑓(0) = 𝑓(0) − 1 = 0.

The first results concerning univalence criteria are related
to the univalence of an analytic function in the unit disk.
Among the most important sufficient conditions for univa-
lence we mention those obtained by Alexander [1], Noshiro
[2] and Warschawski [3], Nehari [4], Goluzin [5], Ozaki and
Nunokawa [6], Becker [7], and Lewandowski [8].

Furthermore, the first extension of univalence criteria
was obtained by Pascu in [9]. In his paper, starting from an
analytic function𝑓 in the unit disk he established not only the
univalence of 𝑓 but also the analyticity and the univalence of
a whole class of functions defined by an integral operator.

Other extensions of the univalence criteria, for an integral
operator, were obtained in the papers [10–14]. From the main
result of this paper, we found all the univalence criteria
mentioned earlier and at the same time other new ones.

2. Loewner Chains

Before proving our main result we need a brief summary of
theory of Loewner chains.

A function 𝐿(𝑧, 𝑡) : U × 𝐼 → C is said to be a Loewner
chain or a subordination chain if

(i) 𝐿(𝑧, 𝑡) is analytic and univalent inU for all 𝑡 ∈ 𝐼;

(ii) 𝐿(𝑧, 𝑡) ≺ 𝐿(𝑧, 𝑠) for all 0 ≤ 𝑡 ≤ 𝑠 < ∞, where the
symbol “≺” stands for subordination.

The following result due to Pommerenke is often used to
obtain univalence criteria.

Theorem 1 (see [15, 16]). Let 𝐿(𝑧, 𝑡) = 𝑎
1
(𝑡)𝑧 + 𝑎

2
(𝑡)𝑧

2

+ ⋅ ⋅ ⋅ ,
𝑎
1
(𝑡) ̸= 0, be an analytic function in U

𝑟
for all 𝑡 ∈ 𝐼, locally

absolutely continuous in 𝐼, locally uniform with respect to U
𝑟
.

For almost all 𝑡 ∈ 𝐼, suppose that

𝑧

𝜕𝐿 (𝑧, 𝑡)

𝜕𝑧

= 𝑝 (𝑧, 𝑡)

𝜕𝐿 (𝑧, 𝑡)

𝜕𝑡

, 𝑧 ∈ U
𝑟
, (1)

where 𝑝(𝑧, 𝑡) is analytic in U and satisfying R𝑝(𝑧, 𝑡) > 0 for
all 𝑧 ∈ U, 𝑡 ∈ 𝐼. If lim

𝑡→∞
|𝑎
1
(𝑡)| = ∞ and {𝐿(𝑧, 𝑡)/𝑎

1
(𝑡)}
𝑡≥0

forms a normal family inU
𝑟
, then for each 𝑡 ∈ 𝐼, the function

𝐿(𝑧, 𝑡) has an analytic and univalent extension to the whole
diskU.

3. Main Result

Making use of Theorem 1, the essence of which is the
construction of suitable Loewner chain, we can prove our
main result.



2 Abstract and Applied Analysis

Theorem 2. Let 𝛼, 𝛽, and 𝑐 be complex numbers such that
R𝛼 > 0, |𝛽| < R(𝛼 + 𝛽), R𝑐 > −1/2, and










𝛼𝑐 − 𝛽

𝛼 (1 + 𝑐)










≤ 1. (2)

For 𝑓 ∈ A, if there exist two analytic functions in U, 𝑔(𝑧) =
1 + 𝑏
1
𝑧 + ⋅ ⋅ ⋅ , ℎ(𝑧) = 𝑐

0
+ 𝑐
1
𝑧 + ⋅ ⋅ ⋅ such that the inequalities











𝑓



(𝑧)

(1 + 𝑐) 𝑔 (𝑧)

− 1











< 1, (3)











(

𝑓



(𝑧)

(1 + 𝑐) 𝑔 (𝑧)

− 1) |𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(2

𝛼 + 𝛽

1 + 𝑐

𝑧𝑓



(𝑧) ℎ (𝑧)

𝑔 (𝑧)

+

𝑧𝑔



(𝑧)

𝑔 (𝑧)

− 𝛽)

+

(1 − |𝑧|

2(𝛼+𝛽)

)

2

(𝛼 + 𝛽) |𝑧|

2(𝛼+𝛽)

𝑧

2

× (

𝛼 + 𝛽

1 + 𝑐

𝑓



(𝑧) ℎ

2

(𝑧)

𝑔 (𝑧)

+

𝑔



(𝑧) ℎ (𝑧)

𝑔 (𝑧)

+ (𝛼 − 1)

ℎ (𝑧)

𝑧

− ℎ



(𝑧))










≤ 1

(4)

are true for all 𝑧 ∈ U \ {0}, then the function 𝐹
𝛼
,

𝐹
𝛼
(𝑧) = (𝛼∫

𝑧

0

𝑢

𝛼−1

𝑓



(𝑢) 𝑑𝑢)

1/𝛼

,
(5)

is analytic and univalent in U, where the principal branch is
intended.

Proof. We consider the function 𝜌
1
(𝑧, 𝑡) defined by

𝜌
1
(𝑧, 𝑡) = 1 + (𝑒

2(𝛼+𝛽)𝑡

− 1) ⋅ 𝑒

−𝑡

𝑧ℎ (𝑒

−𝑡

𝑧) . (6)

For all 𝑡 ≥ 0 and 𝑧 ∈ U we have 𝑒−𝑡𝑧 ∈ U, and from the
analyticity of ℎ in U it follows that 𝜌

1
(𝑧, 𝑡) is also analytic in

U. Since 𝜌
1
(0, 𝑡) = 1, there exists a disk U

𝑟
1

, 0 < 𝑟
1
≤ 1, in

which 𝜌
1
(𝑧, 𝑡) ̸= 0 for all 𝑡 ≥ 0. Since 𝑓 ∈ A, it is easy to see

that the function

𝜌
2
(𝑧, 𝑡) = (𝛼 + 𝛽)∫

𝑒
−𝑡
𝑧

0

𝑢

𝛼−1

𝑓



(𝑢) 𝑑𝑢
(7)

can be written as 𝜌
2
(𝑧, 𝑡) = 𝑧

𝛼

⋅ 𝜌
3
(𝑧, 𝑡), where 𝜌

3
(𝑧, 𝑡) is

analytic inU
𝑟
1

, for all 𝑡 ≥ 0, and 𝜌
3
(0, 𝑡) = ((𝛼 + 𝛽)/𝛼)𝑒

−𝛼𝑡. It
follows that the function

𝜌
4
(𝑧, 𝑡) = 𝜌

3
(𝑧, 𝑡) + (1 + 𝑐) (𝑒

(𝛼+2𝛽)𝑡

− 𝑒

−𝛼𝑡

)

𝑔 (𝑒

−𝑡

𝑧)

𝜌
1
(𝑧, 𝑡)

(8)

is also analytic in a diskU
𝑟
2

, 0 < 𝑟
2
≤ 𝑟
1
, and

𝜌
4
(0, 𝑡) = 𝑒

(𝛼+2𝛽)𝑡

[(1 + 𝑐) + (

𝛽

𝛼

− 𝑐) 𝑒

−2(𝛼+𝛽)𝑡

] . (9)

Let us prove that 𝜌
4
(0, 𝑡) ̸= 0 for all 𝑡 ≥ 0. We have

𝜌
4
(0, 0) = 1 + 𝛽/𝛼. From |𝛽| < R(𝛼 + 𝛽) and since R(𝛼 +

𝛽) ≤ |𝛼 + 𝛽|, we see that |𝛽| < |𝛼 + 𝛽| which is equivalent
to Re(𝛽/𝛼) > −1/2. It follows that 𝜌

4
(0, 0) ̸= 0. Assume

now that there exists 𝑡
0
> 0 such that 𝜌

4
(0, 𝑡
0
) = 0. Then

𝑒

2(𝛼+𝛽)𝑡
0
= (𝛼𝑐 − 𝛽)/𝛼(1 + 𝑐). From R(𝛼 + 𝛽) > 0, 𝑡

0
> 0,

it results that 𝑒2R(𝛼+𝛽)𝑡0 > 1, and from inequality (2), we
conclude that 𝜌

4
(0, 𝑡) ̸= 0 for all 𝑡 ≥ 0. Therefore, there is a

diskU
𝑟
3

, 0 < 𝑟
3
≤ 𝑟
2
, in which 𝜌

4
(𝑧, 𝑡) ̸= 0, for all 𝑡 ≥ 0, and

we can choose an analytic branch of [𝜌
4
(𝑧, 𝑡)]

1/𝛼, denoted by
𝜌(𝑧, 𝑡). We fix a determination of (1 + 𝛽/𝛼)1/𝛼, denoted by 𝛿.
For 𝛿(𝑡) we fix, for 𝑡 = 0, the determination equal to 𝛿, where

𝛿 (𝑡) = 𝑒

(1+2(𝛽/𝛼))𝑡

[(1 + 𝑐) + (

𝛽

𝛼

− 𝑐) 𝑒

−2(𝛼+𝛽)𝑡

]

1/𝛼

.
(10)

From these considerations it follows that the function
𝐿(𝑧, 𝑡) = 𝑧 ⋅ 𝜌(𝑧, 𝑡) is analytic in U

𝑟
3

, for all 𝑡 ≥ 0, and can
be written as follows:

𝐿 (𝑧, 𝑡) = [ (𝛼 + 𝛽)∫

𝑒
−𝑡
𝑧

0

𝑢

𝛼−1

𝑓



(𝑢) 𝑑𝑢 + (1 + 𝑐)

×

(𝑒

(𝛼+2𝛽)𝑡

− 𝑒

−𝛼𝑡

) 𝑧

𝛼

𝑔 (𝑒

−𝑡

𝑧)

1 + (𝑒

2(𝛼+𝛽)𝑡
− 1) ⋅ 𝑒

−𝑡
𝑧ℎ (𝑒

−𝑡
𝑧)

]

1/𝛼

.

(11)

If 𝐿(𝑧, 𝑡) = 𝑎
1
(𝑡)𝑧 + 𝑎

2
(𝑡)𝑧

2

+ ⋅ ⋅ ⋅ is the Taylor expansion
of 𝐿(𝑧, 𝑡) in U

𝑟
3

, we have 𝑎
1
(𝑡) = 𝛿(𝑡). Since R(𝛼 + 𝛽) >

0, R(𝛽/𝛼) > −1/2, we have lim
𝑡→∞

|𝑎
1
(𝑡)| = ∞. We saw

also that 𝑎
1
(𝑡) ̸= 0 for all 𝑡 ∈ 𝐼.

From the analyticity of 𝐿(𝑧, 𝑡) inU
𝑟
3

, it follows that there
exists a number 𝑟

4
, 0 < 𝑟

4
≤ 𝑟
3
, and a constant 𝐾 = 𝐾(𝑟

4
)

such that










𝐿 (𝑧, 𝑡)

𝑎
1
(𝑡)










< 𝐾, ∀𝑧 ∈ U
𝑟
4

, 𝑡 ∈ 𝐼, (12)

and thus {𝐿(𝑧, 𝑡)/𝑎
1
(𝑡)} is a normal family in U

𝑟
4

. From the
analyticity of 𝜕𝐿(𝑧, 𝑡)/𝜕𝑡, for all fixed numbers 𝑇 > 0 and
𝑟
5
, 0 < 𝑟

5
≤ 𝑟
4
, there exists a constant 𝐾

1
> 0 (that depends

on 𝑇 and 𝑟
5
) such that










𝜕𝐿 (𝑧, 𝑡)

𝜕𝑡










< 𝐾
1
, ∀𝑧 ∈ U

𝑟
5

, 𝑡 ∈ [0, 𝑇] . (13)

It follows that the function 𝐿(𝑧, 𝑡) is locally absolutely contin-
uous in [0,∞), locally uniform with respect to 𝑧 ∈ U

𝑟
5

. The
function𝑝(𝑧, 𝑡) defined by (1) is analytic in a diskU

𝑟
, 0 < 𝑟 ≤

𝑟
5
, for all 𝑡 ≥ 0. In order to prove that the function 𝑝(𝑧, 𝑡) is

analytic and has positive real part inU, we will show that the
function 𝑤(𝑧, 𝑡) = (𝑝(𝑧, 𝑡) − 1)/(𝑝(𝑧, 𝑡) + 1), 𝑧 ∈ U

𝑟
, 𝑡 ∈ 𝐼,

is analytic inU, and

|𝑤 (𝑧, 𝑡)| < 1 ∀𝑧 ∈ U, 𝑡 ∈ 𝐼. (14)
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Elementary calculation gives

𝑤 (𝑧, 𝑡) = (

𝑓



(𝑒

−𝑡

𝑧)

(1 + 𝑐) 𝑔 (𝑒

−𝑡
𝑧)

− 1) 𝑒

−2(𝛼+𝛽)𝑡

+

1 − 𝑒

−2(𝛼+𝛽)𝑡

𝛼 + 𝛽

[2

𝛼 + 𝛽

1 + 𝑐

𝑒

−𝑡

𝑧𝑓



(𝑒

−𝑡

𝑧) ℎ (𝑒

−𝑡

𝑧)

𝑔 (𝑒

−𝑡
𝑧)

+

𝑒

−𝑡

𝑧𝑔



(𝑒

−𝑡

𝑧)

𝑔 (𝑒

−𝑡
𝑧)

− 𝛽]

+

(1 − 𝑒

−2(𝛼+𝛽)𝑡

)

2

(𝛼 + 𝛽) 𝑒

−2(𝛼+𝛽)𝑡

𝑒

−2𝑡

𝑧

2

× [

𝛼 + 𝛽

1 + 𝑐

𝑓



(𝑒

−𝑡

𝑧) ℎ

2

(𝑒

−𝑡

𝑧)

𝑔 (𝑒

−𝑡
𝑧)

+

𝑔



(𝑒

−𝑡

𝑧) ℎ (𝑒

−𝑡

𝑧)

𝑔 (𝑒

−𝑡
𝑧)

+ (𝛼 − 1)

ℎ (𝑒

−𝑡

𝑧)

𝑒

−𝑡
𝑧

− ℎ



(𝑒

−𝑡

𝑧)] .

(15)

From (3) and (4) we deduce that 𝑔(𝑧) ̸= 0, for all 𝑧 ∈ U, and
then the function 𝑤(𝑧, 𝑡) is analytic in the unit disk U. For
𝑡 = 0, in view of (3), we have

|𝑤 (𝑧, 0)| =











𝑓



(𝑧)

(1 + 𝑐) 𝑔 (𝑧)

− 1











< 1. (16)

In order to evaluate |𝑤(0, 𝑡)|, we will use the following
inequality (see [17]):











1 − |𝑐|

2𝛼

𝛼











≤

1 − |𝑐|

2R𝛼

R𝛼
, 𝑐 ∈ U, 𝑐 ̸= 0, R𝛼 > 0. (17)

For 𝑧 = 0 and 𝑡 > 0, from (15), we have

|𝑤 (0, 𝑡)| =











−𝑐

1 + 𝑐

𝑒

−2(𝛼+𝛽)𝑡

+

1 − 𝑒

−2(𝛼+𝛽)𝑡

𝛼 + 𝛽

(−𝛽)











≤









𝑐

1 + 𝑐









𝑒

−2R(𝛼+𝛽)𝑡
+

1 − 𝑒

−2R(𝛼+𝛽)𝑡

R (𝛼 + 𝛽)






𝛽






.

(18)

FromR𝑐 > −1/2which is equivalent to |𝑐| < |𝑐 + 1| and since
|𝛽| < R(𝛼 + 𝛽), we have |𝑤(0, 𝑡)| < 1.

Let 𝑡 be a fixed number, 𝑡 > 0, and let 𝑧 ∈ U, 𝑧 ̸= 0. Since
|𝑒

−𝑡

𝑧| ≤ 𝑒

−𝑡

< 1 for all 𝑧 ∈ U = {𝑧 ∈ C : |𝑧| ≤ 1},
the function 𝑤(𝑧, 𝑡) is analytic in U. Using the maximum
modulus principle it follows that for each 𝑡 > 0, arbitrary
fixed, there exists 𝜃 = 𝜃(𝑡) ∈ R such that

|𝑤 (𝑧, 𝑡)| < max
|𝜉|=1






𝑤 (𝜉, 𝑡)






=







𝑤 (𝑒

𝑖𝜃

, 𝑡)







. (19)

Denote that 𝑢 = 𝑒−𝑡 ⋅ 𝑒𝑖𝜃. Then |𝑢| = 𝑒−𝑡 < 1, and from (15) we
obtain

𝑤(𝑒

𝑖𝜃

, 𝑡) = (

𝑓



(𝑢)

(1 + 𝑐) 𝑔 (𝑢)

− 1) |𝑢|

2(𝛼+𝛽)

+

1 − |𝑢|

2(𝛼+𝛽)

𝛼 + 𝛽

× (2

𝛼 + 𝛽

1 + 𝑐

𝑢𝑓



(𝑢) ℎ (𝑢)

𝑔 (𝑢)

+

𝑢𝑔



(𝑢)

𝑔 (𝑢)

− 𝛽)

+

(1 − |𝑢|

2(𝛼+𝛽)

)

2

(𝛼 + 𝛽) |𝑢|

2(𝛼+𝛽)

𝑢

2

× [

𝛼 + 𝛽

1 + 𝑐

𝑓



(𝑢) ℎ

2

(𝑢)

𝑔 (𝑢)

+

𝑔



(𝑢) ℎ (𝑢)

𝑔 (𝑢)

+ (𝛼 − 1)

ℎ (𝑢)

𝑢

− ℎ



(𝑢)] .

(20)

Since 𝑢 ∈ U, inequality (4) implies that |𝑤(𝑒𝑖𝜃, 𝑡)| ≤ 1, and
from (16), (18), and (19) we conclude that inequality (14) holds
true for all 𝑧 ∈ U and 𝑡 ≥ 0. Since all the conditions of
Theorem 1 are satisfied, it follows that 𝐿(𝑧, 𝑡) is a Loewner
chain, for each 𝑡 ≥ 0. For 𝑡 = 0 it results that the function

𝐿 (𝑧, 0) = [(𝛼 + 𝛽)∫

𝑧

0

𝑢

𝛼−1

𝑓



(𝑢) 𝑑𝑢]

1/𝛼

(21)

is analytic and univalent in U, and then the function 𝐹
𝛼

defined by (5) is analytic and univalent inU.

4. Specific Cases and Examples

Suitable choices of the functions 𝑔 and ℎ and special values
of the parameter 𝑐 yield various types of univalence criteria.
So, if in Theorem 2 we take 𝑐 = 0 and ℎ(𝑧) ≡ 0, we get the
following result.

Theorem 3. Let 𝛼 and 𝛽 be complex numbers such thatR𝛼 >
0, |𝛽| < R(𝛼 + 𝛽), and |𝛽| ≤ |𝛼|. For 𝑓 ∈ A, if there exists
an analytic function inU, 𝑔(𝑧) = 1 + 𝑏

1
𝑧 + ⋅ ⋅ ⋅ , such that the

inequalities











𝑓



(𝑧)

𝑔 (𝑧)

− 1











< 1,











(

𝑓



(𝑧)

𝑔 (𝑧)

− 1) |𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(

𝑧𝑔



(𝑧)

𝑔 (𝑧)

− 𝛽)











≤ 1

(22)

are true for all 𝑧 ∈ U \ {0}, then the function 𝐹
𝛼
defined by (5)

is analytic and univalent in U, where the principal branch is
intended.

Theorem 3 gives us a “continuous” passage from Becker’s
criterion to Lewandowski’s criterion. Indeed, for 𝑔(𝑧) ≡

𝑓



(𝑧), we have the following.
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Corollary 4. Let 𝛼 and 𝛽 be complex numbers,R𝛼 > 0, |𝛽| <
R(𝛼 + 𝛽), |𝛽| ≤ |𝛼|, and 𝑓 ∈ A. If for all 𝑧 ∈ U \ {0}











1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(

𝑧𝑓



(𝑧)

𝑓


(𝑧)

− 𝛽)











≤ 1, (23)

then the function 𝐹
𝛼
defined by (5) is analytic and univalent in

U.

Remark 5. Corollary 4 generalizes the well-known univa-
lence criterion due to Becker. For 𝛽 = 0 we found the result
from [9]. In the case when 𝛽 = 0 and 𝛼 = 1, the previous
corollary reduces to Becker’s criterion [7].

For 𝑔(𝑧) ≡ 𝑓(𝑧) ⋅ (𝑝(𝑧) + 1)/2, where 𝑝 is analytic inU,
𝑝(0) = 1, fromTheorem 3 we have the following.

Corollary 6. Let 𝛼 and 𝛽 be complex numbers,R𝛼 > 0, |𝛽| <
R(𝛼 + 𝛽), |𝛽| ≤ |𝛼|, and 𝑓 ∈ A. If there exists an analytic
function 𝑝 with positive real part inU, 𝑝(0) = 1, such that the
inequality











1 − 𝑝 (𝑧)

1 + 𝑝 (𝑧)

|𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

×(

𝑧𝑓



(𝑧)

𝑓


(𝑧)

+

𝑧𝑝



(𝑧)

𝑝 (𝑧) + 1

− 𝛽)











≤ 1

(24)

is true for all 𝑧 ∈ U \ {0}, then the function 𝐹
𝛼
defined by (5) is

analytic and univalent inU.

Remark 7. Corollary 6 represents a generalization of the
univalence criterion due to Lewandowski. For𝛽 = 0we found
the result from [12]. In the case when 𝛽 = 0 and 𝛼 = 1, the
previous corollary reduces to Lewandowski’s criterion [8].

For 𝑐 = 𝛽 and ℎ(𝑧) ≡ 0, from Theorem 2 we can derived
some results from paper [18].

Theorem 8. Let 𝛼 and 𝛽 be complex numbers such thatR𝛼 ≥
1/2, |𝛽| < R(𝛼 + 𝛽). For 𝑓 ∈ A, if there exists an analytic
function inU, 𝑔(𝑧) = 1 + 𝑏

1
𝑧 + ⋅ ⋅ ⋅ , such that the inequalities











𝑓



(𝑧)

(1 + 𝛽) 𝑔 (𝑧)

− 1











< 1, (25)











(

𝑓



(𝑧)

(1 + 𝛽) 𝑔 (𝑧)

− 1) |𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(

𝑧𝑔



(𝑧)

𝑔 (𝑧)

− 𝛽)











≤ 1

(26)

are true for all 𝑧 ∈ U \ {0}, then the function 𝐹
𝛼
defined by (5)

is analytic and univalent inU.

Proof. In view of assumptionR𝛼 ≥ 1/2 and sinceR(𝛼+𝛽) >
0, it follows that R𝛽 > −1/2. But R𝛼 ≥ 1/2 is equivalent to
|𝛼 − 1| ≤ |𝛼| andR𝛽 > −1/2 with |𝛽| < |𝛽 + 1|. It results that
inequality (2) is true. From (3) and (4) we get immediately
inequalities (25) and (26).

For 𝛼 = 1 and 𝑔(𝑧) ≡ 𝑓(𝑧)/𝑧, fromTheorem 8 we obtain
the following.

Corollary 9. Let 𝛽 be a complex number, |𝛽| < R(1 + 𝛽). If
for all 𝑧 ∈ U the function 𝑓 ∈ A satisfies











𝑧𝑓



(𝑧)

𝑓 (𝑧)

− (𝛽 + 1)











<






𝛽 + 1






, (27)

then the function 𝑓 is univalent in U. Moreover, it is a spiral-
like function.

Proof. For 𝛼 = 1, we have 𝐹
1
= 𝑓, and in view of (27),

inequality (25) of Theorem 8 is verified and inequality (26)
is also reduced to (25). It follows that 𝑓 is univalent in
U. The condition (27) of the corollary can be written as
|(1/(𝛽 + 1))(𝑧𝑓



(𝑧)/𝑓(𝑧)) − 1| < 1. It follows thatR((1/(𝛽 +
1))(𝑧𝑓



(𝑧)/𝑓(𝑧))) > 0. If we put 𝛽+1 = |𝛽+1|𝑒𝚤𝜑, where from
R(1 + 𝛽) > 0 we have |𝜑| < 𝜋/2, then for all 𝑧 ∈ U we have
R(𝑒−𝚤𝜑(𝑧𝑓(𝑧)/𝑓(𝑧))) > 0, which shows that 𝑓 is spiral-like
inU.

Taking 𝑔(𝑧) ≡ 𝑓(𝑧)/𝑧, we get the following useful
corollary which generalizes the result from [19].

Corollary 10. Let 𝛼 and 𝛽 be complex numbers such that
R𝛼 ≥ 1/2, |𝛽 + 1| ≤ R(𝛼 + 𝛽), and 𝑓 ∈ A. If the inequality











𝑧𝑓



(𝑧)

𝑓 (𝑧)

− (𝛽 + 1)











<






𝛽 + 1






(28)

holds true for all 𝑧 ∈ U, then the function 𝐹
𝛼
defined by (5) is

analytic and univalent inU.

Proof. It is easy to check that inequality (28) implies inequal-
ity (26) of Theorem 8. Indeed, for |𝛽 + 1| ≤ R(𝛼 + 𝛽) and
making use of (17), we have











1

𝛽 + 1

(

𝑧𝑓



(𝑧)

𝑓 (𝑧)

− (𝛽 + 1)) |𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(

𝑧𝑓



(𝑧)

𝑓 (𝑧)

− (𝛽 + 1))











≤ |𝑧|

2R(𝛼+𝛽)
+






𝛽 + 1






R (𝛼 + 𝛽)

(1 − |𝑧|

2R(𝛼+𝛽)
) ≤ 1.

(29)

For the function 𝑔(𝑧) ≡ 1, from Theorem 8 we get the
following.

Corollary 11. Let𝛼 and𝛽 be complex numbers such thatR𝛼 ≥
1/2, |𝛽| < R(𝛼 + 𝛽), and 𝑓 ∈ A. If the inequality







𝑓



(𝑧) − (𝛽 + 1)







<






𝛽 + 1






(30)

holds true for all 𝑧 ∈ U, then the function 𝐹
𝛼
defined by (5)

is analytic and univalent inU. In particular, the function 𝑓 is
univalent inU, where |𝛽| < R(1 + 𝛽).
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Remark 12. From inequality (30), only for 𝛽 real number,
𝛽 > −1/2, we get R𝑓(𝑧) > 0. For 𝛽 complex number, if
we put 𝛽 + 1 = |𝛽 + 1|𝑒𝚤𝜑, where fromR(1 + 𝛽) > 0 we have
|𝜑| < 𝜋/2, then from inequality (28) we obtainR𝑒−𝚤𝜑𝑓(𝑧) >
0. So, in both cases, we can also conclude that 𝑓 is univalent
in U from Alexander’s theorem [1], and respectively, from
Noshiro-Warschawski’s theorem [2, 3].

Example 1. Consider the function 𝑓(𝑧) = 𝑧 + (𝛽/4)𝑧

2

+

(𝛽/6)𝑧

3, where 𝛽 ∈ C, |𝛽 − 1/3| ≤ 2/3. The condition (30)
of Corollary 11 is satisfied. Indeed, since |𝛽 − 1/3| ≤ 2/3 is
equivalent with 2|𝛽| ≤ |𝛽 + 1|, we get







𝑓



(𝑧) − (𝛽 + 1)







=










𝛽

2

𝑧 +

𝛽

2

𝑧

2

− 𝛽










< 2






𝛽






≤






𝛽 + 1






. (31)

Then, for all complex numbers 𝛼,R𝛼 ≥ 1/2, and |𝛽| < R(𝛼+
𝛽), by using (5), we obtain that

𝐹
𝛼
(𝑧) = (𝛼∫

𝑧

0

𝑢

𝛼−1

𝑓



(𝑢) 𝑑𝑢)

1/𝛼

= 𝑧(1 +

𝛼𝛽

2 (𝛼 + 1)

𝑧 +

𝛼𝛽

2 (𝛼 + 2)

𝑧

2

)

1/𝛼

(32)

is analytic and univalent inU.

If in Theorem 2 we take 𝑐 = 0 and 𝑔(𝑧) ≡ 𝑓(𝑧), then we
have the following.

Theorem 13. Let 𝛼 and 𝛽 be complex numbers such thatR𝛼 >
0, |𝛽| < R(𝛼 + 𝛽), and |𝛽| ≤ |𝛼|. For 𝑓 ∈ A, if there exists an
analytic function in U, ℎ(𝑧) = 𝑐

0
+ 𝑐
1
𝑧 + ⋅ ⋅ ⋅ , such that the

inequality











1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

(2 (𝛼 + 𝛽) 𝑧ℎ (𝑧) +

𝑧𝑓



(𝑧)

𝑓


(𝑧)

− 𝛽)

+

(1 − |𝑧|

2(𝛼+𝛽)

)

2

(𝛼 + 𝛽) |𝑧|

2(𝛼+𝛽)

⋅ 𝑧

2

× ((𝛼 + 𝛽) ℎ

2

(𝑧) +

𝑓



(𝑧) ℎ (𝑧)

𝑓


(𝑧)

+ (𝛼 − 1)

ℎ (𝑧)

𝑧

− ℎ



(𝑧))











≤ 1

(33)

is true for all 𝑧 ∈ U \ {0}, then the function 𝐹
𝛼
defined by (5) is

analytic and univalent inU.

For ℎ(𝑧) ≡ −(1/2(𝛼 + 𝛽))(𝑓



(𝑧)/𝑓



(𝑧)) the following
results.

Corollary 14. Let 𝛼 and 𝛽 be complex numbers,R𝛼 > 0, |𝛽| <
R(𝛼 + 𝛽), |𝛽| ≤ |𝛼|, and 𝑓 ∈ A. If for all 𝑧 ∈ U \ {0}














(1 − |𝑧|

2(𝛼+𝛽)

)

2

2(𝛼 + 𝛽)

2

|𝑧|

2(𝛼+𝛽)

(𝑧

2

{𝑓; 𝑧} + (1 − 𝛼)

𝑧𝑓



(𝑧)

𝑓


(𝑧)

)

−

𝛽

𝛼 + 𝛽

(1 − |𝑧|

2(𝛼+𝛽)

)














≤ 1,

(34)

where

{𝑓; 𝑧} = (

𝑓



(𝑧)

𝑓


(𝑧)

)



−

1

2

(

𝑓



(𝑧)

𝑓


(𝑧)

)

2

, (35)

then the function 𝐹
𝛼
defined by (5) is analytic and univalent in

U.

Remark 15. For special values of the parameters𝛼 and𝛽, from
Corollary 14 we get some known results. For 𝛽 = 0, we get
the result given in [13]. For 𝛼 = 1, since 𝐹

1
(𝑧) = 𝑓(𝑧),

Corollary 14 generalizes the criterion of univalence due to
Nehari, and for 𝛼 = 1 and 𝛽 = 0 we obtain the univalence
criterion due to Nehari [4].

For ℎ(𝑧) ≡ (1/(𝛼 + 𝛽))(1/𝑧 − 𝑓



(𝑧)/𝑓(𝑧)) we have the
following.

Corollary 16. Let 𝛼 and𝛽 be complex numbers,R𝛼 > 0, |𝛽| <
R(𝛼 + 𝛽), |𝛽| ≤ |𝛼|, and 𝑓 ∈ A. If for all 𝑧 ∈ U \ {0}














1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

[𝑧

𝑑

𝑑𝑧

log(
𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

) − 𝛽]

+

(1 − |𝑧|

2(𝛼+𝛽)

)

2

(𝛼 + 𝛽)

2

|𝑧|

2(𝛼+𝛽)

⋅ 𝑧

𝑑

𝑑𝑧

log(
𝑧

1+𝛼

𝑓



(𝑧)

𝑓

1+𝛼
(𝑧)

)














≤ 1,

(36)

then the function 𝐹
𝛼
defined by (5) is analytic and univalent in

U.

Remark 17. Corollary 16 represents a generalization of the
univalence criterion due to Goluzin. For 𝛽 = 0 we obtain the
results from paper [11]. For 𝛼 = 1 and 𝛽 = 0 we get Goluzin’s
criterion [5].

For 𝑐 = 0, 𝑔(𝑧) ≡ (𝑓(𝑧)/𝑧)2, and ℎ(𝑧) ≡ (1/(𝛼+𝛽))(1/𝑧−
𝑓(𝑧)/𝑧

2

), fromTheorem 2 we get the following.
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Corollary 18. Let 𝛼 and 𝛽 be complex numbers,R𝛼 > 0, |𝛽| <
R(𝛼 + 𝛽), |𝛽| ≤ |𝛼|, and 𝑓 ∈ A. If 𝑓 satisfies the inequalities











𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

− 1











< 1, (37)











(

𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

− 1) |𝑧|

2(𝛼+𝛽)

+

1 − |𝑧|

2(𝛼+𝛽)

𝛼 + 𝛽

× [2(

𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

− 1) − 𝛽] +

(1 − |𝑧|

2(𝛼+𝛽)

)

2

(𝛼 + 𝛽)

2

|𝑧|

2(𝛼+𝛽)

×[(

𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

− 1) + (1 − 𝛼) (

𝑓 (𝑧)

𝑧

− 1)]











≤ 1,

(38)

then the function 𝐹
𝛼
defined by (5) is analytic and univalent in

U.

Remark 19. Corollary 18 represents a generalization of the
univalence criterion due to Ozaki and Nunokawa. For 𝛽 = 0
we found the result from [14]. In the case when 𝛽 = 0 and
𝛼 = 1, Corollary 18 reduces to the univalence criterion of
Ozaki and Nunokawa [6].

Example 2. Let 𝑛 be a natural number, 𝑛 ≥ 3. We consider the
function

𝑓 (𝑧) =

𝑧

1 − 𝑧

𝑛+1
/𝑛

. (39)

We note that

𝑧

2

𝑓



(𝑧)

𝑓

2
(𝑧)

− 1 = 𝑧

𝑛+1

,

𝑓 (𝑧)

𝑧

− 1 =

𝑧

𝑛+1

𝑛 − 𝑧

𝑛+1
. (40)

The condition (37) of Corollary 18 is verified, and it assures
the univalence of the function 𝑓. Taking into account (40),
for 𝛼 = 𝑛 and 𝛽 = (1 − 𝑛)/2, from (38) we have that













𝑧

𝑛+1

|𝑧|

𝑛+1

+ 2

1 − |𝑧|

𝑛+1

𝑛 + 1

(2𝑧

𝑛+1

+

𝑛 − 1

2

)

+4

(1 − |𝑧|

𝑛+1

)

2

(𝑛 + 1)

2

|𝑧|

𝑛+1
(𝑧

𝑛+1

+ (1 − 𝑛)

𝑧

𝑛+1

𝑛 − 𝑧

𝑛+1
)














≤ |𝑧|

2(𝑛+1)

+

1 − |𝑧|

𝑛+1

𝑛 + 1

(4|𝑧|

𝑛+1

+ 𝑛 − 1)

+

8

(𝑛 + 1)

2
(1 − |𝑧|

𝑛+1

)

2

=

1

(𝑛 + 1)

2
[(𝑛

2

− 2𝑛 + 5) |𝑧|

2(𝑛+1)

− (𝑛

2

− 4𝑛 + 11) |𝑧|

𝑛+1

+ (𝑛

2

+ 7)] ≤ 1,

(41)

because the greatest value of the function

𝑔 (𝑥) = (𝑛

2

− 2𝑛 + 5) 𝑥

2

− (𝑛

2

− 4𝑛 + 11) 𝑥 + (𝑛

2

+ 7) ,

(42)

for 𝑥 ∈ [0, 1], 𝑛 ≥ 3, is taken for 𝑥 = 1 and is 𝑔(1) = (𝑛 + 1)2.
It follows that all the conditions of Corollary 18 are satisfied,
and therefore the function 𝐹

𝑛
defined by (5) is analytic and

univalent inU.

Remark 20. Theorem 2 gives us a connection between
Alexander’s theorem, Noshiro-Warschawski’s theorem, and
the univalence criteria of Becker, Lewandowski, Nehari,
Goluzin, and Ozaki and Nunokawa as well as their general-
izations.
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University, Cluj-Napoca, Romania, 1985.
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