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This paper establishes the existence of periodic solution for a kind of second-order singular nonautonomous coupled systems. Our
approach is based on fixed point theorem in cones. Examples are given to illustrate the main result.

1. Introduction

We are concerned with the existence of positive T-periodic
solution for the second-order nonautonomous singular cou-
pled systems:

u' ()= ftv(®) +¢ @), te(0,T),
V) = f, u(t) + ¢ (), te(0,T), o
u©0) =u(T), o (0)=u'(T),
v(0)=v(T), v (0)=V(T),
where f; € C((0,T) x [0,+00),[0,+00)), ¢ 0, 7) —

[0, +00), i = 1,2, are Lebesgue integrable, f; may be singular
att = 0, T and ¢; can have finitely many singularities.

Singular differential equations or systems arise from
many branches of applied mathematics and physics such as
gas dynamics, Newtonian fluid mechanics, and nuclear phys-
ics, which have been widely studied by many authors (see
[1-7] and references therein). Some classical-tools have been
used to study the positive solutions for two point nonperiodic
boundary value problems of coupled systems [8, 9]. However,
there are few works on periodic solutions of second order
nonautonomous singular coupled systems of type (1).

In the recent papers [10, 11], the periodic solutions of sin-
gular coupled systems

M ra,t)x=fi(ty) tq ), o
Y'va, (t)y = f,(6%) +6 1),

were proved by using some fixed point theorems in cones
for completely continuous operators, where a;,a,,¢,c, €
LY(0,7), f1> f» € Car([0,T] x (0, +00), (0, +00)). When the
Green’s function G;(t, s) (i = 1, 2), associated with the period-
ic boundary problem

Mg x=¢t),  x(0)=x(T),

3)
x' (0) = x' (T,

is nonnegative for all (¢,s) € [0,T] x [0,T] and f; (i = 1,2)
satisfies weak singularities

Osbiit_)ﬁﬁ(t’x)
xl (4)
< ifxt), Vx >0, ae. t€(0,T),
b aatt

where 0 < «; < 1,b,b € L'(0,T), b, = 0b, > 0, and b,
b, are strictly positive on some positive measure subsets of
(0, T), some sufficient conditions for the existence of periodic
solutions of (2) were obtained in [10, 11].

Motivated by the papers [9-11], we consider the existence
of positive T-periodic solution of (1). Owing to the disap-
pearing of the terms a;(t) (i = 1,2) in (2), the methods in
[9, 10] are no longer valid. In present paper, we will deal with
the periodic solutions of (1) under new conditions. Let k be a



constant satisfying 0 < k < 7/T. Denote by G(t, s) the Green
function of

£ (1) + Kx (t) =0,

: : ()
x(0)=x(T),  x(0)=x (1),
which can be expressed by
G (t,s)
sink(t—s)+sink(T —t+s),
1 0<s<t<T,
 2k(1-coskT) | sink(s—t)+sink(T—s+1t),
0<t<s<T.
(6)
By a direct computation, we can get
. 1 kT
TG 09 = ety
1
M :: G t, = —)
orslg,?é(T (t5) 2k sin (KT/2) )
T
oi="1 =c0sk— €(0,1).
M 2

Assume f; (i = 1,2) satisfies the following conditions.

(H;) Fort € (0,T), f;(t,1) > 0 and there exist constants
U = py > 1,A; > A, > 1 such that, for any constants
0<p<1i=12,

P fi (tw) < fy (6 piu)

<plf (tu), (t,u) € (0,T)x[0,+00),

(8)

P;lfz (t,u) < f, (t, pou)

<Pl fy(tbu),  (Hu) € (0,T)x [0, +00).

)

(Hy) [ ¢ ®dt =7, >0, [ &)t =r, > 0and

T ¥ kZTmr1
L (A®D+ e (1)dt < (2M?%r,/m +1)" ’

(10)

K*Tmr,

T
LD+ ()dt < ——M2——,
Jo (LD +e ®)d < (2M?r)/m + 1))‘1

where cf(t) = max{q(t), 0}, ¢ () = max{—¢(t),0},i =1, 2.

Remark 1. For any p; > 1, we get from (8) that

pi* fi (tw) < fy (6 piu)

<plifi(tu), (t,u) € (0,T) % [0,+00).

(11)
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For any p, > 1, we get from (9) that

P;zfz (t,u) < f, (t, pu)

<pyfotu),  (tu) € (0,T)x [0,+00).
(12)

Typical functions that satisfy (8) or (9) are those taking
the form

fittbw = Ya, ®)u*, te(T), (13)
k=1

where gy € C(0,T), a;(t) > 0,1 > 1,i=1,2k=1,2,...,n.

Definition 2. Supposing that (u,v) € C'0,T] n C*(0,T) x
C'[0,T] n C*(0, T) satisfies (1) and u(t) > 0, v(t) > 0 for any
t € [0,T], then one says that (u,v) is a C'10,T] x C'[0, T]
positive solution of system (1).

By using fixed point theorem in cones, we are able to
prove the following result.

Theorem 3. Assume that (H,), (H,) hold. Then (1) has at least
one positive T-periodic solution.

The proof of Theorem 3 will be given in Section 3 of this
paper.

2. Preliminaries

Lemma 4 (see [12]). Let X be a Banach space, K a cone in X,
Q,, Q, two nonempty bounded open setsin K, 0 € Q; ¢ Q,
Q,.T:Q,/Q — K isacompletely continuous operator. If

(i) T(x) #Ax, x € 0Oy, A > 1,
(if) T(x) # Ax, x € 0Q,, 0 < A < 1, infxeBQZ ITx| > 0,

then T has a fixed point in Q,/Q,.

Lemma 5. If f;(t,u) satisfy (H,), then, fort € (0,T), f;(t,u)
are increasing on u and, for any [e, ] € (0, T),

S
u

lim o, (i=1,2) (14)

u—+00
uniformly with respect tot € [a, f].

Proof. We only deal with f,. Without loss of generality, let
0<x <y Ity =0 weget fi(t,x) < fi(t,y). If y#0, let
¢ = x/y,then 0 < ¢, < 1. From (8), we get

ftx)=filboy) <’ fi(ty)< fi(ty), (15

which means f; (t, u) is increasing on u.
Assume u > 1. It follows from (11) that f, (¢, u) > u*2 fi(t,
1). Thus
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From (H,), for any [«, ] C (0,T), we obtain

. (:[—u) > w7 fy (1) 2 max i & Du s 0. (1)
te|a,f

Therefore
t)
lim 2EW oo 18)
u— +00 u
uniformly with respect to t € [«, ] 0

Let X = C[0,T]. We know X is a Banach space with the
norm [lul| = max,¢ (o zq|u(t)|. Define the sets

P={ueX:u(t) =0},

(19)
Q= {u €P: oI?tignTu(t) > 0||”||}-

It is easy to check that P, Q are cones in X and Q < P.
Throughout this paper, we consider the space X x X. It is easy
to see X x X is a Banach space with the norm,

Gt Vo = lell + IVl (w,v) € X x X. (20)

We can get the conclusion that P x P, Q x Q are cones in
XxXandQxQcPxP.
For any u € X, define the function

«_ Ju@®), u()=0,
)] = 21
[ ()] {0, u(t) <0. @
Then the solution of periodic boundary value problem
" 2 _ -
X () +k"x(t) = —¢ (1), (22)

x(0) = x (1), x'(0) = x' (1)

can be expressed by X, () = - L;F G(t, s)c; (s)ds, and the solu-
tion of periodic boundary value problem

X"t + Kx(t) = - (1),

X0 =x(T),  x'(0)=x(T) (23)

can be expressed by X,(t) = - JOT G(t, s)c; (s)ds. Obviously,
X;(t) <0,i=1,2. Then

[u@®) + %, )] <u) < lul,

. (24)
[vt)+ % 1)]" <v) < vl
From (11), (12), and Lemma 5, we have
AHEO+%,0]7) < fi @IV < fi @I+ 1)
< (Wl + 1™ f, (1,1),
(25)
L@ +2,0]7) < fo 6 lul) < fo ¢ lul+1)
< (lull + DY £, (5,1).
(26)

Then, for any fixed (4, v) € P x P, it follows from (H,) that

T
0 SJ G(t,s)
0

< [k [u(s) + %, ()]
+ fi (s, [v(s) + X, (s)]*) +¢ (s)} ds

T
<M [ {4 @+ 0 F 61 + 6 9} ds

T
< K2MT |lul| + M(|lv]] + D" L {fi(s 1) +¢ (s)}ds

< 400,

T
0< J G(t,s)
0
x {[v(s) + %, ()]
+ f, (s, [u(s) + X, (s)]*) +c (s)} ds

T
<M JO I I+l + DM £, (s, 1) + & (9)) ds

T
< MT V] + M(Jul + ™ j (D) +c (9)ds
< 4+00.
27)

Thus, we can define the operator T : P x P — P x P,
T(u,v) = (Tyu, T,v) by
T

Tu(t) = J G(ts)

0

x K2 [u(s) + % ()]
+ fi (s, [v(s) + X, (s)]*) +¢ (s)} ds,

T

Ty (t) = J Gt s)

0

X {kz[v (s) + X, (s)]"

+h(s @ +R])+ g @) ds
(28)

for (u,v) € P x P. Then, we have the following lemma.

Lemma 6. Assuming that (H,), (H,) hold, then T has a fixed
point if and only if

u" (6) + KPu () = K[u ) + %, ()]
+ (O +Z0]) v @),

VI + v () =K v+ % )]
+hH(Eu®+x 0] ) +a @), teT),

u@©=u(), u'(0)=u (D),

v(0) = v(T), v (0) =/ (T)

te(0,T),

(29)

has one positive T-periodic solution.



Lemma 7. Assuming that (H,), (H,) hold, then T(Q x Q) C
QxQandT:QxQ — QxQ is completely continuous.

Proof. For (u,v) € Q x Q, we have
T
(Ty) (1) > m JO Rlu©+5 6] + £
x (s, [v(s) + X, (s)]*) +¢ (s) } ds

T
- O‘J max G (t, s) {kz[u (s) + %, (s)]"
0

0<t,s<T

+ fi (s, [v(s) + X, (s)]*)
+ cl+ (s) } ds=o0 ||T1u|| ,

T
(Tv) (t) =m Jo {kz[v (s) + X, (s)]"

+f, (s, [u(s) + X, (s)]*)
+¢ (8) } ds

T
=O'J max G (t, s)
0

0<t,s<T

x {kz[v(s) + %, (s)]"

+ (s [u©) + % (6)]7) +& ()} ds
= o |y
(30)
Then, we can get
IT @ )llg = |(Tyue, Tow)|y = [ Tyuf + | TVl
> o (|Tyul + | Tovl]) = ol T (s )l

which means T(Q x Q) c Q x Q.
Let B ¢ Q x Q be any bounded set. Then there exists a
constant N such that, for any (u,v) € B,

[, V)l = llull + vl < N. (32)
From (27), we have

(Tyu) () < K MT |lull + M(Iv]| + 1)*
T

X L {fisD+¢ (s)}ds

< K’MTN + M(N + 1)"

T

« L [f, (s 1) + ¢ ()} ds,

(33)

(Tyv) (8) < K*MT |Ivll + M(Jlull + )™
T

X L {fr(sD+¢ (s)}ds

< K*MTN + M(N + )"

T
<[ heng e
0
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Let

N = K*MTN + M(N + )"

T T
([ e odse [ (A 60+ g o))
0 0
< +00.
(34)
Thus
IT @ )lly = [Tyul + [ Tov] < N, (35)

which implies that T'(B) is bounded.
Next we prove that T(B) is equicontinuous. For any
(u,v) € B, t € [0, T], we know

T
Tw© = G
X {kz[u (s) + %, (s)]"

+fi (5’ [v(s) + X, (5)]*) +of (s)} ds
_ 1
2k (1 - coskT)
X L (sink (t —s)
+sink (T -t +5))

x (K[ (5) + %, (9)]

+fi(s v+ 6)])

+q (s)}ds

1
" 2k (1 — coskT)

xf (sink (s —¢)
+sink (T —s+1))
x I [u(s) + % ()]
+fi(s e +%6)])

+ C1+ (s) } ds,
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1

(Tw) 0 =-50 (KT/2)

sin

t
XJ 2k (t-s)— kT
0 2

x K2 [u(s) + % ()]

+ f, (s, [v(s) + X, (s)]*)
+¢ (s) } ds

1
" Jsin (KT/2)

JT _ 2k(s—t)—kT
X sin —mm—m
; 2

x K2 [u(s) + % ()]

+ fi (s, [v(s) + X, (s)]*)
+¢ (s) } ds.
(36)

From (25) and (H,), we have

1

'(Tlu) (f)| < m

x L {kz[u (s) + %, (s)]"
+ f1 (s, [v(s) + X, (s)]*) +¢; () } ds
o
T 2 sin (kT)2)
T .
X L {k [u(s) + X, (s)]

+ fi (s, [v(s) + X, (s)]*) +¢ (9) } ds

1
2sin (kKT /2)

T
x L {lu@s)+ %, (9]

+ f, (s, [v(s) + X, (s)]*) +¢ (s) } ds

U
2 sin (KT'/2)

T
< [ v+ 1

X fi (s, 1) +¢ (s)}ds

KT

H
= 2sin (kT /2) (1)

lleell +

1
2 sin (KT'/2)

T
X J {fi(s 1) +¢ (s)}ds
0

KT

1 1t
< Tkt Tzt MY

T
X J {fi(s 1)+ ¢ (s)}ds < +oo.
0
(37)

Using the same method, we can obtain I(Tzv)'(t)l <
+00. Therefore, T'(B) is equicontinuous. According to Ascoli-
Arzela theorem, T'(B) is a relatively compact set.

Next, we prove that T : Q x Q — Q x Q is continuous.
Suppose (u,,v,), (ug, vo) € QX Q, (u,,v,) — Uy, vy)n —
+00, that is, u, — uy v, — vy, n — +00. We know that
there exists a constant L > 0 such that

luoll <L Jua <L vl < L,

(38)
vl <L, n=1,2....
We shall prove T'(u,,, v,,) — T(uy,vy), n — +00, that s,
Tyu, — T u,

T,v, — Tyvy, n—> +co.

(39)

We first deal with Tyu,, — Tiuy,,n — +00. Otherwise,
there exist ¢, > 0, {t,} € [0,T] such that [T u,(t,) -
T uy(t,)| = ¢, Without loss of generality, we can assume
t, — t, € [0,T]. We know

Tlun (tn) - Tlun (tO) — 0,
(40)

Tyug (t,) = Tyug (to) — 0, n— oo

Next, we show T} u,(to) — Tyug(ty) — 0,n — co.In fact,
Ty, ()~ Tyt 1) = [ G t9)
x {2 [u, (5) + % ()]
— K[y (5) + %, ()]
+fi(s @ +%6)]")
~fi(s v () + % ()]} ds.

(41)
Let
r, () = G(ty,s)
X 1[4, (5) + %, (9)] " = K [uag (5) + %, (5)]
i (s [+ % 6)])
“fi (s O+ % 6]}
(42)



Since
|[v, () + %, ()] = [ (5) + %, ()]

|vn (s) + X, (s)| +v,(s) + X, (s)
2

o (9) + % ()] + vy (5) + %, ()
2

(43)
|vn (s) + X, (s)| - |v0 (s) + X, (s)|
2

RACEAC)
2

< an (s) = (s)| — 0, n— +00,

and f; is continuous, we know ,,(s) — 0,n — o0. From
(24), we know

[, (s) + %, (s)]" <L, [ty (5) + X, (s)]" < L,
[v,(s)+X,(s)]" <L<L+1, (44)
[vo () + %, (s)] < L<L+1.

It can be inferred from (8) that

|1,y ()] < MA{|K* [, (5) + %, (5)]” = K2 [ug () + X, ()] |
+ |f1 (5, [v, (s) + X, (s)]*)
-f, (s, [vo (s) + X, (S)]*)”’

< 2MK’L + 2M(L + 1) £, (s, 1).
(45)

Set F(s) = 2MK*L + 2M(L + 1) (f,(s, 1) + ¢ (s)). Thus,
we get

[r, ()| <F(s), se€(0,T), n=12,.... (46)

From (H,), we know fOT F(s)ds < +00. Using Lebesgue-dom-
inated convergence theorem, we get
T
Tyu, (t,) — Tyug (t,) = J r,(s)ds — 0, n— +oo.
° (47)
From (40) and (47), we obtain
g < [Tyu, (t,) = Tyug (t,)]
= |Tyu, (t,) = Tyw, (to) + Tyu, (t) = Tyug (t)
+Tyug (t9) = Tyutg (8,))]
< |Tyu, (t,) = Tyw, (t)] + [Ty, () = Ty (t)]

+|Tyuy (ty) = Tyug (t,)] — 0, n— oo,

(48)
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which is a contradiction. Thus, we know Tyu,, — T uy,n —
+00. Using the same method, we can obtain T,v,, — T,v,,
n — +oo. Then

T(un’ Vn) = (Tlun’TZVn) - (T1”0>T2V0)
(49)

~T(up ). n— +,

which means T : Q x Q — Q x Q is continuous. Therefore
T:QxQ — QxQisacompletely continuous operator. [

3. Proof of Theorem 3

We proceed to prove Theorem 3 in two steps.
(D) Let Q; = {(,v) € QxQ : lull < 2M’r,/m, |v]| <
2M2r2/m}. We can get
T(u,v) #A(W,v), (uv)edQy, A>1. (50)
For (u, v) € 0Q),, we have the following two cases.

Case I. One has {(u,v) € Qx Q : |lu| = 2M?r/m,|v| <
2M?r,/m}. Under this condition, we can get
Twu+Au, (u,v)€oQy, A>1. (51)

Otherwise, there exist (1, v;) € 0Q4, Ay > 1such that T u, =
Agity- As
uy (1) + X, (1)
T
=ugy (t) — J G(t,s)c (s)ds (52)

0

>0 ||u0|| - Mr; >0,

then [uy(t) + X, (1)]" = uy(t) + X, (t). By a direct computation,
we know u, = (1/A,)T,u, satisfies

uy () + K uy (t)

= R O+ 5 0)+ £ (1[0 0+ 5 0))
0

+e (1)},
1y (0) = uy (T), uy (0) = ug (T).
(53)
Then, we get
(0= = {1 (w0 + 5, 0) + £, (1[0 0+ 5, 0)])
0

e (£) } = Koug (1)
<Kuy () + K%, (1) +f, (8 [vo 0+ %, (0)]")
+¢ (1) = Kuy (t)

=K%, (O + fi (6 [ve ) + X, (O)) +¢f ().
(54)
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Since [vy(t) + X, (t)]" < vy(t) < 2M?*r,/m + 1, integrating
both sides of (54) on [0, T'], we get

T
0<k2J %, (t)dt

T
+j
0

v )+ %, (0]7) + ¢ ()} dt

T M2 H (55)
skzj 1(t)dt+( r2+1)
0 m
T
X i {fit, 1)+ ()}t
Then
2 W
(2M 72+1> j [fL (1) +cF (O] de
m 0
T T (T
z—kzj El(t)dt:kzj J G (t,s)c; (s)dsdt
0 0 Jo
> K*Tmr,.
(56)
That is,
K*Tmr,
t,1)+ t e 57
J MICDACIO (2M2r /m+ 1) 57)
which contradicts with (H,).
Case II. One has {(u1,v) € Qx Q : [lul| < 2M?r,/m,||v| =

2M 2r2 /m}. Under this condition, we can get
T,v#Av, (u,v) €0Q, A> 1. (58)
Otherwise, there exist (1, v,) € 0Q;, Ay, > 1such that T,v, =
Agvo- As
T —_
vo () + % (£) = v (1) - I G(t,s) ¢ (s)ds
0 (59)
> o ||| - Mr, >0,
then [vy(f) + X,(t)]" = v,(t) + X,(t). By a direct computation,

we know v, = (1/A0)T2vo satisfies

{k2 (vo () + X, (1))

0

vy (t) + K () =

+fy (6 [y ) + %, (0)])
+6 0},

v (0) = v, (T), v (0) = vy (T).

(60)
For [uy(t) + %,(t)]* < uy(t) < 2M*r,/m + 1, using the
same method as condition I, we obtain
K Tmr
[ ey g oas K™
- (2M?r/m+ 1)

which is also a contradiction.

(2) Choose an interval [, 8] € (0, T) satistying 8 — «
T/2. Set M > 4M/Tm*. From Lemma 5, there exists R,
2M?r/m, r = max {r,, r,} such that

\Y2

fitt,tu)>Mu, u=Ry, te[ep],i=12. (62)

LetR > 2M/m)R;, > Ry > 2M?r/m. Define Q, = {(u,
v) € QxQ: [lull < R,[Iv]l < R}. We can get
T (u,v) #A(w,v), (W,v)€0Q,, 0<A<L1. (63)
For (u, v) € 0Q),, we have the following two cases.

Case I. One has {(1,v) € Qx Q : |u
this condition, we know

= R,|v| < R}. Under

u(t) + % (t) = o |ul - Mr, > oR — Mr > %R(> R, > 0).
(64)

Thus [u(t) + X,(t)]"

from (62) that

= u(t) + x,(¢). Furthermore, we obtain

T
T,v(t) = L G(t:9) [K[v(s) + % ()]

+ f, (s,u(s) + %, (s)

+¢ (s) } ds (65)

B
> J G(t,3) f5(s,u(s) + X, (s))ds

>]T/IdTRm2
2 —

On the other hand, for 0 < A < 1, we know Av(t) < v(t) < R.
From the choice of M, we get T,v # Av.

Case II. One has {(u,v) € QxQ : |lu]l < R,||v| = R}. Under
this condition, we get
v(t) + X, (8) 2 o |lv| - Mr,
(66)

> 0R—Mr> —=R(> R, >0).
2M
Thus [v(t) + X,(t)]" = v(t) + X,(t). From (62), we get
T
Tou(t) = L G(t,5) {K*[u(s) + %, ()]
+ f1(sv(s) + %, (5))
+ C1+ (s) } ds

(67)

B
> J Gt s) f; (s,u(s) + X, (s)) ds

N MTRm?
> =

For0 < A < 1, Au(t) < u(t) < R, from the choice of M, we
know T, u # Au.



Furthermore, we can obtain

IT (> v)llg = | Tyua]| + [ T
(68)

MTRm?
>

g (u,v) € 0Q2,.

It implies inf(u,v)eanz I T'(u,v)ll, > 0.
From Lemma 4, we know T has a fixed point (%, V) in
Q,/Q,.For (i1,V) € Q,/Q,, we have the following three cases.

Case 1. One has

2M?r

2M?
(@7) € {QXQ: < lal < R vl < r}
m (69)
=5,

Case 2. One has

_ _ 2M* 2M*r

(@1,v) € {Q xQ: lall < , < vl < R}
m m

=3,

Case 3. One has

@7) € {QxQ: 2MT < R, 2MT

=S;.
(71)

Next, we show Cases 1 and 2 are impossible. In Case 1, we
have

T

At + %, () =i () - L G(t,s)c; (s)ds .

> g |lii] - Mr, > 0.

It follows that [z(¢) + X, (#)]* = @(t) + x,(t). By a direct
computation, we know # = T, # satisfies

' (t) + Kut) = K (@) + X, (1))
+AEFO+FHO])+¢ ), (73)

7(0) =u(T), 7 0) = (T).

Then, we get

') =K% 0+ fi(LFO+FO])+ ¢ @), (74)
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Since [(t) + %,(t)]* < W(t) < 2M?*r,/m + 1, integrating both
sides of (74) on [0, T'], we get

T
* J PO+ 0])+q 0}dt

T ZMZT 31 (75)
skzj fl(t)dt+( o +1)
0
T
x L {fit, D)+ (1)} ar.
Then
2M?r, T .
( - +1) L [fi (1) +¢ )] dt
T T (T
z—kzj %, (t)dt:kzj J G5 ()dsdt O
0 0 Jo
> K*Tmr,.
That is,
T + K*Tmr,
L (it D) +q (O]dt > CMPrm + 1) (77)

which contradicts with (H,). Using the same method, we
can prove that Case 2 is also impossible. Therefore, Case 3
is satisfied and T  has a fixed point (&, ¥) in Q,/Q, satisfying

2 2
2M*r < i <R, 2M°r

<Vl <R (78)

m

Since

i)+ %, (t) > o il - Mr, > 0,

(79)
V() + X, (t) = o |7] - Mr, > 0,
from Lemma 6, we know #i(t), %(t) satisfy
')+ Ka) =k (@) + %, (1)
+ £ (LT + % (1) +¢ (),
7' +E7@) =k (7(t) + X, (1))
(80)

+ Htua) +x () +¢ (1),
) =a(r), @)= (D),

7(0) = 7(T), 7 (0) =7 (T).
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Let (u™(¢),v* () = @(t) + X, (¢), (t) + X,(¢)). For
a=q®-c®, oB=¢g®-¢®, 8

we obtain

u () = f (V" (1) +¢ (1),
v = f(tu (1) + 6 @),
u (0)=u"(T),

te(0,T),
te(0,T),

(82)
u*l (0) — H*, (T) ,

v (0) = v (T), v (0) = v (T).

This means (u*, v*) is one positive T-periodic solution of

(D).

4. Applications of Theorem 3

Finally, we give some examples as the applications of
Theorem 3:

'un (t) = KTmv*? B i
MT/m+1)'VE VE
o (t) = KRTmu? B i
= (M VT/m+1)'vE VE
u(0) =u(T),  u'(0)=u'(I),
[v(0) =v(T), v (0) =V (T).
(83)
ru,, (t) = KTmv?
(2M2NT/m + 1)’ VT \/_’
V' (t) = KT’ 2
2] (M NTm 1) VT—t
u(0) =u(T), u' (0) =u (T),
[v(0) =v(T), v (0) =V (T).

Choosing f, (£, v) = KTmv*2[@M*NT/m + 1)’ Vi, f,(t,
1) =R Tmu | QM NT Jm+1) NT = ¢ (8) = 2/VE cF(¢) =
0,r; = _[()Tci_(t)dtél\/ii =1,2,and p; =2 >y, =5/4> 1,
Ay =2 > A, =5/4 > 1, then (H,) is satisfied. Notice (H,)
also holds, since

2K*TVTm
(M2 VT/m+1)"

Il
—_
>

jT (it ) +¢ (1)dt =
0

(84)

Existence of the positive T-periodic solutions is guaran-
teed from Theorem 3. We can also consider the following
examples and the same result can be obtained:

,u” . CTmv? 2
(ZMZ\/T/m+1)2 T—t V£
" KTmu?
(e3)qv (1) = (85)
’ (2M2\/_/m+1)\f VT -t
u(0) =u(T), u' (0) =u' (T),
(v(0) =v(T), v (0)=V(T),
'u,, (t) = KTmv*? 2
(2M2\/T/m + 1)2\/ﬁ VT —t
(ed) - ! ) = KTmu’? B 2
(MT/m+1)NT—t VT
u@© =u(l), ' (0)=u(T),
v(0) = v(T), v (0) = (T).
(86)
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