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Some flaws on impulsive fractional differential equations (systems) have been found. This paper is concerned with the complete
controllability of impulsive fractional linear time-invariant dynamical systems with delay. The criteria on the controllability of the
system, which is sufficient and necessary, are established by constructing suitable control inputs. Two examples are provided to
illustrate the obtained results.

1. Introduction

Recently, a variety of problems such as the existence, unique-
ness of mild solution for the initial value problem, periodic
boundary value problems, antiperiodic boundary value prob-
lems, and Ulam stability for impulsive fractional differential
equations have been considered due to their important role in
modeling natural phenomena such as medicine, biology, and
optimal control; see the paper [1–16].

The concept of controllability plays an important role in
the analysis and design of control systems. With the devel-
opments of theories of impulsive fractional differential equa-
tions, there have been a few papers devoted to the controlla-
bility of impulsive fractional differential systems; see [17–20].
In [17], the author discussed the controllability of impulsive
fractional linear time-invariant systems through constructing
a suitable control input in time domain. By fixed point
theorem, the controllability of integrodifferential systemswas
investigated in [18–20]. It should be mentioned that the con-
trollability for linear fractional dynamical systems has been
investigated by several scholars [21–26] while the theory of
controllability for impulsive fractional linear time-invariant
systems is still in the initial stage [17].

The impulsive fractional differential equations (systems)
which had been investigated earlier often have the form
𝑐

𝐷
𝛼

0,𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽

󸀠

:= 𝐽 \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝐽 := [0, 𝑇] ,

(1)

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(2)

𝑥 (0) = 𝑥
0

(3)

or
𝑐

𝐷
𝛼

0,𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽

󸀠

:= 𝐽 \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝐽 := [0, 𝑇] ,

(4)

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(5)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) , (6)
𝑥 (0) = 𝑥

0
(7)

and so forth, where 𝑐𝐷𝛼
0,𝑡

is the Caputo fractional derivative
of order 𝛼 ∈ (0, 1) with lower limit zero, 𝑥

0
∈ R, 𝑓 is jointly

continuous, 𝐼
𝑘
: R𝑛 → R𝑛, 𝑡

𝑘
satisfies 0 = 𝑡

0
< 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡
𝑚+1

= 𝑇, 𝑥(𝑡+
𝑘
) = lim

𝜖→0
+𝑥(𝑡
𝑘
+ 𝜖), and

𝑥(𝑡
−

𝑘
) = lim

𝜖→0
−𝑥(𝑡
𝑘
+𝜖) represent, respectively, the right and

the left limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, 𝐴, 𝐵, 𝐶, 𝐷 are the known

constantmatrices, 𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡) are vectors with appropriate
dimensions.

However, the function 𝑥(𝑡) defined on [0, 𝑇] is contin-
uous everywhere except for finite number of points 𝑡

𝑘
, 𝑘 =

1, 2, . . . , 𝑚, at which the limits 𝑥(𝑡+
𝑘
) and 𝑥(𝑡

−

𝑘
) exist with
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𝑥(𝑡
𝑘
) = 𝑥(𝑡

−

𝑘
). If there exists some 𝑘 ∈ {1, 2, . . . , 𝑚} such that

𝑡
𝑘
∈ (0, 𝑡), 0 < 𝛼 < 1, and 𝑥(𝑡+

𝑘
) − 𝑥(𝑡

−

𝑘
) ̸= 0, then 𝑐𝐷𝛼

0,𝑡
𝑥(𝑡)

does not exist since 𝑥̇(𝑡) is meaningless at the impulsive
moment 𝑡

𝑘
. That is to say 𝑥̇(𝑡

𝑘
) is meaningless. As a result,

investigating (1)–(6) is meaningless.
Motivated by this fact, this paper is concerned with the

complete controllability of the impulsive fractional linear
time-invariant system with delay

𝑐

𝐷
𝛼

𝑡
𝑖
,𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝐺𝑢 (𝑡) ,

𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝑘,

(8)

Δ𝑥 (𝑡
𝑖
) = 𝑥 (𝑡

+

𝑖
) − 𝑥 (𝑡

−

𝑖
) = 𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) , 𝑖 = 1, 2, . . . , 𝑘,

(9)

𝑥 (0
+

) = 𝜔, (10)

𝑦 (𝑡) = 𝐸𝑥 (𝑡) + 𝐹𝑢 (𝑡) , (11)

𝑥 (𝑡) = 𝜙 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0 (12)

in 𝑛-dimensional Euclidean space, where 0 = 𝑡
0
< 𝑡
1
<

𝑡
2
< 𝑡
3
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

= 𝑇 < ∞, 𝐽 = [0, 𝑇],
𝑐

𝐷
𝛼

𝑡
𝑖
,𝑡
denotes the Caputo’s derivative of order𝛼with the lower

limit 𝑡
𝑖
, 𝑖 = 0, 1, . . . , 𝑘, 0 < 𝛼 < 1, 𝜔 ∈ R𝑛, 𝐴, 𝐵, 𝐺, 𝐸, 𝐹

are known constant matrices with appropriate dimensions,
the state variable 𝑥(𝑡) ∈ R𝑛, the initial function 𝜙(𝑡) ∈ D =

{𝜓 : [−𝑟, 0] → R𝑛 | 𝜓 is continuous on [−𝜏, 0]}, the delay
0 < 𝜏 < ∞, ‖𝜙‖D = sup{‖𝜙(𝑡)‖R𝑛 , 𝑡 ∈ [−𝜏, 0]}, the control
input 𝑢(𝑡) ∈ R𝑝, the output 𝑦(𝑡) ∈ R𝑚, 𝐼

𝑖
: R𝑛 → R𝑛, 𝑖 =

1, 2, . . . , 𝑘.
In this paper, the methods used is to construct a suitable

control input function in time domain. The results obtained
is sufficient and necessary, which are convenient for compu-
tation.

2. Preliminaries

In this section, we beginwith somenotations, definitions, and
lemmas.Throughout this paper, 𝑐𝐷𝛼

𝑎,𝑡
𝑓(𝑡) or 𝑐𝐷𝛼

𝑎
𝑓(𝑡) denotes

the Caputo’s derivative of order 𝛼 with the lower limit 𝑎 for
the function 𝑓, 𝐼𝛼

𝑎
𝑓(𝑡) or 𝐼𝛼

𝑎,𝑡
𝑓(𝑡) denotes integral of order 𝛼

with lower limit 𝑎 for the function 𝑓, 𝑓(𝑠) = 𝐿[𝑓(𝑡); 𝑠] =

∫
∞

0

𝑒
−𝑠𝑡

𝑓(𝑡)𝑑𝑡 denotes the Laplace transform of the func-
tion 𝑓(𝑡), and “|𝑀|” denotes the norm of the matrix “𝑀,”
“𝑀∗” denotes the transpose of the matrix “𝑀”. Let 𝐶(𝐽,R𝑛)
be the Banach space of all continuous functions from 𝐽 into
R𝑛 with the norm ‖𝑢‖

𝐶(𝐽,R𝑛) = sup{‖𝑢(𝑡)‖, 𝑡 ∈ 𝐽}. Let the
Banach space PC(𝐽,R𝑛) be

PC (𝐽,R𝑛)

= {𝑢 : 𝐽 󳨀→ R
𝑛

| 𝑢 ∈ 𝐶 ((𝑡
𝑖
, 𝑡
𝑖+1
] ,R
𝑛

) , 𝑖 = 0, 1, . . . , 𝑘,

𝑢 (𝑡
−

𝑖
) , 𝑢 (𝑡

+

𝑖
) exist, 𝑢 (𝑡−

𝑖
) = 𝑢 (𝑡

𝑖
) , 𝑖 = 1, 2, . . . , 𝑘}

(13)

and the norm ‖𝑢‖|PC(𝐽,R𝑛) = sup{‖𝑢(𝑡)‖ : 𝑡 ∈ 𝐽}.

Definition 1 (see [27]). The fractional integral of order 𝛼with
the lower limit 𝑎 ∈ R for a function 𝑓 is defined as

𝐼
𝛼

𝑎,𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 𝑎, 𝛼 > 0

(14)

Provided that the right-hand side is pointwise defined on
[𝑎, +∞), where Γ is the Gamma function.

Definition 2 (see [27]). The Caputo’s derivative of order 𝛼
with the lower limit 𝑎 ∈ R for a function 𝑓 : [𝑎,∞) → R

can be written as
𝑐

𝐷
𝛼

𝑎,𝑡
𝑓 (𝑡)

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠 = 𝐼
𝑛−𝛼

𝑎,𝑡
(𝑓
(𝑛)

(𝑡)) ,

𝑡 > 𝑎, 0 < 𝑛 − 1 < 𝛼 ≤ 𝑛.

(15)

Particularly, when 0 < 𝛼 < 1, it holds
𝑐

𝐷
𝛼

𝑎,𝑡
𝑓 (𝑡)

=
1

Γ (1 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
−𝛼

𝑓
󸀠

(𝑠) 𝑑𝑠 = 𝐼
1−𝛼

𝑎,𝑡
𝑓
󸀠

(𝑡) , 𝑡 > 𝑎.

(16)

The Laplace transform of 𝑐𝐷𝛼
0,𝑡
𝑓(𝑡) is

𝐿 [
𝑐

𝐷
𝛼

0,𝑡
𝑓 (𝑡) ; 𝑠]

= ∫

+∞

0

𝑒
−𝑠𝑡

(
𝑐

𝐷
𝛼

0,𝑡
𝑓 (𝑡)) 𝑑𝑡

= 𝑠
𝛼

𝑓 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝛼−𝑘−1

𝑓
(𝑘)

(0) , 𝑛 − 1 < 𝛼 ≤ 𝑛,

(17)

where 𝑓(𝑠) is the Laplace transform of 𝑓(𝑡).
In particular, for 0 < 𝛼 < 1, it holds

∫

+∞

0

𝑒
−𝑠𝑡

(
𝑐

𝐷
𝛼

0,𝑡
𝑓 (𝑡)) 𝑑𝑡 = 𝑠

𝛼

𝑓 (𝑠) − 𝑠
𝛼−1

𝑓 (0) . (18)

Definition 3 (see [27]). The two-parameter Mittag-Leffler
function is defined as

𝐸
𝛼,𝛽
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
, 𝛼 > 0, 𝛽 > 0, 𝑧 ∈ C. (19)

The Laplace transform of Mittag-Leffler function is

𝐿 [𝑡
𝛼𝑘+𝛽−1

𝐸
(𝑘)

𝛼,𝛽
(±𝑎𝑡
𝛼

) ; 𝑠]

= ∫

∞

0

𝑒
−𝑠𝑡

𝑡
𝛼𝑘+𝛽−1

𝐸
(𝑘)

𝛼,𝛽
(±𝑎𝑡
𝛼

) 𝑑𝑡

=
𝑘!𝑠
𝛼−𝛽

(𝑠
𝛼 ∓ 𝑎)

𝑘+1

, Re (𝑠) > |𝑎|1/𝛼,

(20)

where Re(𝑠) denotes the real parts of 𝑠.
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In addition, the Laplace transform of 𝑡𝛼−1 is
𝐿 [𝑡
𝛼−1

; 𝑠] = Γ (𝛼) 𝑠
−𝛼

, Re (𝑠) > 0. (21)

Lemma 4 (see [28]). Let 0 < Re(𝛼) ≤ 1. If 𝑥(𝑡) ∈ 𝐶[𝑎, 𝑏],
then

𝐼
𝛼

𝑎,𝑡
(
𝑐

𝐷
𝛼

𝑎,𝑡
𝑥 (𝑡)) = 𝑥 (𝑡) − 𝑥 (𝑎) , (22)

where 𝐶[𝑎, 𝑏] denotes the set of continuous functions on [𝑎, 𝑏].

3. Main Results

Definition 5 (complete controllability). The system (8)–(12) is
said to be completely controllable on the interval 𝐽 = [0, 𝑇] if,
for any 𝑡

∗
> 0 (𝑡
∗
∈ (0, 𝑇]), 𝜙(𝑡) ∈ D, and𝑍 ∈ R𝑛, there exists

an admissible control input 𝑢(𝑡) such that the state variable
𝑥(𝑡) of the system (8)–(12) satisfies 𝑥(𝑡

∗
) = 𝑍.

Using the Laplace transformmethod, we can easily obtain
the following lemma.

Lemma 6. Themovement orbit of the state variable 𝑥(𝑡) of the
system (8)−(12) can be written as

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜔𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (0, 𝑡
1
] ;

(𝑥 (𝑡
1
) + 𝐼
1
(𝑥 (𝑡
1
))) 𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) +𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] ;

...
(𝑥 (𝑡
𝑖
) + 𝐼
𝑖
(𝑥 (𝑡
𝑖
))) 𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) +𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
𝑖
, 𝑡
𝑖+1
] ,

𝑖 = 2, 3, . . . , 𝑘.

(23)
Theorem 7. The system (8)–(12) is completely controllable on
[0, 𝑇] if and only if the controllability matrices

𝑊
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
]

= ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)

× 𝐺𝐺
∗

𝐸
𝛼,𝛼
(𝐴
∗

(𝑡
𝑖+1

− 𝑠)
𝛼

) 𝑑𝑠

(24)

are nonsingular, 𝑖 = 0, 1, 2, . . . , 𝑘.

Proof. Sufficiency. Suppose that 𝑊
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
] is nonsingular;

then𝑊−1
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
] is well defined, 𝑖 = 0, 1, 2, . . . , 𝑘.

For 𝑡 ∈ (0, 𝑡
1
], it follows from the formula (23) that

𝑥 (𝑡) = 𝜔𝐸
𝛼,1
(𝑎𝑡
𝛼

)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (0, 𝑡
1
] .

(25)

For all 𝑍
0
∈ R𝑛, choosing

𝑢 (𝑡) = 𝐺
∗

𝐸
𝛼,𝛼
(𝐴
∗

(𝑡
1
− 𝑡)
𝛼

)𝑊
−1

𝑐
[0, 𝑡
1
]

⋅ [𝑍
0
− 𝜔𝐸
𝛼,1
(𝐴𝑡
𝛼

1
)

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠]

(26)
and inserting (26) into (25) yields 𝑥(𝑡

1
) = 𝑍

0
. Thus, the

system (8)–(12) is completely controllable on [0, 𝑡
1
].

Similarly, for 𝑡 ∈ (𝑡
1
, 𝑡
2
], it follows from the formula (23)

that
𝑥 (𝑡) = (𝑥 (𝑡

1
) + 𝐼
1
(𝑥 (𝑡
1
))) 𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+ ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] .

(27)
Since the system (8)–(12) is completely controllable on

[0, 𝑡
1
], there exists a control input 𝑢

1
(𝑡) such that 𝑥(𝑡

1
) = 0.

By (27), it follows that
𝑥 (𝑡) = 𝐼

1
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+ ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] .

(28)

For all 𝑍
1
∈ R𝑛, choosing

𝑢 (𝑡) = 𝐺
∗

𝐸
𝛼,𝛼
(𝐴
∗

(𝑡
2
− 𝑡)
𝛼

) 𝑊
−1

𝑐
[𝑡
1
, 𝑡
2
]

⋅ [𝑍
1
− 𝐼
1
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

2
)

−∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
2
− 𝑡)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠] ,

(29)
togetherwith (28) yields𝑥(𝑡

2
) = 𝑍
1
.Thus, the system (8)–(12)

is completely controllable on [𝑡
1
, 𝑡
2
].

By similar arguments, we can prove that the system (8)–
(12) is completely controllable on [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 = 2, . . . , 𝑘.

Consequently, the system (8)–(12) is completely control-
lable on 𝐽 = [0, 𝑇].

Necessity. Suppose that the system (8)–(12) is completely
controllable on 𝐽 = [0, 𝑇].

If𝑊
𝑐
[𝑡
0
, 𝑡
1
] is singular, then there exists a nonzero vector

𝑍
0
such that

𝑍
∗

0
𝑊
𝑐
[0, 𝑡
1
] 𝑍
0
= 0. (30)

That is

∫

𝑡
1

𝑡
0

𝑍
∗

0
(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺𝐺
∗

𝐸
𝛼,𝛼

× (𝐴
∗

(𝑡
1
− 𝑠)
𝛼

)𝑍
0
𝑑𝑠 = 0.

(31)
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Then we have

𝑍
∗

0
𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺 = 0 (32)

on 𝑠 ∈ [0, 𝑡
1
]. By the assumption that the system (8)–(12)

is completely controllable on 𝐽, the system (8)–(12) is com-
pletely controllable on [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, 2, . . . , 𝑘. There exist

control inputs 𝑢
0
(𝑡) and 𝑢̂

0
(𝑡) such that

𝑥 (𝑡
1
) = 𝜔𝐸

𝛼,1
(𝐴𝑡
𝛼

1
)

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺𝑢
0
(𝑠) 𝑑𝑠 = 0,

(33)

𝑥 (𝑡
1
) = 𝜔𝐸

𝛼,1
(𝐴𝑡
𝛼

1
)

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺𝑢̂
0
(𝑠) 𝑑𝑠 = 𝑍

0
.

(34)

By (34), we have

𝜔𝐸
𝛼,1
(𝐴𝑡
𝛼

1
) + ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

= 𝑍
0
− ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺𝑢̂
0
(𝑠) 𝑑𝑠.

(35)

Inserting (35) into (33) yields

𝑍
0
+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)

× 𝐺 (𝑢
0
(𝑠) − 𝑢̂

0
(𝑠)) 𝑑𝑠 = 0.

(36)

Multiplying 𝑍∗
0
on both side of (36) yields

𝑍
∗

0
𝑍
0
+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑍
∗

0
𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)

× 𝐺 (𝑢
0
(𝑠) − 𝑢̂

0
(𝑠)) 𝑑𝑠 = 0.

(37)

By (32) and (37), we have 𝑍∗
0
𝑍
0
= 0. Thus, 𝑍

0
= 0. This is a

contradiction.
If𝑊
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
] is singular for some 𝑖 ∈ {1, . . . , 𝑘}, then there

exists a nonzero vector 𝑍
𝑖
such that

𝑍
∗

𝑖
𝑊
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
] 𝑍
𝑖
= 0. (38)

That is

∫

𝑡
𝑖+1

𝑡
𝑖

𝑍
∗

𝑖
(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)

× 𝐺𝐺
∗

𝐸
𝛼,𝛼
(𝐴
∗

(𝑡
𝑖+1

− 𝑠)
𝛼

)𝑍
𝑖
𝑑𝑠 = 0.

(39)

Then, it follows that

𝑍
∗

𝑖
𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)𝐺 = 0 (40)

on 𝑠 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
]. By formula (23) and the assumption that the

system (8)–(12) is completely controllable, there exist control
inputs 𝑢

𝑖−1
(𝑡) and 𝑢

𝑖
(𝑡) such that 𝑥(𝑡

𝑖
) = 0 and

𝑥 (𝑡
𝑖+1
) = 𝐼
𝑖
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

𝑖+1
)

+ ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)

⋅ (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢
𝑖
(𝑠)) 𝑑𝑠 = 0.

(41)

Similarly, there exists a control input 𝑢̂
𝑖
(𝑡) such that

𝑥 (𝑡
𝑖+1
) = 𝐼
𝑖
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

𝑖+1
)

+ ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)

⋅ (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢̂
𝑖
(𝑠)) 𝑑𝑠 = 𝑍

𝑖
.

(42)

By (42), we have

𝐼
𝑖
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

𝑖+1
)

+ ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

= 𝑍
𝑖
− ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)𝐺𝑢̂
𝑖
(𝑠) 𝑑𝑠.

(43)

Inserting (43) into (41) yields

𝑍
𝑖
+ ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

× 𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)𝐺 (𝑢
𝑖
(𝑠) − 𝑢̂

𝑖
(𝑠)) 𝑑𝑠 = 0.

(44)

Multiplying 𝑍∗
𝑖
on both side of (44) yields

𝑍
∗

𝑖
𝑍
𝑖
+ ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
𝛼−1

𝑍
∗

𝑖

× 𝐸
𝛼,𝛼
(𝐴(𝑡
𝑖+1

− 𝑠)
𝛼

)𝐺 (𝑢
𝑖
(𝑠) − 𝑢̂

𝑖
(𝑠)) 𝑑𝑠 = 0.

(45)

Combining (45) with (40) yields𝑍∗
𝑖
𝑍
𝑖
= 0.Thus,𝑍

𝑖
= 0.This

is a contradiction.
Thus, 𝑊

𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
] is nonsingular for 𝑖 = 0, 1, . . . , 𝑘. This

completes the proof.

Theorem 8. The system (8)–(12) is completely controllable on
[0, 𝑇] if and only if

rank (𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) = 𝑛. (46)
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Proof. Necessity. Suppose that system (8)–(12) is completely
controllable on [0, 𝑇].Then, the system (8)–(12) is completely
controllable on [0, 𝑡

1
]. Then, for any 𝑍

0
∈ R𝑛, there exists a

control input 𝑢
0
(𝑡) such that 𝑥(𝑡

1
) = 𝑍
0
. By the formula (23),

it follows that

𝑍
0
= 𝑥 (𝑡

1
) = 𝜔𝐸

𝛼,1
(𝐴𝑡
𝛼

1
)

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠.

(47)

By Cayley-Hamilton theorem, we have

𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝐴𝑡
𝛼

) =

𝑛−1

∑

𝑗=0

𝑐
𝑗
(𝑡) 𝐴
𝑗

, (48)

where 𝑐
𝑗
(𝑡) are functions in 𝑡, 𝑗 = 1, 2, . . . , 𝑛 − 1. Combining

the formula (48) and the equality (47), we have

𝑥 (𝑡
1
) − 𝜔𝐸

𝛼,1
(𝐴𝑡
𝛼

1
)

− ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

= ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
1
− 𝑠)
𝛼

)𝐺𝑢 (𝑠) 𝑑𝑠

=

𝑛−1

∑

𝑗=0

𝐴
𝑗

𝐺∫

𝑡
1

0

𝑐
𝑗
(𝑡
1
− 𝑠) 𝑢 (𝑠) 𝑑𝑠

= (𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) .(

𝑑
0

𝑑
1

...
𝑑
𝑛−1

),

(49)

where 𝑑
𝑗
= ∫
𝑡
1

0

𝑐
𝑗
(𝑡
1
− 𝑠)𝑢(𝑠)𝑑𝑠, 𝑗 = 0, 1, 2, . . . , 𝑛 − 1. For

arbitrary state𝑍
0
and initial function𝜙(𝑡), the system (8)–(12)

is completely controllable on [0, 𝑡
1
] if and only if there exists

a control input 𝑢(𝑡) such that (47) or (49) holds. Obviously,
for arbitrary initial function 𝜙(𝑡) and 𝑍

0
, the sufficient and

necessary condition to have a control input 𝑢(𝑡) satisfying
(49) is that

rank (𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) = 𝑛. (50)

Sufficiency. Suppose that rank(𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) = 𝑛.
In order to prove that the system (8)–(12) is completely con-
trollable on [0, 𝑇], it is sufficient to prove that the system
(8)–(12) is completely controllable on [𝑡

𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, . . . , 𝑘,

respectively.
The formula (23) together with (48) yields (49). By the

assumption that rank(𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) = 𝑛, the system
(8)–(12) is completely controllable on [0, 𝑡

1
].

Now we prove that the system (8)–(12) is completely
controllable on [𝑡

1
, 𝑡
2
]. The complete controllability of the

system (8)–(12) on [0, 𝑡
1
] implies that there exists a control

input 𝑢
0
(𝑡) such that 𝑥(𝑡

1
) = 0. Inserting 𝑥(𝑡

1
) = 0 into the

formula (23), we have, for 𝑡 ∈ (𝑡
1
, 𝑡
2
],

𝑥 (𝑡) = 𝐼
1
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

)

+ ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡 − 𝑠)

𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] .

(51)

Thus, it follows

𝑥 (𝑡
2
) = 𝐼
1
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

2
)

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
2
− 𝑠)
𝛼

)

× (𝐵𝑥 (𝑠 − 𝜏) + 𝐺𝑢 (𝑠)) 𝑑𝑠.

(52)

By (48) it follows taht

𝑥 (𝑡
2
) − 𝐼
1
(0) 𝐸
𝛼,1
(𝐴𝑡
𝛼

2
)

− ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
2
− 𝑠)
𝛼

) 𝐵𝑥 (𝑠 − 𝜏) 𝑑𝑠

= ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝐴(𝑡
2
− 𝑠)
𝛼

)𝐺𝑢 (𝑠) 𝑑𝑠

=

𝑛−1

∑

𝑗=0

𝐴
𝑗

𝐺∫

𝑡
2

𝑡
1

𝑐
𝑗
(𝑡
2
− 𝑠) 𝑢 (𝑠) 𝑑𝑠

= (𝐺 | 𝐴𝐺 | ⋅ ⋅ ⋅ | 𝐴
𝑛−1

𝐺) .(

𝑑
󸀠

0

𝑑
󸀠

1

...

𝑑
󸀠

𝑛−1

),

(53)

where 𝑑󸀠
𝑗
= ∫
𝑡
2

𝑡
1

𝑐
𝑗
(𝑡
2
−𝑠)𝑢(𝑠)𝑑𝑠, 𝑗 = 0, 1, 2, . . . , 𝑛−1. Similar to

the previous arguments, we can conclude that system (8)–(12)
is completely controllable on (𝑡

1
, 𝑡
2
].

Repeating the process on (𝑡
𝑖
, 𝑡
𝑖+1
], respectively, we can

prove that the system (8)–(12) is completely controllable on
(𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 2, . . . , 𝑘. In conclusion, the system (8)–(12) is

completely controllable on 𝐽 = [0, 𝑇]. This completes the
proof.

Remark 9. From Theorem 8, we can conclude that the com-
plete controllability of the system (8)–(12) is unrelated to
the matrix 𝐵 and initial function 𝜙(𝑡). The matrices 𝐴,𝐺
determine if the the system (8)–(12) possesses complete con-
trollability.

4. Examples

Example 1. Consider the system (8)–(12). Choose 𝛼 = 1/2,
𝐽 = [0, 2], 𝑡

0
= 0, 𝑡
1
= 1, 𝑡
2
= 2, Δ𝑥(𝑡

1
) = 𝑥(𝑡

+

1
) − 𝑥(𝑡

−

1
) = 3,

𝐴 = (
0 1

0 0
), 𝐺 = (

2

1
). Now, we employ Theorems 7 and 8 to
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prove if that the system (8)–(10) is completely controllable,
respectively.

By computation, we have

𝐸
1/2,1/2

(𝐴(1 − 𝑠)
1/2

)

=

∞

∑

𝑘=0

𝐴
𝑘

(1 − 𝑠)
𝑘/2

Γ (𝑘/2 + 1/2)

=
1

Γ (1/2)
𝐼 +

1

Γ (1)
(
0 1

0 0
) (1 − 𝑠)

1/2

,

(54)

𝐺𝐺
∗

= (
2

1
) (2 1) = (

4 2

2 1
) , (55)

𝐸
1/2,1/2

(𝐴
∗

(1 − 𝑠)
1/2

)

=

∞

∑

𝑘=0

(𝐴
∗

)
𝑘

(1 − 𝑠)
𝑘(1/2)

Γ (𝑘 (1/2) + 1/2)

=
1

Γ (1/2)
𝐼 +

1

Γ (1)
(
0 0

1 0
) (1 − 𝑠)

1/2

,

(56)

𝐸
1/2,1/2

(𝐴(2 − 𝑠)
1/2

)

=

∞

∑

𝑘=0

𝐴
𝑘

(2 − 𝑠)
𝑘/2

Γ (𝑘/2 + 1/2)

=
1

Γ (1/2)
𝐼 +

1

Γ (1)
(
0 1

0 0
) (2 − 𝑠)

1/2

,

(57)

𝐸
1/2,1/2

(𝐴
∗

(2 − 𝑠)
1/2

)

=

∞

∑

𝑘=0

(𝐴
∗

)
𝑘

(2 − 𝑠)
𝑘/2

Γ (𝑘/2 + 1/2)

=
1

Γ (1/2)
𝐼 +

1

Γ (1)
(
0 0

1 0
) (2 − 𝑠)

1/2

.

(58)

By the formula (24)

𝑊
𝑐
[𝑡
𝑖
, 𝑡
𝑖+1
]

= ∫

𝑡
𝑖+1

𝑡
𝑖

(𝑡
𝑖+1

− 𝑠)
−1/2

[𝐸
1/2,1/2

(𝐴(𝑡
𝑖+1

− 𝑠)
1/2

)𝐺)]

× [𝐺
∗

𝐸
1/2,1/2

(𝐴
∗

(𝑡
𝑖+1

− 𝑠)
1/2

)] 𝑑𝑠,

(59)

we have

𝑊
𝑐
[0, 1] = (

8

𝜋
+

4

𝜋0.5
+
2

3

4

𝜋
+

1

𝜋0.5

4

𝜋
+

1

𝜋0.5

2

𝜋

) ,

𝑊
𝑐
[1, 2] = (

4

𝜋
+

6

𝜋0.5
+
2

3

2

𝜋
+

1

𝜋0.5

2

𝜋
+

1

𝜋0.5

1

𝜋

) .

(60)

It is obvious that 𝑊
𝑐
[0, 1] and 𝑊

𝑐
[1, 2] are nonsingular. By

Theorem 7, the system is completely controllable.

On the other hand,

rank (𝐺 | 𝐴𝐺) = rank(2 1

1 0
) = 2. (61)

ByTheorem 8, the system is completely controllable.

Example 2. Consider the time-invariant system (8)–(12).
Choose

𝐴 = (

−1 −4 −2

0 6 −1

1 7 1

) , 𝛼 =
1

3
, 𝐺 = (

2

0

1

) . (62)

By computation, we have

rank (𝐺 | 𝐴𝐺 | 𝐴
2

𝐺) = rank(
2 −4 6

0 −1 7

1 1 −12

) = 3. (63)

ByTheorem 8, the system is completely controllable.
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