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We present the Bernstein-type inequality for widely dependent random variables. By using the Bernstein-type inequality and the
truncated method, we further study the strong consistency of estimator of fixed design regression model under widely dependent
random variables, which generalizes the corresponding one of independent random variables. As an application, the strong
consistency for the nearest neighbor estimator is obtained.

1. Introduction

Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables defined

on a fixed probability space (Ω,F, 𝑃). It is well known that
the Bernstein-type inequality for the partial sum ∑

𝑛

𝑖=1
𝑋
𝑖

plays an important role in probability limit theory and
mathematical statistics. The main purpose of the paper is
to present the Bernstein-type inequality, by which, we will
further investigate the strong consistency for the estimator of
nonparametric regressionmodels based onwidely dependent
random variables.

1.1. Brief Review. Consider the following fixed design regres-
sion model:

𝑌
𝑛𝑖
= 𝑔 (𝑥

𝑛𝑖
) + 𝜀
𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑥
𝑛𝑖
are known fixed design points from 𝐴, where 𝐴 ⊂

R𝑝 is a given compact set for some 𝑝 ≥ 1, 𝑔(⋅) is an unknown
regression function defined on 𝐴, and 𝜀

𝑛𝑖
are random errors.

Assume that for each 𝑛 ≥ 1, (𝜀
𝑛1
, 𝜀
𝑛2
, . . . , 𝜀

𝑛𝑛
) have the same

distribution as (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
). As an estimator of 𝑔(⋅), the

following weighted regression estimator will be considered:

𝑔
𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝑌
𝑛𝑖
, 𝑥 ∈ 𝐴 ⊂ R

𝑝

, (2)

where 𝑊
𝑛𝑖
(𝑥) = 𝑊

𝑛𝑖
(𝑥; 𝑥
𝑛1
, 𝑥
𝑛2
, . . . , 𝑥

𝑛𝑛
), 𝑖 = 1, 2, . . . , 𝑛 are

the weight functions.

The above estimator was first proposed by Georgiev
[1] and subsequently has been studied by many authors.
For instance, when 𝜀

𝑛𝑖
are assumed to be independent,

consistency and asymptotic normality have been studied by
Georgiev and Greblicki [2], Georgiev [3] and Müller [4]
among others. Results for the case when 𝜀

𝑛𝑖
are dependent

have also been studied by various authors in recent years. Fan
[5] extended the work of Georgiev [3] and Müller [4] in the
estimation of the regression model to the case where it forms
an 𝐿
𝑞
-mixingale sequence for some 1 ≤ 𝑞 ≤ 2. Roussas [6]

discussed strong consistency and quadraticmean consistency
for 𝑔
𝑛
(𝑥) under mixing conditions. Roussas et al. [7] estab-

lished asymptotic normality of𝑔
𝑛
(𝑥) assuming that the errors

are from a strictly stationary stochastic process and satisfying
the strong mixing condition. Tran et al. [8] discussed again
asymptotic normality of 𝑔

𝑛
(𝑥) assuming that the errors form

a linear time series, more precisely, a weakly stationary linear
process based on a martingale difference sequence. Hu et
al. [9] studied the asymptotic normality for double array
sum of linear time series. Hu et al. [10] gave the mean
consistency, complete consistency, and asymptotic normality
of regression models with linear process errors. Liang and
Jing [11] presented some asymptotic properties for estimates
of nonparametric regression models based on negatively
associated sequences. Yang et al. [12] generalized the results of
Liang and Jing [11] for negatively associated sequences to the
case of negatively orthant dependent sequences and obtained
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the strong consistency for the estimator of the nonparametric
regression models based on negatively orthant dependent
errors. Wang et al. [13] studied the complete consistency of
the estimator of nonparametric regression models based on
𝜌-mixing sequences, and so forth. The main purpose of this
paper is to investigate the strong consistency for the estimator
of the nonparametric regression models based on widely
dependent random variables, which contains independent
random variables, negatively associated random variables,
negatively orthant dependent random variables, extended
negatively orthant dependent random variables, and some
positively dependent random variables as specials cases. For
more details about the strong consistency for the estimator
of 𝑔(⋅), Ren and Chen [14] obtained the strong consistency
for the least squares estimator of 𝛽 and the nonparametric
estimator of 𝑔(⋅) based on negatively associated samples,
Baek and Liang [15] studied the strong consistency for the
weighted least squares estimator of 𝛽 and nonparametric
estimator of𝑔(⋅) in a semi-parametricmodel under negatively
associated samples, which extended the corresponding one
on independent random error settings, Liang et al. [16] also
studied the strong consistency in a in semiparametric model
for a linear process with negatively associated innovations
and established the convergence rate, they also pointed out
that their results on nonparametric estimator of 𝑔(⋅) can
attain the optimal convergence rate, and so forth.

1.2. Concepts of Wide Dependence. In this section, we will
present some wide dependence structures introduced in
Wang et al. [17].

Definition 1. For the random variables {𝜀
𝑛
, 𝑛 ≥ 1}, if there

exists a finite real sequence {𝑔
𝑈
(𝑛), 𝑛 ≥ 1} satisfying for each

𝑛 ≥ 1 and for all 𝑥
𝑖
∈ (−∞,∞), 1 ≤ 𝑖 ≤ 𝑛,

𝑃 (𝜀
1
> 𝑥
1
, 𝜀
2
> 𝑥
2
, . . . , 𝜀

𝑛
> 𝑥
𝑛
) ≤ 𝑔
𝑈
(𝑛)

𝑛

∏
𝑖=1

𝑃 (𝜀
𝑖
> 𝑥
𝑖
) ,

(3)

then we say that the random variables {𝜀
𝑛
, 𝑛 ≥ 1} are widely

upper orthant dependent (WUOD); if there exists a finite real
sequence {𝑔

𝐿
(𝑛), 𝑛 ≥ 1} satisfying for each 𝑛 ≥ 1 and for all

𝑥
𝑖
∈ (−∞,∞), 1 ≤ 𝑖 ≤ 𝑛,

𝑃 (𝜀
1
≤ 𝑥
1
, 𝜀
2
≤ 𝑥
2
, . . . , 𝜀

𝑛
≤ 𝑥
𝑛
) ≤ 𝑔
𝐿
(𝑛)

𝑛

∏
𝑖=1

𝑃 (𝜀
𝑖
≤ 𝑥
𝑖
) ,

(4)

then we say that the {𝜀
𝑛
, 𝑛 ≥ 1} are widely lower orthant

dependent (WLOD, in short); if they are both WUOD and
WLOD, then we say that the {𝜀

𝑛
, 𝑛 ≥ 1} are widely orthant

dependent (WOD).
WUOD, WLOD, and WOD random variables are called

by a joint namewide dependent (WD) random variables, and
𝑔
𝑈
(𝑛), 𝑔
𝐿
(𝑛), 𝑛 ≥ 1, are called dominating coefficients.

For examples of WD random variables with various
dominating coefficients, we refer the reader to Wang et al.
[17].These examples show thatWD randomvariables contain

some common negatively dependent random variables, some
positively dependent random variables, and some others. For
details about WD random variables, one can refer to Wang
et al. [17], Wang and Cheng [18], Wang et al. [19], Chen et al.
[20], and so forth.

In what follows, denote 𝑔(𝑛) = max{𝑔
𝑈
(𝑛), 𝑔
𝐿
(𝑛)}. Recall

that when 𝑔
𝐿
(𝑛) = 𝑔

𝑈
(𝑛) = 1 for any 𝑛 ≥ 1 in (3) and (4),

the random variables {𝜀
𝑛
, 𝑛 ≥ 1} are called negatively upper

orthant dependent (NUOD) and negatively lower orthant
dependent (NLOD), respectively. If they are both NUOD and
NLOD, then we say that the random variables {𝜀

𝑛
, 𝑛 ≥ 1} are

negatively orthant dependent (NOD) (see, e.g., Ebrahimi and
Ghosh [21], Block et al. [22], Joag-Dev and Proschan [23],
Wang et al. [24–26], Wu [27, 28], Wu and Jiang [29], or Wu
and Chen [30]).

If both (3) and (4) hold when 𝑔
𝐿
(𝑛) = 𝑔

𝑈
(𝑛) =

𝑀 for some constant 𝑀, the random variables {𝑋
𝑛
, 𝑛 ≥

1} are called extended negatively upper orthant dependent
(ENUOD) and extended negatively lower orthant depen-
dent (ENLOD), respectively. If they are both ENUOD and
ENLOD, then we say that the random variables {𝜀

𝑛
, 𝑛 ≥ 1}

are extended negatively orthant dependent (ENOD) (see, e.g.,
Liu [31]). The concept of general extended negative depen-
dence was proposed by Liu [31, 32] and further promoted by
Chen et al. [33, 34], Shen [35],Wang andChen [18], S. J.Wang
and W. S. Wang [36] and Wang et al. [37], and so forth.

Wang et al. [17] obtained the following properties for
WD random variables, which will be used to prove the main
results of the paper.

Proposition 2. (1) Let {𝜀
𝑛
, 𝑛 ≥ 1} be WLOD (WUOD)

with dominating coefficients 𝑔
𝐿
(𝑛), 𝑛 ≥ 1(𝑔

𝑈
(𝑛), 𝑛 ≥ 1).

If {𝑓
𝑛
(⋅), 𝑛 ≥ 1} are nondecreasing, then {𝑓

𝑛
(𝜀
𝑛
), 𝑛 ≥ 1}

are still WLOD (WUOD) with dominating coefficients 𝑔
𝐿
(𝑛),

𝑛 ≥ 1(𝑔
𝑈
(𝑛), 𝑛 ≥ 1); if {𝑓

𝑛
(⋅), 𝑛 ≥ 1} are nonincreasing,

then {𝑓
𝑛
(𝜀
𝑛
), 𝑛 ≥ 1} are WUOD (WLOD) with dominating

coefficients 𝑔
𝐿
(𝑛), 𝑛 ≥ 1(𝑔

𝑈
(𝑛), 𝑛 ≥ 1).

(2) If {𝜀
𝑛
, 𝑛 ≥ 1} are nonnegative and WUOD with

dominating coefficients 𝑔
𝑈
(𝑛), 𝑛 ≥ 1, then for each 𝑛 ≥ 1,

𝐸

𝑛

∏
𝑖=1

𝜀
𝑖
≤ 𝑔
𝑈
(𝑛)

𝑛

∏
𝑖=1

𝐸𝜀
𝑖
. (5)

In particular, if {𝜀
𝑛
, 𝑛 ≥ 1} are WUOD with dominating

coefficients 𝑔
𝑈
(𝑛), 𝑛 ≥ 1, then for each 𝑛 ≥ 1 and any 𝑠 > 0,

𝐸 exp{𝑠
𝑛

∑
𝑖=1

𝜀
𝑖
} ≤ 𝑔

𝑈
(𝑛)

𝑛

∏
𝑖=1

𝐸 exp {𝑠𝜀
𝑖
} . (6)

By Proposition 2, we can get the following corollary
immediately.

Corollary 3. (1) Let {𝜀
𝑛
, 𝑛 ≥ 1} be WD. If {𝑓

𝑛
(⋅), 𝑛 ≥ 1} are

nondecreasing (or nonincreasing), then {𝑓
𝑛
(𝜀
𝑛
), 𝑛 ≥ 1} are still

WD.
(2) If {𝑋

𝑛
, 𝑛 ≥ 1} are WD, then for each 𝑛 ≥ 1 and any

𝑠 ∈ R,

𝐸 exp{𝑠
𝑛

∑
𝑖=1

𝜀
𝑖
} ≤ 𝑔 (𝑛)

𝑛

∏
𝑖=1

𝐸 exp {𝑠𝜀
𝑖
} . (7)
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In this paper, we will present the Bernstein-type inequal-
ity for WD random variables. By using the Bernstein-type
inequality, we will further investigate the strong consistency
for the estimator of nonparametric regression models based
on WD errors.

This work is organized as follows: the Bernstein-type
inequality for WD random variables is provided in Section 2
and strong consistency for the estimator of nonparametric
regression models based on WD errors is investigated in
Section 3.

Throughout the paper, 𝐶 denotes a positive constant not
depending on 𝑛, which may be different in various places.
𝑎
𝑛
= 𝑂(𝑏

𝑛
) represents 𝑎

𝑛
≤ 𝐶𝑏
𝑛
for all 𝑛 ≥ 1. Let ⌈𝑥⌉ denote

the integer part of 𝑥 and 𝐼(𝐴) be the indicator function of the
set 𝐴. Denote 𝑥+ = 𝑥𝐼(𝑥 ≥ 0) and 𝑥− = −𝑥𝐼(𝑥 < 0). Let
{𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of WD random variables. Denote

𝑆
𝑛
= ∑
𝑛

𝑖=1
𝜀
𝑖
. In the sequel, we will use the following different

assumptions in different situations:

lim
𝑛→∞

𝑔 (𝑛) 𝑒
−𝑎𝑛
𝑐

= 0, (8)

lim
𝑛→∞

𝑔 (𝑛) 𝑒
−𝑑log3/2𝑛

= 0, (9)

where 𝑎, 𝑐, and 𝑑 are finite positive constants.

2. Bernstein-Type Inequality for
WD Random Variables

In this section, we will present the Bernstein-type inequality
for WD random variables, which will be used to prove
the strong consistency for estimator of the nonparametric
regression model based on WD random variables.

Theorem 4. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of WD random

variables with 𝐸𝜀
𝑖
= 0 and |𝜀

𝑖
| ≤ 𝑏 for each 𝑖 ≥ 1, where 𝑏

is a positive constant. Denote 𝜎2
𝑖
= 𝐸𝜀
2

𝑖
and 𝐵2

𝑛
= ∑
𝑛

𝑖=1
𝜎
2

𝑖
for

each 𝑛 ≥ 1. Then for any 𝜀 > 0,

𝑃 (𝑆
𝑛
≥ 𝜀) ≤ 𝑔

𝑈
(𝑛) exp{− 𝜀

2

2𝐵2
𝑛
+ (2/3) 𝑏𝜀

} , (10)

𝑃 (
󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨 ≥ 𝜀) ≤ 2𝑔 (𝑛) exp{−

𝜀
2

2𝐵2
𝑛
+ (2/3) 𝑏𝜀

} . (11)

Proof. For any 𝑡 > 0, by Taylor’s expansion, 𝐸𝑋
𝑖
= 0 and

the inequality 1 + 𝑥 ≤ 𝑒
𝑥 for 𝑥 ∈ R, we can get that for 𝑖 =

1, 2, . . . , 𝑛,

𝐸 exp {𝑡𝜀
𝑖
} = 1 +

∞

∑
𝑗=2

𝐸(𝑡𝜀
𝑖
)
𝑗

𝑗!
≤ 1 +

∞

∑
𝑗=2

𝑡
𝑗

𝐸
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑗

𝑗!

= 1 +
𝑡
2

𝜎
2

𝑖

2

∞

∑
𝑗=2

𝑡
𝑗−2

𝐸
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑗

(1/2) 𝜎2
𝑖
𝑗!

≐ 1 +
𝑡
2

𝜎
2

𝑖

2
𝐹
𝑖
(𝑡) ≤ exp{

𝑡
2

𝜎
2

𝑖

2
𝐹
𝑖
(𝑡)} ,

(12)

where

𝐹
𝑖
(𝑡) =

∞

∑
𝑗=2

𝑡
𝑗−2

𝐸
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑗

(1/2) 𝜎2
𝑖
𝑗!
, 𝑖 = 1, 2, . . . , 𝑛. (13)

Denote 𝐶 = 𝑏/3 and𝑀
𝑛
= 𝑏𝜀/3𝐵

2

𝑛
+ 1. Choosing 𝑡 > 0 such

that 𝑡𝐶 < 1 and

𝑡𝐶 ≤
𝑀
𝑛
− 1

𝑀
𝑛

=
𝐶𝜀

𝐶𝜀 + 𝐵2
𝑛

. (14)

It is easy to check that for 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 ≥ 2,

𝐸
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑗

≤ 𝜎
2

𝑖
𝑏
𝑗−2

≤
1

2
𝜎
2

𝑖
𝐶
𝑗−2

𝑗!, (15)

which implies that for 𝑖 = 1, 2, . . . , 𝑛,

𝐹
𝑖
(𝑡) =

∞

∑
𝑗=2

𝑡
𝑗−2

𝐸
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑗

(1/2) 𝜎2
𝑖
𝑗!
≤

∞

∑
𝑗=2

(𝑡𝐶)
𝑗−2

= (1 − 𝑡𝐶)
−1

≤ 𝑀
𝑛
.

(16)

By Markov’s inequality, Corollary 3, (12), and (16), we can get

𝑃 (𝑆
𝑛
≥ 𝜀) ≤ 𝑒

−𝑡𝜀

𝐸 exp {𝑡𝑆
𝑛
} ≤ 𝑒
−𝑡𝜀

𝑔
𝑈
(𝑛)

𝑛

∏
𝑖=1

𝐸 exp {𝑡𝜀
𝑖
}

≤ 𝑔
𝑈
(𝑛) exp{−𝑡𝜀 +

𝑡
2

𝐵
2

𝑛

2
𝑀
𝑛
} .

(17)

Taking 𝑡 = 𝜀/𝐵2
𝑛
𝑀
𝑛
= 𝜀/(𝐶𝜀+𝐵

2

𝑛
). It is easily seen that 𝑡𝐶 < 1

and 𝑡𝐶 = 𝐶𝜀/(𝐶𝜀 + 𝐵
2

𝑛
). Substituting 𝑡 = 𝜀/𝐵

2

𝑛
𝑀
𝑛
into the

right-hand side of (17), we can obtain (10) immediately. By
(10), we have

𝑃 (𝑆
𝑛
≤ −𝜀) = 𝑃 (−𝑆

𝑛
≥ 𝜀) ≤ 𝑔

𝐿
(𝑛) exp{− 𝜀

2

2𝐵2
𝑛
+ (2/3) 𝑏𝜀

} ,

(18)

since {−𝜀
𝑛
, 𝑛 ≥ 1} is still a sequence of WD random variables.

The desired result (11) follows from (10) and (18) immediately.

ByTheorem 4, we can get the following complete conver-
gence for WD random variables immediately.

Corollary 5. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of WD random

variables with 𝐸𝜀
𝑖
= 0 and |𝜀

𝑖
| ≤ 𝑏 for each 𝑖 ≥ 1, where 𝑏

is a positive constant. Assume that ∑∞
𝑖=1
𝐸𝜀
2

𝑖
< ∞. 𝑟 > 0. Let

the dominating coefficients 𝑔
𝑈
(𝑛), 𝑔
𝐿
(𝑛), 𝑛 ≥ 1 satisfy (8) with

any finite positive constant 𝑎 and 𝑐 = 𝑟. Then

𝑛
−𝑟

𝑆
𝑛
󳨀→ 0, completely, as 𝑛 󳨀→ ∞. (19)

Proof. For any 𝜀 > 0, it follows from (11) that
∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨 ≥ 𝑛
𝑟

𝜀)

≤ 2

∞

∑
𝑛=1

𝑔 (𝑛) exp{− 𝑛
2𝑟

𝜀
2

2∑
∞

𝑖=1
𝐸𝑋2
𝑖
+ (2/3) 𝑏𝑛𝑟𝜀

}

≤ 𝐶
1

∞

∑
𝑛=1

[exp (−𝐶)]𝑛
𝑟

< ∞,

(20)
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which implies (19). Here 𝐶 and 𝐶
1
are positive constants not

depending on 𝑛.

3. The Strong Consistency for the Estimator of
Nonparametric Regression Models Based on
WD Errors

Unless otherwise specified, we assume throughout the paper
that 𝑔

𝑛
(𝑥) is defined by (2). For any function 𝑔(𝑥), we use

𝑐(𝑔) to denote all continuity points of the function 𝑔 on 𝐴.
The norm ‖𝑥‖ is the Euclidean norm. For any fixed design
point 𝑥 ∈ 𝐴, the following assumptions on weight functions
𝑊
𝑛𝑖
(𝑥) will be used:

(𝐴
1
) | ∑
𝑛

𝑖=1
𝑊
𝑛𝑖
(𝑥) − 1| = 𝑂(𝑛

−1/4

);

(𝐴
2
) ∑
𝑛

𝑖=1
|𝑊
𝑛𝑖
(𝑥)| ≤ 𝐶 for all 𝑛 ≥ 1 andmax

1≤𝑖≤𝑛
|𝑊
𝑛𝑖
(𝑥)| =

𝑂(𝑛
−1/2log−3/2𝑛);

(𝐴
3
) ∑
𝑛

𝑖=1
|𝑊
𝑛𝑖
(𝑥)| ⋅ |𝑔(𝑥

𝑛𝑖
) − 𝑔(𝑥)|𝐼(‖𝑥

𝑛𝑖
− 𝑥‖ > 𝜎𝑛

−1/4

) =

𝑂(𝑛
−1/4

) for some 𝜎 > 0.

Theorem 6. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero

WD random variables such that sup
𝑛≥1
𝐸𝜀
2

𝑛
< ∞. Suppose

that the conditions (𝐴
1
)–(𝐴
3
) hold true and (9) holds for any

positive constant 𝑑. Assume that 𝑔(𝑥) satisfies a local Lipschitz
condition around the point 𝑥. Then for any 𝑥 ∈ 𝐴,

𝑔
𝑛
(𝑥) 󳨀→ 𝑔 (𝑥) , 𝑎𝑠 𝑛 󳨀→ ∞, 𝑎.𝑠. (21)

Proof. For 𝑥 ∈ 𝐴, we have by (1) and (2) that

󵄨󵄨󵄨󵄨𝐸𝑔𝑛 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄩󵄩󵄩󵄩𝑥𝑛𝑖 − 𝑥

󵄩󵄩󵄩󵄩 ≤ 𝜎𝑛
−1/4

)

+

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄩󵄩󵄩󵄩𝑥𝑛𝑖 − 𝑥

󵄩󵄩󵄩󵄩 > 𝜎𝑛
−1/4

)

+
󵄨󵄨󵄨󵄨𝑔 (𝑥)

󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(22)

By (22), the conditions (𝐴
1
)–(𝐴
3
) and the assumption on

𝑔(𝑥), we have

󵄨󵄨󵄨󵄨𝐸𝑔𝑛 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 = 𝑂 (𝑛

−1/4

) , 𝑥 ∈ 𝐴. (23)

Hence, to prove (21), we only need to show that

𝑔
𝑛
(𝑥) − 𝐸𝑔

𝑛
(𝑥) 󳨀→ 0, as 𝑛 󳨀→ ∞, a.s. (24)

For fixed design point 𝑥 ∈ 𝐴, without loss of generality, we
assume that 𝑊

𝑛𝑖
(𝑥) > 0 in what follows (otherwise, we use

𝑊
+

𝑛𝑖
(𝑥) and 𝑊−

𝑛𝑖
(𝑥) instead of 𝑊

𝑛𝑖
(𝑥), respectively, and note

that𝑊
𝑛𝑖
(𝑥) = 𝑊

+

𝑛𝑖
(𝑥) − 𝑊

−

𝑛𝑖
(𝑥)). Let

𝜀
(𝑛)

1,𝑖
= − 𝑖
1/2

𝐼 (𝜀
𝑛𝑖
< −𝑖
1/2

) + 𝜀
𝑛𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑛𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑖
1/2

)

+ 𝑖
1/2

𝐼 (𝜀
𝑛𝑖
> 𝑖
1/2

) ,

𝜀
(𝑛)

2,𝑖
= (𝜀
𝑛𝑖
− 𝑖
1/2

) 𝐼 (𝜀
𝑛𝑖
> 𝑖
1/2

) ,

𝜀
(𝑛)

3,𝑖
= (𝜀
𝑛𝑖
+ 𝑖
1/2

) 𝐼 (𝜀
𝑛𝑖
< −𝑖
1/2

) ,

𝜀
1,𝑖
= − 𝑖
1/2

𝐼 (𝜀
𝑖
< −𝑖
1/2

) + 𝜀
𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑖
1/2

)

+ 𝑖
1/2

𝐼 (𝜀
𝑖
> 𝑖
1/2

) ,

𝜀
2,𝑖
= (𝜀
𝑖
− 𝑖
1/2

) 𝐼 (𝜀
𝑖
> 𝑖
1/2

) ,

𝜀
3,𝑖
= (𝜀
𝑖
+ 𝑖
1/2

) 𝐼 (𝜀
𝑖
< −𝑖
1/2

) .

(25)

Since 𝐸𝜀
𝑛𝑖
= 𝐸𝜀
𝑖
= 0 for each 𝑛, it is easy to see that

𝑔
𝑛
(𝑥) − 𝐸𝑔

𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
𝑛𝑖

=

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

1,𝑖
− 𝐸𝜀
(𝑛)

1,𝑖
]

+

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

2,𝑖
− 𝐸𝜀
(𝑛)

2,𝑖
]

+

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

3,𝑖
− 𝐸𝜀
(𝑛)

3,𝑖
]

=: 𝑇
𝑛1
+ 𝑇
𝑛2
+ 𝑇
𝑛3
.

(26)

By the condition (𝐴
2
), we can see that

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥) (𝜀1,𝑖 − 𝐸𝜀1,𝑖)
󵄨󵄨󵄨󵄨 ≤ 2𝑛

1/2max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝐶 log−3/2𝑛,
𝑛

∑
𝑖=1

Var [𝑊
𝑛𝑖
(𝑥) (𝜀
1,𝑖
− 𝐸𝜀
1,𝑖
)] ≤

𝑛

∑
𝑖=1

𝑊
2

𝑛𝑖
(𝑥) 𝐸𝜀

2

𝑖

≤ 𝐶max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛,𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−1/2log−3/2𝑛.

(27)

For fixed 𝑥 ∈ 𝐴 and 𝑛, since (𝜀
𝑛1
, 𝜀
𝑛2
, . . . , 𝜀

𝑛𝑛
) have the

same distribution as (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
) and {𝑊

𝑛𝑖
(𝑥)(𝜀
1,𝑖
− 𝐸𝜀
1,𝑖
),
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1 ≤ 𝑖 ≤ 𝑛} are WD with mean zero, we have by applying
Theorem 4 that for every 𝜖 > 0,

𝑃 (
󵄨󵄨󵄨󵄨𝑇𝑛1

󵄨󵄨󵄨󵄨 ≥ 𝜖) = 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

1,𝑖
− 𝐸𝜀
(𝑛)

1,𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜖)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
1,𝑖
− 𝐸𝜀
1,𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜖)

≤ 2𝑔 (𝑛) exp{− 𝜖
2

𝐶𝑛−1/2log−3/2𝑛 + 𝐶𝜖log−3/2𝑛
}

≤ 2𝑔 (𝑛) exp {−𝐶 log3/2𝑛} ≤ 𝐶𝑛−2,

for 𝑛 large enough,
(28)

which implies

𝑇
𝑛1
=

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

1,𝑖
− 𝐸𝜀
(𝑛)

1,𝑖
] 󳨀→ 0, as 𝑛 󳨀→ ∞, a.s.

(29)

by Borel-Cantelli lemma.
Next, we will estimate 𝑇

𝑛2
and 𝑇

𝑛3
. It can be checked by

sup
𝑛≥1
𝐸𝜀
2

𝑛
< ∞ that

∞

∑
𝑖=1

𝐸𝜀
(𝑛)

2,𝑖

𝑖1/2log5/4 (2𝑖)
=

∞

∑
𝑖=1

𝐸𝜀
2,𝑖

𝑖1/2log5/4 (2𝑖)
≤

∞

∑
𝑖=1

𝐸 [𝜀
𝑖
𝐼 (𝜀
𝑖
> 𝑖
1/2

)]

𝑖1/2log5/4 (2𝑖)

≤

∞

∑
𝑖=1

𝐸𝜀
2

𝑖

𝑖log5/4 (2𝑖)
< ∞,

(30)

which implies

∞

∑
𝑖=1

𝜀
(𝑛)

2,𝑖

𝑖1/2log5/4 (2𝑖)
< ∞, a.s. (31)

Consequently, by Kronecker’s lemma, we have that

1

𝑛1/2log5/4 (2𝑛)

𝑛

∑
𝑖=1

𝜀
(𝑛)

2,𝑖
󳨀→ 0, a.s. (32)

Thus, by the condition (𝐴
2
), it is easy to see that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
(𝑛)

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝜀
(𝑛)

2,𝑖

≤ 𝐶𝑛
−1/2log−3/2𝑛

𝑛

∑
𝑖=1

𝜀
(𝑛)

2,𝑖

= 𝑜 (log−1/4𝑛) , a.s.

(33)

By sup
𝑛≥1
𝐸𝜀
2

𝑛
< ∞ and (𝐴

2
) again, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛,𝑖
(𝑥) 𝐸𝜀

(𝑛)

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛,𝑖
(𝑥) 𝐸𝜀

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸 [
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 ≥ 𝑖
1/2

)]

≤ 𝐶𝑛
−1/2log−3/2𝑛

𝑛

∑
𝑖=1

𝑖
−1/2

𝐸 [𝜀
2

𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨≥ 𝑖
1/2

)]

= 𝑂 (log−3/2𝑛) .
(34)

Combining (33) and (34), it follows that

󵄨󵄨󵄨󵄨𝑇𝑛2
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

2,𝑖
− 𝐸𝜀
(𝑛)

2,𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑜 (log−1/4𝑛) , a.s.

(35)

Likewise, by sup
𝑛≥1
𝐸𝜀
2

𝑛
< ∞, we can see that

∞

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨

𝑖1/2log5/4 (2𝑖)
=

∞

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝜀3,𝑖

󵄨󵄨󵄨󵄨

𝑖1/2log5/4 (2𝑖)

≤

∞

∑
𝑖=1

−𝐸 [𝜀
𝑖
𝐼 (𝜀
𝑖
< −𝑖
1/2

)]

𝑖1/2log5/4 (2𝑖)

≤

∞

∑
𝑖=1

𝐸𝜀
2

𝑖

𝑖log5/4 (2𝑖)
< ∞,

(36)

which implies

∞

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨

𝑖1/2log5/4 (2𝑖)
< ∞, a.s. (37)

Hence, by Kronecker’s lemma,

1

𝑛1/2log5/4 (2𝑛)

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, a.s. (38)

Consequently, we have by (𝐴
2
) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨

= 𝑜 (log−1/4𝑛) , a.s.

(39)
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On the other hand, by (𝐴
2
) and sup

𝑛≥1
𝐸𝜀
2

𝑛
< ∞ again, we can

see that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸 [
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/2

)]

≤ 𝐶𝑛
−1/2log−3/2𝑛

𝑛

∑
𝑖=1

𝑖
−1/2

𝐸 [𝜀
2

𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/2

)]

= 𝑂 (log−3/2𝑛) .
(40)

From the statements above, we have

󵄨󵄨󵄨󵄨𝑇𝑛3
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛,𝑖
(𝑥) [𝜀
(𝑛)

3,𝑖
− 𝐸𝜀
(𝑛)

3,𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑜 (log−1/4𝑛) , a.s.

(41)

Therefore, (24) follows from (26), (29), (35), and (41) imme-
diately. This completes the proof of the theorem.

Theorem 7. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero

WD random variables such that sup
𝑛≥1
𝐸𝜀
4

𝑛
< ∞. Suppose

that the conditions (𝐴
1
)–(𝐴
3
) hold true and (9) holds for any

positive constant 𝑑. Assume that 𝑔(𝑥) satisfies a local Lipschitz
condition around the point 𝑥. Then for any 𝑥 ∈ 𝐴,

𝑔
𝑛
(𝑥) − 𝑔 (𝑥) = 𝑂 (𝑛

−1/4

) , 𝑎.𝑠. (42)

Proof. According to (23), we can see that in order to prove
(42), we only need to show that

󵄨󵄨󵄨󵄨𝑔𝑛 (𝑥) − 𝐸𝑔𝑛 (𝑥)
󵄨󵄨󵄨󵄨 = 𝑂 (𝑛

−1/4

) , a.s. (43)

We still assume that 𝑊
𝑛𝑖
(𝑥) > 0 in what follows. The proof

is similar to that of Theorem 6. We use the same notations
𝜀
(𝑛)

𝑞,𝑖
, 𝜀
𝑞,𝑖

and 𝑇
𝑛𝑞

for 𝑞 = 1, 2, 3 as those in Theorem 6, where
𝑖
1/2 is replaced by 𝑖1/4. Obviously sup

𝑛≥1
𝐸𝜀
4

𝑛
< ∞ implies

sup
𝑛≥1
𝐸𝜀
2

𝑛
< ∞. It follows by (𝐴

2
) that

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥) (𝜀1,𝑖 − 𝐸𝜀1,𝑖)
󵄨󵄨󵄨󵄨 ≤ 2𝑛

1/4max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛,𝑖 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝐶𝑛
−1/4log−3/2𝑛,

𝑛

∑
𝑖=1

Var [𝑊
𝑛𝑖
(𝑥) (𝜀
1,𝑖
− 𝐸𝜀
1,𝑖
)] ≤

𝑛

∑
𝑖=1

𝑊
2

𝑛,𝑖
(𝑥) 𝐸𝜀

2

𝑖

≤ 𝐶𝑛
−1/2log−3/2𝑛.

(44)

By applying Theorem 4 and (9), we can see that for every
𝜖 > 0,

𝑃 (
󵄨󵄨󵄨󵄨𝑇𝑛1

󵄨󵄨󵄨󵄨 ≥ 𝜖𝑛
−1/4

)

= 𝑃(

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
(𝑛)

1,𝑖
− 𝐸𝜀
(𝑛)

1,𝑖
] ≥ 𝜖𝑛

−1/4

)

= 𝑃(

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) [𝜀
1,𝑖
− 𝐸𝜀
1,𝑖
] ≥ 𝜖𝑛

−1/4

)

≤ 2𝑔 (𝑛) exp{− 𝜖
2

𝑛
−1/2

𝐶𝑛−1/2log−3/2𝑛 + 𝐶𝜖𝑛−1/2log−3/2𝑛
}

≤ 2𝑔 (𝑛) exp {−𝐶 log3/2𝑛} ≤ 𝐶𝑛−2, for 𝑛 large enough,
(45)

which implies by Borel-Cantelli lemma that

𝑛
1/4

𝑇
𝑛1
󳨀→ 0, a.s. (46)

Meanwhile, it can be checked by sup
𝑛≥1
𝐸𝜀
4

𝑛
< ∞ that

∞

∑
𝑖=1

𝐸𝜀
(𝑛)

2,𝑖

𝑖1/4log3/2 (2𝑖)
=

∞

∑
𝑖=1

𝐸𝜀
2,𝑖

𝑖1/4log3/2 (2𝑖)
≤

∞

∑
𝑖=1

𝐸 [𝜀
𝑖
𝐼 (𝜀
𝑖
> 𝑖
1/4

)]

𝑖1/4log3/2 (2𝑖)

≤

∞

∑
𝑖=1

𝐸𝜀
4

𝑖

𝑖log3/2 (2𝑖)
< ∞,

(47)

which implies

∞

∑
𝑖=1

𝜀
(𝑛)

2,𝑖

𝑖1/4log3/2 (2𝑖)
< ∞, a.s. (48)

Then, we have by Kronecker’s lemma that

1

𝑛1/4log3/2 (2𝑛)

𝑛

∑
𝑖=1

𝜀
(𝑛)

2,𝑖
󳨀→ 0, a.s. (49)

Consequently, it follows by (𝐴
2
) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
(𝑛)

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝜀
(𝑛)

2,𝑖
= 𝑜 (𝑛

−1/4

) , a.s.,

(50)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

(𝑛)

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

2,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸 [
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/4

)]

≤ 𝐶𝑛
−1/2log−3/2𝑛

𝑛

∑
𝑖=1

𝑖
−3/4

𝐸 [𝜀
4

𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/4

)]

= 𝑂 (𝑛
−1/4log−3/2𝑛) .

(51)
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On the other hand, it can be checked that

∞

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨

𝑖1/4log3/2 (2𝑖)
=

∞

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝜀3,𝑖

󵄨󵄨󵄨󵄨

𝑖1/4log3/2 (2𝑖)

≤

∞

∑
𝑖=1

−𝐸 [𝜀
𝑖
𝐼 (𝜀
𝑖
< −𝑖
1/4

)]

𝑖1/4log3/2 (2𝑖)

≤

∞

∑
𝑖=1

𝐸𝜀
4

𝑖

𝑖log3/2 (2𝑖)
< ∞,

(52)

which implies

∞

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨

𝑖1/4log3/2 (2𝑖)
< ∞, a.s. (53)

So, by Kronecker’s lemma,

1

𝑛1/4log3/2 (2𝑛)

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, a.s. (54)

Consequently, we have by (𝐴
2
) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝜀
(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨
= 𝑜 (𝑛

−1/4

) , a.s.,

(55)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

(𝑛)

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑊
𝑛𝑖
(𝑥) 𝐸𝜀

3,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝑊𝑛𝑖 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝐸 [
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/4

)]

≤ 𝐶𝑛
−1/2log−3/2𝑛

𝑛

∑
𝑖=1

𝑖
−3/4

𝐸 [𝜀
4

𝑖
𝐼 (
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨 > 𝑖
1/4

)]

= 𝑂 (𝑛
−1/4log−3/2𝑛) .

(56)

Finally, similar to the proof of (21), we can get (43) imme-
diately by (46)–(56).This completes the proof of the theorem.

As an application of Theorems 6 and 7, we give the
strong consistency for the nearest neighbor estimator of 𝑔(𝑥).
Without loss of generality, put 𝐴 = [0, 1], taking 𝑥

𝑛𝑖
= 𝑖/𝑛,

𝑖 = 1, 2, . . . , 𝑛. For any 𝑥 ∈ 𝐴, we rewrite |𝑥
𝑛1
− 𝑥|, |𝑥

𝑛2
−

𝑥|, . . . , |𝑥
𝑛𝑛
− 𝑥| as follows:

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
1
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
2
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨
≤ ⋅ ⋅ ⋅ ≤

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
𝑛
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨
, (57)

if |𝑥
𝑛𝑖
−𝑥| = |𝑥

𝑛𝑗
−𝑥|, then |𝑥

𝑛𝑖
−𝑥| is permuted before |𝑥

𝑛𝑗
−𝑥|

when 𝑥
𝑛𝑖
< 𝑥
𝑛𝑗
.

Let 1 ≤ 𝑘
𝑛
≤ 𝑛, the nearest neighbor weight function

estimator of 𝑔(𝑥) in model (1) is defined as follows:

𝑔
𝑛
(𝑥) =

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑖
(𝑥) 𝑌
𝑛𝑖
, (58)

where

𝑊̃
𝑛𝑖
(𝑥) =

{

{

{

1

𝑘
𝑛

, if 󵄨󵄨󵄨󵄨𝑥𝑛𝑖 − 𝑥
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑛)

𝑅
𝑘𝑛
(𝑥)
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨
,

0, otherwise.
(59)

Based on the notations above, we can get the following
result by usingTheorems 6 and 7.

Corollary 8. Let {𝜀
𝑛
, 𝑛 ≥ 1} be a sequence of mean zero WD

random variables and (9) holds for any positive constant 𝑑.
Assume that 𝑔(𝑥) satisfies a local Lipschitz condition around
the point 𝑥. Denote 𝑘

𝑛
= ⌈𝑛
5/8

⌉.
(i) If sup

𝑛≥1
𝐸𝜀
2

𝑛
< ∞, then (21) holds for any 𝑥 ∈ 𝐴.

(ii) If sup
𝑛≥1
𝐸𝜀
4

𝑛
< ∞, then (42) holds for any 𝑥 ∈ 𝐴.

Proof. It suffices to show that the conditions (𝐴
1
)–(𝐴
3
) are

satisfied. For any 𝑥 ∈ [0, 1], it follows from the definitions of
𝑅
𝑖
(𝑥) and 𝑊̃

𝑛𝑖
(𝑥) that

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑖
(𝑥) =

𝑛

∑
𝑖=1

𝑊̃
𝑛𝑅
𝑖
(𝑥)
(𝑥) =

𝑘
𝑛

∑
𝑖=1

1

𝑘
𝑛

= 1,

max
1≤𝑖≤𝑛

𝑊̃
𝑛𝑖
(𝑥) =

1

𝑘
𝑛

≤ 𝐶𝑛
−5/8

, 𝑊̃
𝑛𝑖
(𝑥) ≥ 0,

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑊̃
𝑛𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑛𝑖) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑥𝑛𝑖 − 𝑥

󵄨󵄨󵄨󵄨 > 𝜎𝑛
−1/4

)

≤ 𝐶

𝑛

∑
𝑖=1

(𝑥
𝑛𝑖
− 𝑥)
2 󵄨󵄨󵄨󵄨󵄨
𝑊̃
𝑛𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨

𝜎2𝑛−1/2
= 𝐶

𝑘
𝑛

∑
𝑖=1

(𝑥
(𝑛)

𝑅
𝑖
(𝑥)
− 𝑥)
2

𝑛
1/2

𝑘
𝑛
𝜎2

≤ 𝐶

𝑘
𝑛

∑
𝑖=1

(𝑖/𝑛)
2

𝑛
1/2

𝑘
𝑛
𝜎2

≤ 𝐶(
𝑘
𝑛

𝑛𝜎
)

2

𝑛
1/2

≤ 𝐶𝑛
−1/4

, ∀𝑎 > 0.

(60)

Hence, conditions (𝐴
1
)–(𝐴
3
) are satisfied. By Theorems 6

and 7, we can get (i) and (ii) immediately. This completes the
proof of the corollary.
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