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We study a class of nonlinear fractional integrodifferential equations with 𝑝-Laplacian operator in Banach space. Some new
existence results are obtained via fixed point theorems for nonlocal boundary value problems of fractional 𝑝-Laplacian equations.
An illustrative example is also discussed.

1. Introduction

In this paper, we discuss a class of fractional integrodif-
ferential equations with 𝑝-Laplacian operator and nonlocal
boundary condition in Banach space 𝐸:

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼
0+𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡))) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑆𝑥 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

𝑥 (0) + 𝑥 (𝑇) = 𝐷
𝛼
0+𝑥 (0) + 𝐷

𝛼
0+𝑥 (𝑇) = 𝜃,

𝜂1𝑥
󸀠
(0) + 𝜂2𝑥

󸀠
(𝑇) = 𝑔 (𝑥) ,

(1)

where 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 2 < 𝛼 + 𝛽 ≤ 3, 𝐷𝛼0+ denotes the
Caputo fractional derivative of order 𝛼. 𝜙𝑝(𝑥) = ‖𝑥‖

𝑝−2
𝑥 (𝑝 >

1) is called a𝑝-Laplacian operator.𝑇 > 0 is a constant, 𝜃 is the
zero element of 𝐸, and 𝜂1, 𝜂2 ∈ R,𝑓 ∈ 𝐶([0, 𝑇]×𝐸

2
, 𝐸), ℎ, 𝑔 ∈

𝐶([0, 𝑇] × 𝐸, 𝐸), 𝑆𝑥(𝑡) = ∫
𝑡

0
ℎ(𝑠, 𝑥(𝑠))𝑑𝑠, and 𝑔 : 𝐶(0, 𝑇; 𝐸) →

𝐸 is a continuous functional.
Recently, fractional differential equations with 𝑝-Lapla-

cian operator have been widely applied in many fields of
physics and natural phenomena, such as non-Newtonian
mechanics, fluid mechanics, viscoelasticity mechanics, com-
bustion theory, and material science. There have appeared
some results for the existence of solutions of BVPs for

fractional differential equations with 𝑝-Laplacian operator,
see [1–11] and the references therein.

In the last few years, the research of antiperiodic BVPs
has received considerable attention and become a much
important area. The study of antiperiodic solutions for
nonlinear evolution equations is closely related to the study
of periodic solutions, and it was initiated by Okochi [12].
And antiperiodic boundary conditions appear in physics in
a variety of situations (cf. [13–15] and references therein).

As well as we know, it has been shown, first by Tavazoei
et al. and later by Kaslik and Sivasundaram (cf. [16–19]),
that periodic solution in fractional dynamical systems does
not exist. Therefore antiperiodic solutions may not exist
for fractional differential equations. However, such kind of
boundary condition (the value at endpoint has different
signs) still received considerable attention; it may involve
some resonance problems. For example, Chen and Liu [3]
studied a kind of BVP for the fractional 𝑝-Laplacian equation
as follows:

𝐶
𝐷
𝛽

0+
𝜙𝑝 (
𝐶
𝐷
𝛼
0+𝑢 (𝑡)) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = −𝑢 (1) , 𝐷
𝛼
0+𝑢 (0) = −𝐷

𝛼
0+𝑢 (1) ,

(2)

where 0 < 𝛼, 𝛽 ≤ 1, 1 < 𝛼 + 𝛽 ≤ 2, 𝐶𝐷𝛼0+ is a standard
Caputo fractional derivative and 𝑓 : [0, 1] × R → R is
continuous. Under certain nonlinear growth conditions of
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the nonlinearity, the existence result was obtained by using
Schaefer’s fixed point theorem.

Alsaedi [13] proved some existence results for a BVP for
fractional differential equations as mentioned later:

𝐶
𝐷
𝑞

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝜒𝑥) (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = −𝑥 (𝑇) , 𝑥
󸀠
(0) = −𝑥

󸀠
(𝑇) ,

(3)

where 𝐶𝐷𝑞
0+

denotes the standard Caputo fractional deriva-
tive of order 1 < 𝑞 ≤ 2, 𝑓 : [0, 𝑇] × 𝐸

2
→ 𝐸, and for 𝛾 :

[0, 𝑇] × [0, 𝑇] → [0,∞), (𝜒𝑥)(𝑡) = ∫
𝑡

0
𝛾(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠, (𝐸, ‖ ⋅ ‖)

is a Banach space. The contraction mapping principle and
Krasnoselskii’s fixed point theorem are applied to establish
the results in [13].

Moreover, if 𝑔(𝑡, 𝑥(𝑡)) = 𝜆𝑥(𝑡), 𝜆 ∈ R, 𝑝 = 2,
then (1) reduces to the Langevin equation which has been
widely used to describe the evolution of physical phenomena
in fluctuating environments. In [20], the authors studied
such type of Langevin equation with two different fractional
orders. This new version of fractional Langevin equation
gives a fractional Gaussian process parameterized by two
indices, which provides a more flexible model for fractal
processes as compared with the usual one characterized by
a single index. In [21], the fractional oscillator process with
two indices was discussed. For more details, see [22–26] and
references therein.

In [24], Ahmad et al. discussed the existence solutions for
the three-point BVPs of Langevin equation with two different
fractional orders:

𝐶
𝐷
𝛽

0+
(
𝐶
𝐷
𝛼
0+ + 𝛼 + 𝜆) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (𝜂) = 0, 𝑥 (1) = 0, 0 < 𝜂 < 1,

(4)

where 𝐶𝐷𝛼0+ denotes the standard Caputo fractional deriva-
tive, 0 < 𝛼 ≤ 1, 1 < 𝛽 ≤ 2, 𝑓 ∈ 𝐶([0, 1] × R,R), and 𝜆 is a
real number. Ahmad and Nieto [25] studied a Dirichlet BVP
of Langevin equation

𝐶
𝐷
𝛽

0+
(
𝐶
𝐷
𝛼
0+ + 𝜆) 𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ (0, 1) , 0 < 𝛼, 𝛽 ≤ 1,

𝑥 (0) = 𝛾1, 𝑥 (1) = 𝛾2,

(5)

where 𝑓 : [0, 1] × 𝐸 → 𝐸, 𝜆 is a real number, 𝛾1, 𝛾2 ∈ 𝐸.
Here, (𝐸, ‖ ⋅ ‖) is a Banach space. A. P. Chen and Y. Chen [26]
considered the BVP of Langevin equation with two different
fractional orders:

𝐶
𝐷
𝛽

0+
(
𝐶
𝐷
𝛼
0+ + 𝜆) 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ (0, 𝑇) , 𝑇 > 0,

𝑢 (0) = −𝑢 (𝑇) , 𝑢
󸀠
(0) = 𝑢

󸀠
(𝑇) = 0,

(6)

where 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 𝑓 : [0, 𝑇] × R → R is
continuous and 𝜆 is a real number. By applying contraction

mapping principle and Krasnoselskii’s fixed point theorem,
some existence results are obtained in [24–26].

Motivated by previously mentioned works, we will con-
sider the existence of solutions of fractional 𝑝-Laplacian
BVP (1) with nonlocal boundary condition. To authors’
knowledge, there are few results on the existence of solutions
of nonlinear fractional 𝑝-Laplacian differential equations in
Banach spaces, and no paper is concerned with the existence
results for fractional 𝑝-Laplacian integrodifferential equation
(1). And the main difficulty that, for 𝑝 ̸= 2, it is impossible
for us to find a Green’s function in the equivalent integral
operator since the differential operator 𝐷𝛽

0+
𝜙𝑝(𝐷
𝛼
0+) is non-

linear. This paper is concerned with BVP (1) by using some
known fixed point theorems. Such investigations will provide
an important platform for gaining a deeper understanding of
nature.

The paper is organized as follows. In Section 2, we present
some material. In Section 3, by applying Krasnoselskii’s the-
orem and Schauder’s fixed point theorem, the existence of
solutions is given for nonlinear fractional BVP (1). Finally, an
example is shown in Section 4 to illustrate the usefulness of
the main results.

2. Preliminaries and Lemmas

Firstly, we recall the following known definitions, which can
be found in [4, 10].

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛾 > 0 of a function 𝑓 : (0,∞) → R is given
by

𝐼
𝛾

0+
𝑓 (𝑡) =

1

Γ (𝛾)
∫

𝑡

0
(𝑡 − 𝑠)

𝛾−1
𝑓 (𝑠) 𝑑𝑠, (7)

provided that the right side integral is pointwise defined on
(0, +∞).

Definition 2. TheRiemann-Liouville derivative of order 𝛾 > 0

for a function 𝑓 : [0,∞) → R can be written as

𝐿D𝛾
0+
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛾)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛾−𝑛+1

𝑑𝑠, (8)

where 𝑛 is the smallest integer greater than 𝛾.

Definition 3. The Caputo fractional derivative of order 𝛾 > 0

for a function 𝑓 : [0,∞) → R can be written as

𝐷
𝛾

0+
𝑓 (𝑡) =

𝐿D𝛾
0+
(𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)

(0)) , (9)

where 𝑛 is the smallest integer greater than 𝛾.
For 𝑛 ∈ N+ := {1, 2, . . .}, 𝐴𝐶𝑛[𝑎, 𝑏] denotes the space of

functions𝑓(𝑡)which have continuous derivatives up to order
𝑛 − 1 on [𝑎, 𝑏] such that 𝑓(𝑛−1)(𝑡) ∈ 𝐴𝐶[𝑎, 𝑏]:

𝐴𝐶
𝑛
[𝑎, 𝑏] = {𝑓 : [𝑎, 𝑏] 󳨀→ R, 𝑓

(𝑛−1)
(𝑡) ∈ 𝐴𝐶 [𝑎, 𝑏]} ,

(10)

where 𝐴𝐶[𝑎, 𝑏] is the space of absolutely continuous func-
tions on [𝑎, 𝑏]. Then we easily get the following.
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Remark 4. If 𝑢 ∈ 𝐴𝐶
𝑛
[0,∞), then it is the standard Caputo

fractional derivative

𝐷
𝛾

0+
𝑢 (𝑡) =

𝐶
𝐷
𝛾

0+
𝑢 (𝑡) :=

1

Γ (𝑛 − 𝛾)
∫

𝑡

0

𝑢
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛾+1−𝑛

𝑑𝑠, (11)

where 𝑛 is the smallest integer greater than 𝛾. Furthermore,
the Caputo derivative of a constant is equal to zero.

Lemma 5 (see [4]). Let 𝛾 > 0. Assume that 𝑢 ∈ 𝐴𝐶
𝑛
[0,∞).

Then the following equality holds:

𝐼
𝛾

0+
𝐷
𝛾

0+
𝑢 (𝑡) = 𝐼

𝛾

0+
𝐶
𝐷
𝛾

0+
𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡

𝑛−1
,

(12)

where 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛 − 1; here 𝑛 is the smallest integer
greater than 𝛾.

The following famous fixed point theorems will be used
to prove the existence results of BVP (1).

Lemma 6 (Krasnoselskii’s Theorem [27]). Let 𝑀 be a closed
convex and nonempty subset of a Banach space 𝑋. Let 𝐴, 𝐵 be
the operators such that

(i) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 whenever 𝑥, 𝑦 ∈ 𝑀;
(ii) 𝐴 is compact and continuous;
(iii) 𝐵 is a contraction mapping.

Then there exists 𝑧 ∈ 𝑀 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.

Lemma 7 (Schauder’s fixed point theorem). If Ω is a
nonempty closed bounded convex subset of a Banach space 𝑋,
and 𝑇 : Ω → Ω is completely continuous, then 𝑇 has a fixed
point in Ω.

3. Existence Results

In this section, we deal with the existence of solutions of the
BVP (1).

At first, we introduce the Banach space 𝑋 = 𝐶(0, 𝑇; 𝐸)

of all continuous functions from [0, 𝑇] to 𝐸 endowed with
a topology of uniform convergence with norm defined by
‖𝑥‖𝑋 = sup{‖𝑥(𝑡)‖ : 𝑡 ∈ [0, 𝑇]}, and ‖ ⋅ ‖ denotes the norm in
Banach space 𝐸.

In relation to (1), we introduce the following fractional 𝑝-
Laplacian differential equations:

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼
0+𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡))) = ℎ (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) + 𝑥 (𝑇) = 𝜃, 𝐷
𝛼
0+𝑥 (0) + 𝐷

𝛼
0+𝑥 (𝑇) = 𝜃,

𝜂1𝑥
󸀠
(0) + 𝜂2𝑥

󸀠
(𝑇) = 𝑥0,

(13)

where 𝜂1, 𝜂2 ∈ R, 𝑥0 ∈ 𝐸.

Remark 8. Obviously, 𝜙𝑝 is invertible and (𝜙𝑝)
−1

= 𝜙𝑞, where
𝑞 > 1 such that 1/𝑝+1/𝑞 = 1. 𝜙𝑝 and 𝜙𝑞 are strictly increasing
functions. Furthermore, the nonlinear operator 𝐷𝛽

0+
𝜙𝑝(𝐷
𝛼
0+)

reduces to the linear operator 𝐷
𝛽

0+
𝐷
𝛼
0+ when 𝑝 = 2, and

the additive index law 𝐷
𝛽

0+
𝐷
𝛼
0+𝑥(𝑡) = 𝐷

𝛽+𝛼

0+
𝑥(𝑡) holds under

reasonable conditions on the function 𝑥(𝑡) (see [4, 10]).

Lemma 9. Let 𝜔 ∈ 𝑋 and 𝜂1+𝜂2 ̸= 0; then the unique solution
of the BVP,

𝐷
𝛼
0+𝑥 (𝑡) = 𝜔 (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑇 > 0, 1 < 𝛼 ≤ 2,

𝑥 (0) + 𝑥 (𝑇) = 𝜃, 𝜂1𝑥
󸀠
(0) + 𝜂2𝑥

󸀠
(𝑇) = 𝑥0,

(14)

is given by

𝑥 (𝑡) = ∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑑𝑠 +

(2𝑡 − 𝑇) 𝑥0

2 (𝜂1 + 𝜂2)
, 𝑡 ∈ [0, 𝑇] ,

(15)

where 𝐺(𝑡, 𝑠) is given by

𝐺 (𝑡, 𝑠)

=

{{{{

{{{{

{

2(𝑡 − 𝑠)
𝛼−1

− (𝑇 − 𝑠)
𝛼−1

2Γ (𝛼)
+
𝜂2 (𝑇 − 𝑡) (𝑇 − 𝑠)

𝛼−2

2 (𝜂1 + 𝜂2) Γ (𝛼 − 1)
, 𝑠 ≤ 𝑡,

𝜂2 (𝑇 − 𝑡) (𝑇 − 𝑠)
𝛼−2

2 (𝜂1 + 𝜂2) Γ (𝛼 − 1)
−
(𝑇 − 𝑠)

𝛼−1

2Γ (𝛼)
, 𝑡 ≤ 𝑠.

(16)

Proof. Assume that 𝑥(𝑡) satisfies the equation of (14); then by
the first equality of (14) and Lemma 5, we have

𝑥 (𝑡) = 𝑐0 + 𝑐1𝑡 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠,

𝑥
󸀠
(𝑡) = 𝑐1 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠.

(17)

Applying the boundary conditions of (14), thus

𝑐0 + (𝑐0 + 𝑐1𝑇 + ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠) = 𝜃,

𝜂1𝑐1 + 𝜂2 (𝑐1 + ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠) = 𝑥0.

(18)

Through some calculation, we get

𝑐1 = −∫

𝑇

0

𝜂2(𝑇 − 𝑠)
𝛼−2

(𝜂1 + 𝜂2) Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠 +

𝑥0

𝜂1 + 𝜂2
,

𝑐0 = −
𝑇

2
𝑐1 − ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

2Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠

= ∫

𝑇

0

𝑇𝜂2(𝑇 − 𝑠)
𝛼−2

2 (𝜂1 + 𝜂2) Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠

− ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

2Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠 −

𝑥0𝑇

2 (𝜂1 + 𝜂2)
.

(19)
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Thus

𝑥 (𝑡) = ∫

𝑇

0

𝑇𝜂2(𝑇 − 𝑠)
𝛼−2

2 (𝜂1 + 𝜂2) Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠

− ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

2Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠 −

𝑥0𝑇

2 (𝜂1 + 𝜂2)

− 𝑡 ∫

𝑇

0

𝜂2(𝑇 − 𝑠)
𝛼−2

(𝜂1 + 𝜂2) Γ (𝛼 − 1)
𝜔 (𝑠) 𝑑𝑠 +

𝑥0𝑡

𝜂1 + 𝜂2

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝜔 (𝑠) 𝑑𝑠

= ∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑑𝑠 +

(2𝑡 − 𝑇) 𝑥0

2 (𝜂1 + 𝜂2)
, 𝑡 ∈ [0, 𝑇] .

(20)

This completes the proof.

Lemma 10. The function 𝐺(𝑡, 𝑠) satisfy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝑑𝑠

≤

󵄨󵄨󵄨󵄨𝜂2
󵄨󵄨󵄨󵄨 𝑇
𝛼

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨 Γ (𝛼)
+

3𝑇
𝛼

2Γ (𝛼 + 1)

:= 𝜇0, 𝑡 ∈ [0, 𝑇] .

(21)

Proof. It is easy to see that, for 𝑡 ∈ [0, 𝑇], we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝑑𝑠

≤ ∫

𝑇

0

𝜂2 (𝑇 − 𝑡) (𝑇 − 𝑠)
𝛼−2

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨 Γ (𝛼 − 1)
𝑑𝑠

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

2Γ (𝛼)
𝑑𝑠 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠

≤

󵄨󵄨󵄨󵄨𝜂2
󵄨󵄨󵄨󵄨 (𝑇 − 𝑡) 𝑇

𝛼−1

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨 Γ (𝛼)
+

𝑇
𝛼

2Γ (𝛼 + 1)
+

𝑡
𝛼

Γ (𝛼 + 1)

≤

󵄨󵄨󵄨󵄨𝜂2
󵄨󵄨󵄨󵄨 𝑇
𝛼

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨 Γ (𝛼)
+

3𝑇
𝛼

2Γ (𝛼 + 1)
:= 𝜇0.

(22)

This completes the proof.

Lemma 11. Assume that ℎ ∈ 𝑋 and 𝑔 ∈ 𝐶([0, 𝑇] × 𝐸, 𝐸)

satisfies 𝑔(0, −𝑢) = −𝑔(𝑇, 𝑢) for any 𝑢 ∈ 𝐸; then 𝑥 ∈ {𝑥 :

𝑥(⋅) ∈ 𝐴𝐶(0, 𝑇; 𝐸) and 𝜙𝑝(𝐷𝛼0+𝑥(⋅) + 𝑔(⋅, 𝑥(⋅))) ∈ 𝐴𝐶(0, 𝑇; 𝐸)}

is a solution of (13) if and only if 𝑥 ∈ 𝐶(0, 𝑇; 𝐸) is a solution of
the following integral equation:

𝑥 (𝑡) = ∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝜙𝑞 (𝐹ℎ (𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+
(2𝑡 − 𝑇) 𝑥0

2 (𝜂1 + 𝜂2)
, 𝑡 ∈ [0, 𝑇] ,

(23)

where 𝐺(𝑡, 𝑠) is given by (16) and

𝐹ℎ (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠 − ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
ℎ (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(24)

Proof. Assume that 𝑥 is a solution of (13). Then by (13) and
Lemma 5, we have

𝜙𝑝 (𝐷
𝛼
0+𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡)))

= 𝑐0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(25)

For 𝜙−1𝑝 = 𝜙𝑞, we can get

𝐷
𝛼
0+𝑥 (𝑡) = −𝑔 (𝑡, 𝑥 (𝑡)) + 𝜙𝑞 (𝑐0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑇] .

(26)

Combining with𝐷
𝛼
0+𝑥(0) = −𝐷

𝛼
0+𝑥(𝑇), we obtain

− 𝑔 (0, 𝑥 (0)) + 𝜙𝑞 (𝑐0)

= 𝑔 (𝑇, 𝑥 (𝑇)) − 𝜙𝑞 (𝑐0 + ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠) .

(27)

Since 𝑥(0) = −𝑥(𝑇), 𝑔(𝑇, 𝑥(𝑇)) = −𝑔(0, −𝑥(𝑇)) = −𝑔(0,

𝑥(0)) and 𝜙𝑞(−𝑠) = −𝜙𝑞(𝑠), thus (27) yields that

𝑐0 = −
1

2
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠. (28)

Substituting previous equation into (25), then

𝜙𝑝 (𝐷
𝛼
0+𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡)))

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠 −

1

2
∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

Γ (𝛽)
ℎ (𝑠) 𝑑𝑠

=: 𝐹ℎ (𝑡) , 𝑡 ∈ [0, 𝑇] ,

(29)

which means that

𝐷
𝛼
0+𝑥 (𝑡) = 𝜙𝑞 (𝐹ℎ (𝑡)) − 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] . (30)

Now, setting 𝜔(𝑡) = 𝜙𝑞(𝐹ℎ(𝑡)) − 𝑔(𝑡, 𝑥(𝑡)), then (13) can
be changed into the form of (14). Applying Lemma 9, we can
get (23).

Conversely, we can obtain that the solution of (23) is the
solution of the BVP (13) by calculation, which completes our
proof.

Now, let us consider the existence of solutions of BVP
for 𝑝-Laplacian equations (1). Let𝑁 be a Nemytskii operator
defined by

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑆𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (31)
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and for 𝑡 ∈ [0, 𝑇], we denote

𝐹𝑁𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
𝑁𝑥 (𝑠) 𝑑𝑠 − ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
𝑁𝑥 (𝑠) 𝑑𝑠.

(32)

We define an operatorF : 𝑋 → 𝑋 as follows:

F𝑥 (𝑡) = ∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+
(2𝑡 − 𝑇)

2 (𝜂1 + 𝜂2)
𝑔 (𝑥) , 𝑡 ∈ [0, 𝑇] ,

(33)

where 𝐺(𝑡, 𝑠) is given by (16). Clearly, a fixed point of the
operatorF is a solution of the problem (1).

In the sequel, we need the following assumptions.

(H1) Let 𝑓 : [0, 𝑇] × 𝐸
2
→ 𝐸 be continuous and ∃𝑎, 𝑏, 𝑐 ∈

R+ such that
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, V)󵄩󵄩󵄩󵄩 ≤ 𝑎 + 𝑏‖𝑢‖

𝑝−1
+ 𝑐‖V‖𝑝−1

∀𝑡 ∈ [0, 𝑇] , 𝑢, V ∈ 𝐸.

(34)

(H2) The function 𝑔 : [0, 𝑇] × 𝐸 → 𝐸 is continuous and
𝑔(0, −𝑢) = −𝑔(𝑇, 𝑢) for all 𝑢 ∈ 𝐸. Moreover, ∃𝐿 > 0

such that
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)󵄩󵄩󵄩󵄩 ≤ 𝐿 ‖𝑢 − V‖

∀𝑡 ∈ [0, 𝑇] , 𝑢, V ∈ 𝐸.
(35)

(H3) Let ℎ ∈ ([0, 𝑇] × 𝐸, 𝐸), and ∃𝑘 ∈ 𝐿
1
(0, 𝑇;R) satisfies

‖ℎ (𝑡, 𝑢)‖ ≤ 𝑘 (𝑡) ‖𝑢‖ ∀𝑡 ∈ [0, 𝑇] , 𝑢 ∈ 𝐸. (36)

(H4) Let 𝑔 : 𝐶(0, 𝑇; 𝐸) → 𝐸 be a continuous functional
and satisfies

󵄩󵄩󵄩󵄩𝑔 (𝑥1) − 𝑔 (𝑥2)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩𝑋 ∀𝑥1, 𝑥2 ∈ 𝑋. (37)

Theorem 12. Assume that (H1)–(H4) hold. If

𝜌 = 𝜇0(
9𝑇
𝛽
(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)

4Γ (𝛽 + 1)
)

𝑞−1

+
5

4
𝜇0𝐿 +

4𝑇𝑀 + 1

8
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

< 1,

(38)

where 𝜇0 is defined in Lemma 10,Then BVP (1) has at least one
solution in𝑋.

Proof. Let us define a bounded set 𝐵𝑟 = {𝑥 : 𝑥 ∈ 𝑋 and
‖𝑥‖𝑋 ≤ 𝑟}, where

𝑟 ≥ max
{

{

{

4𝑔0

𝐿
,(

2𝑎

𝑏 + 𝑐‖𝑘‖
𝑝−1

𝐿1

)

𝑞−1

, 4𝑇
󵄩󵄩󵄩󵄩𝑔 (𝜃)

󵄩󵄩󵄩󵄩

}

}

}

, (39)

and 𝑔0 = sup𝑡∈[0,𝑇]‖𝑔(𝑡, 𝜃)‖. Then 𝐵𝑟 is a closed convex
and nonempty subset of a Banach space 𝑋. We define two
operators 𝐴 and 𝐵 on 𝐵𝑟 ⊂ 𝑋 such thatF = 𝐴 + 𝐵 and

𝐴𝑥 (𝑡) = ∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) 𝑑𝑠,

𝐵𝑥 (𝑡) = − ∫

𝑇

0
𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 +

(2𝑡 − 𝑇)

2 (𝜂1 + 𝜂2)
𝑔 (𝑥) .

(40)

Firstly, we show that 𝐴𝑥 + 𝐵𝑦 ∈ 𝐵𝑟 for any 𝑥, 𝑦 ∈ 𝐵𝑟.
From the assumptions (H1) and (H3), we have

‖𝑆𝑥 (𝑡)‖ ≤ ∫

𝑡

0
‖ℎ (𝑠, 𝑥 (𝑠))‖ 𝑑𝑠

≤ ∫

𝑇

0
𝑘 (𝑠) ‖𝑥 (𝑠)‖ 𝑑𝑠

≤ ‖𝑘‖𝐿1‖𝑥‖𝑋 (see (H3))

󳨐⇒ ‖𝑁𝑥 (𝑡)‖ =
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡) , 𝑆𝑥 (𝑡))

󵄩󵄩󵄩󵄩

≤ 𝑎 + 𝑏‖𝑥 (𝑡)‖
𝑝−1

+ 𝑐‖𝑆𝑥 (𝑡)‖
𝑝−1

(see (H1))

≤ 𝑎 + 𝑏‖𝑥‖
𝑝−1
𝑋 + 𝑐(‖𝑘‖𝐿1‖𝑥‖𝑋)

𝑝−1
,

󳨐⇒ ‖𝐹𝑁𝑥 (𝑡)‖

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
‖𝑁𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
‖𝑁𝑥 (𝑠)‖ 𝑑𝑠

≤ (∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠 + ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
𝑑𝑠)

× [𝑎 + 𝑏‖𝑥‖
𝑝−1
𝑋 + 𝑐(‖𝑘‖𝐿1‖𝑥‖𝑋)

𝑝−1
]

≤
3𝑇
𝛽

2Γ (𝛽 + 1)
[𝑎 + (𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
) ‖𝑥‖
𝑝−1
𝑋 ] ,

(41)

and by Lemma 10, for any 𝑥 ∈ 𝐵𝑟, we have

‖𝐴𝑥 (𝑡)‖

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| ⋅ ‖𝐹𝑁𝑥(𝑠)‖

𝑞−1
𝑑𝑠

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝑑𝑠

× (
3𝑇
𝛽

2Γ (𝛽 + 1)
[𝑎 + (𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
) ‖𝑥‖
𝑝−1
𝑋 ])

𝑞−1
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≤ 𝜇0

⋅ (
3𝑇
𝛽

2Γ (𝛽 + 1)

× [
𝑟
1/(𝑞−1)

2
(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
) + (𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
) 𝑟
𝑝−1

])

𝑞−1

≤ 𝜇0 ⋅ (
9𝑇
𝛽
(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)

4Γ (𝛽 + 1)
)

𝑞−1

𝑟,

(42)

where (𝑝 − 1)(𝑞 − 1) = 1, and the definition of 𝐵𝑟 yields that
𝑎 ≤ (1/2)(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)𝑟
1−𝑞.

On the other hand, from (H2), ‖𝑔(𝑡, 𝑥(𝑡)‖ ≤ ‖𝑔(𝑡, 𝑥(𝑡) −

𝑔(𝑡, 𝜃)‖+‖𝑔(𝑡, 𝜃)‖ ≤ 𝐿‖𝑥‖𝑋+𝑔0, where𝑔0 = sup𝑡∈[0,𝑇]‖𝑔(𝑡, 𝜃)‖
and ‖𝑔(𝑥)‖ ≤ ‖𝑔(𝑥) −𝑔(𝜃)‖ + ‖𝑔(𝜃)‖ ≤ 𝑀‖𝑥‖𝑋 + ‖𝑔(𝜃)‖; then
for 𝑡 ∈ [0, 𝑇], we have

‖𝐵𝑥 (𝑡)‖ ≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)|

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2𝑡 − 𝑇)

2 (𝜂1 + 𝜂2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑔 (𝑥)
󵄩󵄩󵄩󵄩

≤ 𝜇0 ⋅ (𝐿‖𝑥‖𝑋 + 𝑔0) +
𝑇𝑀

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

‖𝑥‖𝑋 +
𝑇
󵄩󵄩󵄩󵄩𝑔 (𝜃)

󵄩󵄩󵄩󵄩

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

≤ 𝜇0 ⋅ (𝐿𝑟 +
𝐿

4
𝑟) +

𝑇𝑀

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

𝑟 +
1

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

𝑟

4

≤ (
5

4
𝜇0𝐿 +

4𝑇𝑀 + 1

8
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

) 𝑟,

(43)

for all 𝑥 ∈ 𝐵𝑟. By 𝜌 < 1, we can obtain that 𝐴𝑥 + 𝐵𝑦 ∈ 𝐵𝑟 for
𝑥, 𝑦 ∈ 𝐵𝑟.

Next, we will prove that 𝐴 : 𝑋 → 𝑋 is compact and
continuous.

According to (42), it is easy to know that ∃𝑀0 > 0

such that ‖𝐴𝑥‖𝑋 ≤ 𝑀0 for all 𝑥 ∈ 𝐵𝑟, which yields that
F(𝐵𝑟) is uniformly bounded in 𝑋. In view of the Arzelá-
Ascoli theorem, we are going to prove that F(𝐵𝑟) ⊂ 𝑋 is
equicontinuous.

For all 𝑥 ∈ 𝐵𝑟, the inequality of (41) guarantees that
‖𝐹𝑁𝑥(𝑡)‖ ≤ (3𝑇

𝛽
/2Γ(𝛽 + 1))[𝑎 + (𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)𝑟
𝑝−1]=: M̃;

then for 0 ≤ 𝜏1 < 𝜏2 ≤ 𝑇, we have
󵄩󵄩󵄩󵄩𝐴𝑥 (𝜏2) − 𝐴𝑥 (𝜏1)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝜏
2

0

(𝜏2 − 𝑠)
𝛼−1

Γ (𝛼)
𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) 𝑑𝑠

−∫

𝜏
1

0

(𝜏1 − 𝑠)
𝛼−1

Γ (𝛼)
𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

Γ (𝛼)
∫

𝜏
1

0
[(𝜏2 − 𝑠)

𝛼−1
− (𝜏1 − 𝑠)

𝛼−1
] 𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝜏
2

𝜏
1

(𝜏2 − 𝑠)
𝛼−1

𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
M̃𝑞−1

Γ (𝛼)
{∫

𝜏
1

0

󵄨󵄨󵄨󵄨󵄨
(𝜏2 − 𝑠)

𝛼−1
− (𝜏1 − 𝑠)

𝛼−1󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ ∫

𝜏
2

𝜏
1

(𝜏2 − 𝑠)
𝛼−1

𝑑𝑠}

=
M̃𝑞−1

Γ (𝛼 + 1)
[2(𝜏2 − 𝑡1)

𝛼
− 𝜏
𝛼
2 + 𝜏
𝛼
1 ] .

(44)

Since 𝑡𝛼 is uniformly continuous on [0, 𝑇], we can obtain that
𝑇(𝐵𝑟) ⊂ 𝑋 is equicontinuous on [0, 𝑇]. Then, the Arzelá-
Ascoli theorem yields that 𝑇(𝐵𝑟) is relatively compact in𝑋.

Now, we show that 𝐴 : 𝑋 → 𝑋 is continuous.
Let {𝑥𝑛} ⊆ 𝑋 be a sequence with 𝑥𝑛 → 𝑥 in 𝑋; we

will show that ‖𝐴𝑥𝑛 − 𝐴𝑥‖𝑋 → 0. By the continuity of 𝑓,
it is easy to see lim𝑛→∞𝑁𝑥𝑛(𝑡) = 𝑁𝑥(𝑡). Moreover, using the
Lebesgue dominated convergence theorem, we have

lim
𝑛→∞

𝐹𝑁𝑥𝑛 (𝑡)

= lim
𝑛→∞

(∫

𝑡

0

(𝑡−𝑠)
𝛽−1

Γ (𝛽)
𝑁𝑥𝑛 (𝑠) 𝑑𝑠−∫

𝑇

0

(𝑇−𝑠)
𝛽−1

2Γ (𝛽)
𝑁𝑥𝑛 (𝑠) 𝑑𝑠)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
𝑁𝑥 (𝑠) 𝑑𝑠 − ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
𝑁𝑥 (𝑠) 𝑑𝑠

= 𝐹𝑁𝑥 (𝑡)

(45)

uniformly for 𝑡 ∈ [0, 𝑇]. Moreover, by the properties of
Green function 𝐺(𝑡, 𝑠) and 𝜙𝑞, and the uniformly continuity
of function 𝑔, we have

lim
𝑛→∞

𝐴𝑥𝑛 (𝑡)

= lim
𝑛→∞

(∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝜙𝑞 (𝐹𝑁𝑥𝑛 (𝑠)) − 𝑔 (𝑠, 𝑥𝑛 (𝑠))] 𝑑𝑠)

= ∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠))] 𝑑𝑠 = 𝐴𝑥 (𝑡)

(46)

uniformly for 𝑡 ∈ [0, 𝑇]. Thus we have ‖𝑇𝑥𝑛 − 𝑇𝑥‖𝑋 → 0 in
𝑋. This shows that 𝐴 : 𝑋 → 𝑋 is continuous.

Finally, we show that 𝐵 : 𝑋 → 𝑋 is a contraction map-
ping. For 𝑥, 𝑦 ∈ 𝐸, by (H2), we obtain

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝐵𝑥 (𝑡) − 𝐵𝑦 (𝑡)
󵄩󵄩󵄩󵄩

= sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ sup
𝑡∈[0,𝑇]

∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝐿

󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ sup
𝑡∈[0,𝑇]

𝐿∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝑑𝑠

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑋

≤ 𝜇0𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝑋.

(47)

Thus ‖𝐵𝑥 − 𝐵𝑦‖𝑋 < 𝜌‖𝑥 − 𝑦‖𝑋, where 𝜌 < 1, which
guarantees that 𝐵 : 𝑋 → 𝑋 is a contraction mapping.
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Thus all the assumptions of Lemma 6 are satisfied and the
conclusion of Lemma 6 implies that the operatorF = 𝐴 + 𝐵

has at least a fixed point in𝑋, which is a solution of BVP (1).
The proof is complete.

Obviously, if (H1)–(H3) hold and

𝜌 = 𝜇 ⋅ [

[

(
9𝑇
𝛽
(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)

4Γ (𝛽 + 1)
)

𝑞−1

+
3𝐿

2
+

𝑇
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

]

]

< 1,

(48)

with

𝜇 =
2𝑇
𝛼

Γ (𝛼 + 1)
+

𝑇
𝛼

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

[
|𝜆| 𝑇
2

Γ (𝛼 + 2)
+
|𝜆| 𝑇
2
+ 2𝛼

󵄨󵄨󵄨󵄨𝜂2
󵄨󵄨󵄨󵄨

2Γ (𝛼 + 1)
] ,

(49)

then the following BVP:

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼
0+𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡))) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑆𝑥 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

𝑥 (0) + 𝑥 (𝑇) = 𝐷
𝛼
0+𝑥 (0) + 𝐷

𝛼
0+𝑥 (𝑇) = 𝜃,

𝜂1𝑥
󸀠
(0) + 𝜂2𝑥

󸀠
(𝑇) = 𝜆∫

𝑇

0
𝑥 (𝑡) 𝑑𝑡 + 𝑥1,

𝜆 ∈ R, 𝑥1 ∈ 𝐸,

(50)

has at least one solution in𝑋.
In what follows, we will use the Schauder’s fixed Point

theorem to prove the existence of the solutions of BVP (1).
We first list the following conditions.

(A1) Let𝑓 : [0, 𝑇]×𝐸
2
→ 𝐸 be continuous, and there exist

𝑎𝑖 ∈ R+ (𝑖 = 1, 2, 3) and 0 ≤ 𝑙1, 𝑙2 < 𝑝 − 1 such that
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢, V)󵄩󵄩󵄩󵄩 ≤ 𝑎1 + 𝑎2‖𝑢‖

𝑙
1 + 𝑎3‖V‖

𝑙
2 ,

∀𝑡 ∈ [0, 𝑇] , 𝑢, V ∈ 𝐸.
(51)

(A2) The function 𝑔 : [0, 𝑇] × 𝐸 → 𝐸 is continuous and
𝑔(0, −𝑢) = −𝑔(𝑇, 𝑢) for all 𝑢 ∈ 𝐸. Moreover, there
exist 𝑏1, 𝑏2 > 0 and 0 ≤ 𝑙3 < 1 such that

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑢)
󵄩󵄩󵄩󵄩 ≤ 𝑏1 + 𝑏2‖𝑢‖

𝑙
3 ∀𝑡 ∈ [0, 𝑇] , 𝑢, V ∈ 𝐸. (52)

(A3) Let 𝑔 : 𝐶(0, 𝑇; 𝐸) → 𝐸 be a continuous functional,
and there exist 𝑏1, 𝑏2 > 0 and 0 ≤ 𝑙4 < 1 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝑐1 + 𝑐2‖𝑥‖

𝑙
4

𝑋 ∀𝑥 ∈ 𝑋. (53)

Theorem 13. Assume that (A1)–(A3) and (H3) hold. Then the
BVP (1) has at least one solution in𝑋.

Proof. Define a bounded set Ω = {𝑥 : 𝑥 ∈ 𝑋, ‖𝑥‖𝑋 ≤ R},
where

R

≥ max
{{

{{

{

4𝜇0(
9𝑎1𝑇
𝛽

2Γ (𝛽 + 1)
)

𝑞−1

, [
9𝑎2𝑇
𝛽
(4𝜇0)
𝑝−1

2Γ (𝛽 + 1)
]

1/(𝑝−1−𝑙
1
)

,

(4𝜇0𝑏2)
1/(1−𝑙

3
)
, [

[

9𝑎3𝑇
𝛽
(4𝜇0)
𝑝−1

‖𝑘‖
𝑙
2

𝐿1

2Γ (𝛽 + 1)
]

]

1/(𝑝−1−𝑙
2
)

,

4 (𝜇0𝑏1 +
𝑇𝑐1

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

) , (
4𝑇𝑐2

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

)

1/(1−𝑙
4
)}}

}}

}

.

(54)

Now we are going to show that F : Ω → Ω. From the
assumptions (A1) and (H3), we have

‖𝑁𝑥 (𝑡)‖ =
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡) , 𝑆𝑥 (𝑡))

󵄩󵄩󵄩󵄩

≤ 𝑎1 + 𝑎2‖𝑥 (𝑡)‖
𝑙
1 + 𝑎3‖𝑆𝑥 (𝑡)‖

𝑙
2

≤ 𝑎1 + 𝑎2‖𝑥‖
𝑙
1

𝑋 + 𝑎3(‖𝑘‖𝐿1‖𝑥‖𝑋)
𝑙
2

,

(55)

󳨐⇒ ‖𝐹𝑁𝑥 (𝑡)‖

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
‖𝑁𝑥 (𝑠)‖ 𝑑𝑠

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛽−1

2Γ (𝛽)
‖𝑁𝑥 (𝑠)‖ 𝑑𝑠

≤
3𝑇
𝛽

2Γ (𝛽 + 1)
[𝑎1 + 𝑎2‖𝑥‖

𝑙
1

𝑋 + 𝑎3(‖𝑘‖𝐿1‖𝑥‖𝑋)
𝑙
2

]

≤
3𝑎1𝑇
𝛽

2Γ (𝛽 + 1)
+

3𝑎2𝑇
𝛽

2Γ (𝛽 + 1)
‖𝑥‖
𝑙
1

𝑋 +
3𝑎3‖𝑘‖

𝑙
2

𝐿1
𝑇
𝛽

2Γ (𝛽 + 1)
‖𝑥‖
𝑙
2

𝑋

≤
1

3
(

1

4𝜇0
R)

1/(𝑞−1)

+
1

3(4𝜇0)
𝑝−1

R
𝑝−1−𝑙

1R
𝑙
1

+
1

3(4𝜇0)
𝑝−1

R
𝑝−1−𝑙

2R
𝑙
2

≤ (
1

4𝜇0
R)

𝑝−1

.

(56)

By using of (A2) and (A3), we have

‖F𝑥 (𝑡)‖

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0
𝐺 (𝑡, 𝑠) [𝜙𝑞 (𝐹𝑁𝑥 (𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+
(2𝑡 − 𝑇)

2 (𝜂1 + 𝜂2)
𝑔 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| (

󵄩󵄩󵄩󵄩󵄩
𝜙𝑞 (𝐹𝑁𝑥 (𝑠))

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠))

󵄩󵄩󵄩󵄩) 𝑑𝑠

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2𝑡 − 𝑇)

2 (𝜂1 + 𝜂2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑔 (𝑥)
󵄩󵄩󵄩󵄩

≤ ∫

𝑇

0
|𝐺 (𝑡, 𝑠)| 𝑑𝑠 [((

1

4𝜇0
R)

𝑝−1

)

𝑞−1

+ 𝑏1 + 𝑏2‖𝑥‖
𝑙
3

𝑋]

+
𝑇

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

(𝑐1 + 𝑐2‖𝑥‖
𝑙
4

𝑋)

≤ 𝜇0 (
1

4𝜇0
R) + 𝜇0𝑏2‖𝑥‖

𝑙
3

𝑋 +
𝑇𝑐2

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

‖𝑥‖
𝑙
4

𝑋
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+ 𝜇0𝑏1 +
𝑇𝑐1

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

≤
R

4
+
1

4
R
1−𝑙
3R
𝑙
3 +

1

4
R
1−𝑙
4R
𝑙
4 +

R

4
= R.

(57)

Hence, F(Ω) ⊆ Ω. Similarly to the proof of Theorem 12, it
can be shown that the operator F : Ω → Ω is completely
continuous. According to the Schauder’s fixed point theorem,
F has at least a fixed point which is a solution of the problem
(1).

The proof is completed.

4. Example

In this section, an example is given to illustrate our results.

Example 1. Consider the nonlocal boundary value problem
for nonlinear fractional differential equation as follows

𝐷
2/3
0+

𝜙4 (𝐷
3/2
0+

𝑥 (𝑡) − (𝑡 −
1

2
)

4

sin𝑥 (𝑡))

=
arctan 𝑡
10𝑒|𝑥(𝑡)|

+
𝑥
3
(𝑡)

100 (1 + |𝑥 (𝑡)|)
+ (∫

1

0

cos 𝑠
8

𝑥 (𝑠) 𝑑𝑠)

3

,

𝑥 (0) + 𝑥 (1) = 𝐷
3/2
0+

𝑢 (0) + 𝐷
3/2
0+

𝑢 (1) = 0,

𝑥
󸀠
(0) + 3𝑥

󸀠
(1) = 2∫

1

0
𝑥 (𝑡) 𝑑𝑡 +

1

10
,

(58)

where 𝑡 ∈ [0, 1], 𝑇 = 1. Then (58) has at least one solution.

Proof. It is easy to see that (58) is a form of (1) in the space
𝐸 = R. We have 𝑝 = 4, 𝑞 = 4/3, 𝛼 = 3/2, 𝛽 = 2/3, 𝜂1 =

1, 𝜂2 = 3 and

𝑓 (𝑡, 𝑢, V) =
arctan 𝑡
10𝑒|𝑢|

+
𝑢
3

100 (1 + |𝑢|)
+ V3,

𝑔 (𝑡, 𝑢) = (𝑡 −
1

2
)

4

sin 𝑢,

𝑆𝑥 (𝑡) = ∫

𝑡

0
ℎ (𝑠, 𝑥 (𝑠)) 𝑑𝑠, ℎ (𝑡, 𝑢) =

cos 𝑡
8

𝑢,

𝑔 (𝑥) = 2∫

1

0
𝑥 (𝑡) 𝑑𝑡 +

1

10
for 𝑥 ∈ 𝐶 (0, 1;R) .

(59)

Obviously, 𝑓 ∈ 𝐶([0, 1] × R2,R), 𝑔 ∈ 𝐶([0, 1] × R,R), and
𝑔 ∈ 𝐶(0, 1;R) → R is continuous functional. Moreover,
𝑓, 𝑔, 𝑔 satisfy

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢, V)󵄨󵄨󵄨󵄨 ≤
𝜋

20
+

1

100
|𝑢|
3
+ |V|3 for 𝑢, V ∈ R,

󵄨󵄨󵄨󵄨𝑔 (𝑥1) − 𝑔 (𝑥2)
󵄨󵄨󵄨󵄨 ≤ 2

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 , for 𝑥1, 𝑥2 ∈ 𝐶 (0, 1;R) ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)󵄨󵄨󵄨󵄨 ≤
1

16
|𝑢 − V| ,

|ℎ (𝑡, 𝑢)| ≤
cos 𝑡
8

|𝑢| for 𝑢, V ∈ R,

(60)

and 𝑔(0, −𝑢) = −𝑔(1, 𝑢) = −(1/16) sin 𝑢. Then, we get 𝑎 =

𝜋/20, 𝑏 = 1/100, 𝑐 = 1,𝑀 = 2, 𝐿 = 1/16, 𝑘(𝑡) = (1/8) cos 𝑡,
and ‖𝑘‖𝐿1 = (1/8) sin 1 (𝑘 ∈ 𝐿

1
(0, 1;R)) such that conditions

(H1)–(H4) hold. Moreover,

𝜇0 =

󵄨󵄨󵄨󵄨𝜂2
󵄨󵄨󵄨󵄨 𝑇
𝛼

2
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨 Γ (𝛼)
+

3𝑇
𝛼

2Γ (𝛼 + 1)

=
|3| ⋅ 1
3/2

2 ⋅ |1 + 3| ⋅ Γ (3/2)
+

3 ⋅ 1
3/2

2 ⋅ Γ (3/2 + 1)

≈ 1.5515,

𝜌 = 𝜇0(
9𝑇
𝛽
(𝑏 + 𝑐‖𝑘‖

𝑝−1

𝐿1
)

4Γ (𝛽 + 1)
)

𝑞−1

+
5

4
𝜇0𝐿 +

4𝑇𝑀 + 1

8
󵄨󵄨󵄨󵄨𝜂1 + 𝜂2

󵄨󵄨󵄨󵄨

< 1,

= 𝜇0 ⋅ [
9 ⋅ 1
2/3

⋅ (1/100 + 1 × (sin 1/8)4−1)
4 × Γ (1/2 + 1)

]

4/3−1

+
5

4
⋅ 𝜇0 ⋅

1

16
+
4 ⋅ 1 ⋅ 2 + 1

8 ⋅ |1 + 4|

≈ 0.8755 < 1.

(61)

Hence, (58) satisfies all assumptions of Theorem 12. As a
result, (58) has at least one solution.

5. Conclusions

In this paper, we study the existence solutions of nonlin-
ear Caputo fractional integrodifferential equations with 𝑝-
Laplacian operator and nonlocal boundary conditions in
Banach spaces. We mainly consider the equivalent inte-
gral equations of corresponding fractional differential equa-
tions. By using via Krasnoselskii’s fixed point theorem
and Schauder’s fixed point theorem, we obtain some new
existence results for this kind of nonlocal boundary value
problems (1). An illustrative example is also discussed to
show the effectiveness of the results in this paper. In the near
future, we will consider Riemann-Liouville Fractional nonlo-
cal boundary problems, which will be more complicated.
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