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The purpose of this paper is to discuss some fundamental properties of Bregman distance, generalized projection operators, firmly
nonexpansive mappings, and resolvent operators of set-valued monotone operators corresponding to a functional Φ(‖ ⋅ ‖). We
further study some proximal point algorithms for finding zeros of monotone operators and solving generalized mixed equilibrium
problems in Banach spaces. Our results improve and extend some recent results concerning generalized projection operators
corresponding to Bregman distance.

1. Introduction

In this paper,𝑋 denotes a real Banach space with norm ‖ ⋅ ‖,
and𝑋∗ denotes the Banach dual of𝑋 endowed with the dual
norm ‖ ⋅ ‖

∗
. We write ⟨𝑥, 𝑗⟩ for the value of a functional 𝑗

in 𝑋
∗ at 𝑥 in 𝑋. As usual, 𝑥

𝜆
→ 𝑥 and 𝑥

𝜆
⇀ 𝑥 stand

for the norm and weak convergence of a net {𝑥
𝜆
} to 𝑥 in 𝑋,

respectively.
A continuous strictly increasing function 𝜑 : R+ → R+

is said to be a gauge if

𝜑 (0) = 0, lim
𝑡→+∞

𝜑 (𝑡) = +∞. (1)

The mapping 𝐽
𝜑
: 𝑋 → 2

𝑋
∗

defined by

𝐽
𝜑
(𝑥)

= {𝑗 ∈ 𝑋
∗

: ⟨𝑥, 𝑗⟩ = ‖𝑥‖
𝑗
∗
,
𝑗
∗
= 𝜑 (‖𝑥‖)} , 𝑥 ∈ 𝑋,

(2)

is called the duality mapping with gauge 𝜑. In the special case
where 𝜑(𝑡) = 𝑡, the duality mapping 𝐽

𝜑
=: 𝐽 is the classical

normalized duality mapping. In the case 𝜑(𝑡) = 𝑡
𝑝−1, 𝑝 > 1,

the duality mapping 𝐽
𝜑
=: 𝐽
𝑝
is called the generalized duality

mapping and it is given by

𝐽
𝑝
(𝑥)

:= {𝑗 ∈ 𝑋
∗

: ⟨𝑥, 𝑗⟩ = ‖𝑥‖
𝑗
∗
,
𝑗
∗
= ‖𝑥‖

𝑝−1

} , 𝑥 ∈ 𝑋.

(3)

For a gauge 𝜑, the functionΦ : R+ → R+ defined by

Φ (𝑡) = ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 (4)

is a continuous convex strictly increasing differentiable func-
tion on R+ with Φ(𝑡) = 𝜑(𝑡) and lim

𝑡→+∞
Φ(𝑡)/𝑡 = +∞.

Therefore, Φ has a continuous inverse functionΦ−1.
We recall the Bregman Distance 𝐷

𝜑
and function 𝐷

𝑓

𝜑

studied in [1]. Let 𝑋 be a real smooth Banach space. The
Bregman distance 𝐷

𝜑
(𝑥, 𝑦) between 𝑥 and 𝑦 in 𝑋 is defined

by

𝐷
𝜑
(𝑥, 𝑦) := Φ (‖𝑥‖) − Φ (

𝑦
) − ⟨𝑥 − 𝑦, 𝐽𝜑 (𝑦)⟩ . (5)

One can see from Lemma 3 that 𝐷
𝜑
(𝑥, 𝑦) ≥ 0. In the case

𝜑(𝑡) = 𝑡
𝑝−1, 𝑝 ∈ (1,∞), the distance 𝐷

𝜑
(𝑥, 𝑦) =: 𝐷

𝑝
(𝑥, 𝑦) is
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called the 𝑝-Lyapunov functional studied in [2] and it is given
by

𝐷
𝑝
(𝑥, 𝑦) =

‖𝑥‖
𝑝

𝑝
+

𝑦


𝑝

𝑞
− ⟨𝑥, 𝐽

𝑝
(𝑦)⟩ . (6)

Note that

𝜙 (𝑥, 𝑦) := 2𝐷
2
(𝑥, 𝑦) = ‖𝑥‖

2

− 2⟨𝑥, 𝐽𝑦⟩ +
𝑦


2 (7)

is the Lyapunov functional. It is obvious that

(‖𝑥‖ −
𝑦
)
2

≤ 𝜙 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (8)

See Brègman [3], Butnariu and Iusem [4], and Censor and
Lent [5].

Let 𝐶 be a nonempty closed convex subset of a smooth
Banach space 𝑋. The generalized projection Π

𝐶
: 𝑋 → 𝐶 is

defined by

Π
𝐶
(𝑥) = {𝑥

0
∈ 𝐶 : 𝜙 (𝑥

0
, 𝑥) = inf

𝑦∈𝐶

𝜙 (𝑦, 𝑥)} . (9)

The metric projection operator 𝑃
𝐶
: 𝑋 → 𝐶 defined by

𝑃
𝐶
𝑥 := arg min

𝑦∈𝐶

1

2

𝑥 − 𝑦


2

, 𝑥 ∈ 𝑋, (10)

has been employed successfully in optimization, optimal
control, approximation theory, and fixed point theory in the
framework of Hilbert spaces. In such a framework, metric
projections𝑃

𝐶
are nonexpansive (i.e., ‖ 𝑃

𝐶
𝑥−𝑃
𝐶
𝑦 ‖≤‖ 𝑥−𝑦 ‖

for all 𝑥, 𝑦 in𝐻). However, this is no longer true in the frame-
work of Banach spaces. Instead, the generalized projections
Π
𝐶
are needed. In [6], Alber generalized themetric projection

operator 𝑃
𝐶
to generalized projection operators Π

𝐶
: 𝑋 →

𝐶 from Hilbert spaces to uniformly smooth Banach spaces.
Many applications of the generalized projections in Banach
spaces are discussed in the recent literature (see [7–12]).

Section 2 contains preliminaries. In Section 3, we study
the fundamental properties of Bregman distance 𝐷

𝜑
and

(𝜑, 𝑓)-generalized projection operators, where 𝑓 : 𝑋 →

R+ is a proper, convex, lower semicontinuous function.
In Section 4, we discuss 𝜑-firmly nonexpansive mappings
and 𝜑-resolvent operators. In Section 5, we establish strong
convergence of the proximal-projection methods for finding
fixed points of𝜑-firmly nonexpansivemappings, zeros of (not
necessarily maximal) monotone operators, and solutions of
generalized mixed equilibrium problems in Banach spaces
using (𝜑, 𝑓)-generalized projection operators Π𝜑,𝑓

𝐶
. Here, we

do not assume themaximality ofmonotone operators and the
uniform smoothness of Banach spaces.

2. Preliminaries

Let 𝐴 : 𝑋 → 2
𝑋
∗

be a set-valued operator. The set D(𝐴) =

{𝑥 ∈ 𝑋 : 𝐴𝑥 ̸= 0} is called the effective domain of𝐴. The range
of 𝐴 is defined byR(𝐴) = ∪

𝑥∈D(𝐴)𝐴𝑥. The operator 𝐴 is said
to bemonotone if for any 𝑥, 𝑦 inD(𝐴), we have

𝑗
𝑥
∈ 𝐴𝑥, 𝑗

𝑦
∈ 𝐴𝑦 ⇒ ⟨𝑥 − 𝑦, 𝑗

𝑥
− 𝑗
𝑦
⟩ ≥ 0. (11)

A monotone operator 𝐴 is said to be maximal if the graph
G(𝐴) = {(𝑥, 𝑦) : 𝑥 ∈ D(𝐴), 𝑦 ∈ 𝐴𝑥} of 𝐴 is not a proper
subset of the graph of another monotone operator. We know
that if 𝐴 is a maximal monotone operator, then the zero set
𝐴
−1

0 is closed and convex.
In the rest of this paper, by 𝜑we always mean a gauge and

byΦ the corresponding function defined in (4). We list some
properties of the duality mapping 𝐽

𝜑
: 𝑋 → 2

𝑋
∗

below (for
more details see [13, 14]).

Proposition 1. Let𝑋 be a real Banach space.
(i) 𝐽
𝜑
is norm-to-weak∗ upper semicontinuous;

(ii) for each 𝑥 in 𝑋, the set 𝐽
𝜑
(𝑥) is convex and weakly

closed in𝑋∗;
(iii) 𝐽
𝜑
(−𝑥) = −𝐽

𝜑
(𝑥) and 𝐽

𝜑
(𝜆𝑥) =

(𝜑(‖𝜆𝑥‖)/𝜑(‖𝑥‖))𝐽
𝜑
(𝑥) for all nonzero 𝑥 in𝑋, 𝜆 > 0;

(iv) there holds

𝐽
𝜑
(𝑥) =

𝜑 (‖𝑥‖)

‖𝑥‖
𝐽 (𝑥) , 0 ̸= 𝑥 ∈ 𝑋; (12)

(v) 𝐽
𝜑
is maximal monotone;

(vi) if𝑋 is strictly convex, then 𝐽
𝜑
is strictly monotone; that

is,

⟨𝑥 − 𝑦, 𝑗
𝑥
− 𝑗
𝑦
⟩ > 0 ∀𝑥, 𝑦 ∈ 𝑋, 𝑗

𝑥
∈ 𝐽
𝜑
(𝑥) , 𝑗

𝑦
∈ 𝐽
𝜑
(𝑦) ;

(13)

(vii) if 𝑋 is strictly convex and reflexive, then 𝐽
𝜑
is single-

valued monotone and demicontinuous.

The following result is well known.We include a proof for
completeness.

Lemma 2. If a Banach space 𝐸 has a uniformly Gâteaux
differentiable norm, then 𝐽 : 𝐸 → 𝐸

∗ is uniformly norm-to-
weak∗ continuous on nonempty bounded subsets of 𝐸 to 𝐸∗.

Proof. Suppose not, and there exist normone vectors 𝑥
𝑛
, 𝑦
𝑛
, 𝑧

in 𝐸 and a constant 𝜖 > 0 such that 𝑦
𝑛
− 𝑥
𝑛

→ 0, and
⟨𝑧, 𝐽(𝑦

𝑛
) − 𝐽(𝑥

𝑛
)⟩ ≥ 𝜖, for all 𝑛 ∈ N. For a fixed 𝑡 > 0, define

𝑎
𝑛
:=

𝑥𝑛 + 𝑡𝑧
 −

𝑥𝑛
 − 𝑡 ⟨𝑧, 𝐽 (𝑥𝑛)⟩

𝑡
,

𝑏
𝑛
:=

𝑦𝑛 + 𝑡𝑧
 −

𝑦𝑛
 − 𝑡 ⟨𝑧, 𝐽 (𝑦𝑛)⟩

𝑡
.

(14)

Observe that

𝑎
𝑛
≥
⟨𝑥
𝑛
+ 𝑡𝑧, 𝐽 (𝑦

𝑛
)⟩ − ⟨𝑥

𝑛
+ 𝑡𝑧, 𝐽 (𝑥

𝑛
)⟩

𝑡

= ⟨𝑧, 𝐽 (𝑦
𝑛
) − 𝐽 (𝑥

𝑛
)⟩ +

⟨𝑥
𝑛
, 𝐽 (𝑦
𝑛
) − 𝐽 (𝑥

𝑛
)⟩

𝑡
,

𝑏
𝑛
≥
⟨𝑦
𝑛
+ 𝑡𝑧, 𝐽 (𝑥

𝑛
)⟩ − ⟨𝑦

𝑛
+ 𝑡𝑧, 𝐽 (𝑦

𝑛
)⟩

𝑡

= ⟨𝑧, 𝐽 (𝑦
𝑛
) − 𝐽 (𝑥

𝑛
)⟩ +

⟨𝑦
𝑛
, 𝐽 (𝑦
𝑛
) − 𝐽 (𝑥

𝑛
)⟩

𝑡
.

(15)
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Hence,

𝑎
𝑛
+ 𝑏
𝑛
≥ 2 ⟨𝑧, 𝐽 (𝑦

𝑛
) − 𝐽 (𝑥

𝑛
)⟩

−
⟨𝑥
𝑛
− 𝑦
𝑛
, 𝐽 (𝑦
𝑛
) − 𝐽 (𝑥

𝑛
)⟩

𝑡

≥ 2𝜖 − 2

𝑥𝑛 − 𝑦𝑛


𝑡
.

(16)

Choose 𝑡 = (2/𝜖)‖𝑥
𝑛
− 𝑦
𝑛
‖. By the uniform Gâteaux

differentiability of the norm, if 𝑛 is large enough, both 𝑎
𝑛
and

𝑏
𝑛
are less than (1/2)𝜖, and so 𝑎

𝑛
+ 𝑏
𝑛
< 𝜖. We arrive at a

contradiction.

Together with Proposition 1, the conclusion in Lemma 2
also holds for 𝐽

𝜑
.

Let 𝑋 be a Banach space and 𝜓 : 𝑋 → (−∞, +∞]

a function. The function 𝜓 is proper if dom(𝜓) := {𝑥 ∈

𝑋 : 𝜓(𝑥) < +∞} ̸= 0. An element 𝑗 in 𝑋
∗ is said to be a

subgradient of a proper convex function𝜓 : 𝑋 → (−∞, +∞]

at a point 𝑥 in dom(𝜓) if

𝜓 (𝑥) − 𝜓 (𝑦) ≤ ⟨𝑥 − 𝑦, 𝑗⟩ , ∀𝑦 ∈ 𝑋. (17)

The set (possibly empty)

𝜕𝜓 (𝑥) := {𝑗 ∈ 𝑋
∗

: 𝜓 (𝑥) − 𝜓 (𝑦) ≤ ⟨𝑥 − 𝑦, 𝑗⟩ ∀𝑦 ∈ 𝑋} ,

(18)

of subgradients of 𝜓 at 𝑥 in dom(𝜓), is called the subdifferen-
tial of 𝜑 at 𝑥.

Lemma3. Let𝑋 be a smooth Banach space and 𝐽
𝜑
: 𝑋 → 𝑋

∗

the duality mapping with gauge 𝜑. Then 𝐽
𝜑
(𝑦) = 𝜕Φ(‖𝑦‖) for

𝑦 ∈ 𝑋 \ {0}; that is,

Φ (‖𝑥‖) − Φ (
𝑦
) − ⟨𝑥 − 𝑦, 𝐽𝜑 (𝑦)⟩ ≥ 0, ∀𝑥 ∈ 𝑋. (19)

The proof of the following result is straightforward.

Lemma 4. Let 𝑋 be a real Banach space and 𝜑 a gauge
function.

(a) Φ(‖ ⋅ ‖) is a convex and continuous function on 𝑋.
(b) 𝑋 is strictly convex if and only if Φ(‖ ⋅ ‖) is strictly

convex.

Lemma 5. Let 𝑋 be a real Banach space and 𝜑 a gauge
function. Then the following assertions are equivalent:

(a) 𝑋 is uniformly convex;
(b) Φ(‖ ⋅ ‖) is uniformly convex on the closed ball 𝐵

𝑟
:=

{𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}, where 𝑟 > 0 is arbitrarily given.
That is, there exists a strictly increasing convex function
𝑔
𝑟
: R+ → R+ with 𝑔

𝑟
(0) = 0 such that

Φ(
𝑡𝑥 + (1 − 𝑡) 𝑦

) ≤ 𝑡Φ (‖𝑥‖) + (1 − 𝑡)Φ (
𝑦
)

− 𝑡 (1 − 𝑡) 𝑔
𝑟
(
𝑥 − 𝑦

)

(20)

for all 𝑥, 𝑦 in 𝐵
𝑟
and 𝑡 in [0, 1].

Proof. First we note that the general case can be reduced to
the case 𝑟 = 1. Suppose it holds

Φ(
𝑡𝑥 + (1 − 𝑡) 𝑦

) ≤ 𝑡Φ (‖𝑥‖) + (1 − 𝑡)Φ (
𝑦
)

− 𝑡 (1 − 𝑡) 𝑔 (
𝑥 − 𝑦

) .

(21)

We will show that (20) holds for any 𝑟 > 0. Set 𝜑
𝑟
(𝑡) = 𝜑(𝑟𝑡)

and 𝑔
𝑟
(𝑡) = 𝑟𝑔(𝑡/𝑟) for 𝑡 ≥ 0. Then 𝜑

𝑟
is still a gauge function,

and let Φ
𝑟
be the function corresponding to 𝜑

𝑟
as defined in

(4), 𝑟Φ
𝑟
(𝑡) = Φ(𝑟𝑡). Let 𝑥, 𝑦 ∈ 𝐵

𝑟
and 𝑥

𝑟
= 𝑥/𝑟 and 𝑦

𝑟
= 𝑦/𝑟.

Then 𝑥
𝑟
, 𝑦
𝑟
∈ 𝐵
𝑋
. Applying (21) to Φ

𝑟
, we get

Φ(
𝑡𝑥 + (1 − 𝑡) 𝑦

)

= 𝑟Φ
𝑟
(
𝑡𝑥𝑟 + (1 − 𝑡) 𝑦𝑟

)

≤ 𝑟𝑡Φ
𝑟
(
𝑥𝑟

) + 𝑟 (1 − 𝑡)Φ𝑟 (
𝑦𝑟

)

− 𝑟𝑡 (1 − 𝑡) 𝑔 (
𝑥𝑟 − 𝑦𝑟

)

= 𝑡Φ (‖𝑥‖) + (1 − 𝑡)Φ (
𝑦
)

− 𝑡 (1 − 𝑡) 𝑔
𝑟
(
𝑥 − 𝑦

) ,

(22)

which is exactly (20). A similar argument also shows that the
case 𝑟 = 1 can be deduced from any other case 𝑟 > 0.

Below, we assume 𝑟 = 1 and 𝑔 = 𝑔
1
.

(b) ⇒ (a). Given 𝑥, 𝑦 in 𝑋 such that ‖𝑥‖ = ‖𝑦‖ = 1 and
‖𝑥 − 𝑦‖ = 𝜀. Setting 𝑡 = 1/2 in (20), we have

Φ(



𝑥 + 𝑦

2


) ≤ Φ (1) −

1

4
𝑔 (𝜀) . (23)

It turns out that

1 −



𝑥 + 𝑦

2


≥ 1 − Φ

−1

(Φ (1) −
1

4
𝑔 (𝜀)) > 0. (24)

This verifies that𝑋 is uniformly convex.
(a) ⇒ (b). Assume that 𝑋 is uniformly convex, which

implies thatΦ(‖ ⋅ ‖) is strictly convex by Lemma 4(b). Define
a function 𝜇 on [0, 2] by setting 𝜇(0) = 0, and for 0 < 𝜀 ≤ 2,

𝜇 (𝜀) := inf {1
2
Φ (‖𝑥‖) +

1

2
Φ (

𝑦
)

−Φ(
1

2

𝑥 + 𝑦
) : 𝑥, 𝑦 ∈ 𝐵𝑋,

𝑥 − 𝑦
 ≥ 𝜀} ,

(25)

where 𝐵
𝑋
is the closed unit ball of𝑋.

Claim. Consider 𝜇(𝜀) > 0 for 0 < 𝜀 ≤ 2.
Suppose on the contrary that 𝜇(𝜀) = 0 for some 0 < 𝜀 ≤ 2.

Then we can find sequences {𝑥
𝑛
}, {𝑦
𝑛
} in 𝐵
𝑋
such that ‖ 𝑥

𝑛
−

𝑦
𝑛
‖≥ 𝜀 for all 𝑛, and

1

2
Φ (

𝑥𝑛
) +

1

2
Φ (

𝑦𝑛
) − Φ(

𝑥𝑛 + 𝑦𝑛


2
) → 0. (26)

Without loss of generality, we may assume that
𝑥𝑛

 → 𝛼,
𝑦𝑛

 → 𝛽,

𝑥𝑛 + 𝑦𝑛
 → 𝛾,

𝑥𝑛 − 𝑦𝑛
 → 𝜃 ≥ 𝜀.

(27)
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It then follows from (26) that
1

2
Φ (𝛼) +

1

2
Φ (𝛽) = Φ(

𝛾

2
) . (28)

The strict convexity of Φ together with (28) implies that 𝛼 +
𝛽 < 𝛾 if 𝛼 ̸= 𝛽. Since, on the other hand, by definition, 𝛾 ≤

𝛼 + 𝛽. We therefore must have 𝛼 = 𝛽, which together with
(28) implies that 𝛼 = 𝛽 = 𝛾/2. If we set 𝑥

𝑛
= 𝑥
𝑛
/‖𝑥
𝑛
‖, 𝑦
𝑛
=

𝑦
𝑛
/‖𝑦
𝑛
‖, then ‖𝑥

𝑛
‖ = ‖𝑦



𝑛
‖ = 1 for all 𝑛; moreover, from (27),

we get


𝑥


𝑛
+ 𝑦


𝑛

2



→ 1,

𝑥


𝑛
− 𝑦


𝑛


→

𝜃

𝛼
> 0. (29)

This contradicts the uniform convexity of𝑋, and verifies that
𝜇(𝜀) > 0 for all 0 < 𝜀 ≤ 2.

It turns out from (25) that

Φ(



1

2
𝑥 +

1

2
𝑦


) ≤

1

2
Φ (‖𝑥‖) +

1

2
Φ (

𝑦
)

−
1

4
𝑔 (
𝑥 − 𝑦

) ,

(30)

for all 𝑥, 𝑦 in 𝐵
𝑋
, with 𝑔 = 4𝜇.

By the dyadic rational argument used in the proof of [15,
Theorem 2.2], we can extend the inequality (30) to the case of
a general convex combination of 𝑥 and 𝑦, namely,

Φ(
𝑡𝑥 + (1 − 𝑡) 𝑦

) ≤ 𝑡Φ (‖𝑥‖) + (1 − 𝑡)Φ (
𝑦
)

− 𝑡 (1 − 𝑡) 𝑔 (
𝑥 − 𝑦

)

(31)

for 𝑥, 𝑦 in 𝐵
𝑋
and 𝑡 in [0, 1]. Note that 𝑔 is increasing and

continuous. By [16], the function 𝑔 can also be assumed to
be convex (the convexity of 𝑔 is not needed in our argument
throughout the rest of this paper however).

Lemma 6. Let 𝑋 be a real uniformly convex Banach space.
Then there exists a strictly increasing convex function 𝑔 :

R+ → R+ with 𝑔(0) = 0 such that

Φ(
𝑥 + 𝑦

) ≥ Φ (‖𝑥‖) + ⟨𝑦, 𝑗⟩ + 𝑔 (
𝑦
) ,

∀𝑥, 𝑦 ∈ 𝐵
𝑋
, ∀𝑗 ∈ 𝐽

𝜑
(𝑥) .

(32)

Proof. Since 𝐽
𝜑
is the subdifferential of the functionalΦ(‖ ⋅ ‖),

we have for 𝑗
𝑥
in 𝐽
𝜑
(𝑥), 𝑥 in𝑋 that

⟨𝑦 − 𝑥, 𝑗
𝑥
⟩ ≤ Φ (

𝑦
) − Φ (‖𝑥‖) ∀𝑦 ∈ 𝑋. (33)

Let 𝑔 be the function that satisfies (20) with 𝑟 = 2 and assume
that 𝑥, 𝑦 ∈ 𝐵

𝑋
. Replacing 𝑦with 𝑥+𝜆𝑦, 0 < 𝜆 < 1, we obtain

⟨𝑦, 𝑗
𝑥
⟩ ≤

[Φ (
𝑥 + 𝜆𝑦

) − Φ (‖𝑥‖)]

𝜆

=
[Φ (

(1 − 𝜆) 𝑥 + 𝜆 (𝑥 + 𝑦)
) − Φ (‖𝑥‖)]

𝜆

≤ [(1 − 𝜆)Φ (‖𝑥‖) + 𝜆Φ (
𝑥 + 𝑦

)

−𝜆 (1 − 𝜆) 𝑔 (
𝑦
) − Φ (‖𝑥‖)] (𝜆)

−1

≤ Φ (
𝑥 + 𝑦

) − Φ (‖𝑥‖) − (1 − 𝜆) 𝑔 (
𝑦
) .

(34)

Taking limit as 𝜆 → 0, we get

⟨𝑦, 𝑗
𝑥
⟩ = Φ (

𝑥 + 𝑦
) − Φ (‖𝑥‖) − 𝑔 (

𝑦
) . (35)

Lemma 7 (see [17, Theorem 3.11, page 952]). Let 𝑋 be a
reflexive Banach space and 𝐽

𝜑
: 𝑋 → 2

𝑋
∗

the duality map
with gauge 𝜑. Suppose that 𝐴 : 𝑋 → 2

𝑋
∗

is maximal
monotone. Then the operator 𝐴 + 𝐽

𝜑
is surjective.

3. Bregman Distance 𝐷
𝜑

and Function 𝐷
𝑓

𝜑

One can easily see that

𝐷
𝜑
(𝑥, 𝑦) + 𝐷

𝜑
(𝑦, 𝑧) − 𝐷

𝜑
(𝑥, 𝑧)

= ⟨𝑥 − 𝑦, 𝐽
𝜑
(𝑧) − 𝐽

𝜑
(𝑦)⟩, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(36)

Noticing that for 𝑥 in 𝑋, the scalar function 𝐷
𝜑
(⋅, 𝑥) is

coercive (see [18, Lemma 7.3(v)]).

Proposition 8. Let 𝑋 be a strictly convex smooth Banach
space. Let 𝑥, 𝑦 ∈ 𝑋. Then

𝐷
𝜑
(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦. (37)

Proof. See [18, Lemma 7.3(vi)]

Proposition 9. Let 𝑋 be a smooth and uniformly convex
Banach space. Then there exists a strictly increasing convex
function 𝑔 : R+ → R+ with 𝑔(0) = 0 such that

𝐷
𝜑
(𝑢, V) ≥ 𝑔 (‖𝑢 − V‖) ∀𝑢, V ∈ 𝐵

𝑋
. (38)

Proof. Let 𝑢, V ∈ 𝐵
𝑋
. By Lemma 6 we have

𝐷
𝜑
(𝑢, V) = Φ (‖V + (𝑢 − V)‖) − Φ (‖V‖)

− ⟨𝑢 − V, 𝐽
𝜑
(V)⟩

≥ Φ (‖V‖) + ⟨𝑢 − V, 𝐽
𝜑
(V)⟩ + 𝑔 (‖𝑢 − V‖)

− Φ (‖V‖) − ⟨𝑢 − V, 𝐽
𝜑
(V)⟩

= 𝑔 (‖𝑢 − V‖) .

(39)

As in Butnariu et al. [19], we can prove the following
proposition.

Proposition 10. Let 𝑋 be a smooth and uniformly convex
Banach space. Let {𝑥

𝑛
} and {𝑦

𝑛
} be two sequences in 𝑋 such

that𝐷
𝜑
(𝑥
𝑛
, 𝑦
𝑛
) → 0. If {𝑦

𝑛
} is bounded, then ‖𝑥

𝑛
−𝑦
𝑛
‖ → 0.

Proof. Assume {𝑦
𝑛
} is bounded. From definition (5) we have

𝐷
𝜑
(𝑥
𝑛
, 𝑦
𝑛
) = Φ (

𝑥𝑛
) − Φ (

𝑦𝑛
)

− ⟨𝑥
𝑛
− 𝑦
𝑛
, 𝐽
𝜑
(𝑦
𝑛
)⟩ .

(40)
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It follows that
Φ(

𝑥𝑛
) −

𝑥𝑛
 𝜑 (

𝑦𝑛
)

≤ Φ (
𝑥𝑛

) − ⟨𝑥𝑛, 𝐽𝜑 (𝑦𝑛)⟩

= Φ (
𝑦𝑛

) −
𝑥𝑛

 𝜑 (
𝑦𝑛

) + 𝐷𝜑 (𝑥𝑛, 𝑦𝑛)

≤ Φ (
𝑦𝑛

) + 𝐷𝜑 (𝑥𝑛, 𝑦𝑛) .

(41)

Since {𝑦
𝑛
} is bounded, 𝐷

𝜑
(𝑥
𝑛
, 𝑦
𝑛
) → 0 and Φ(𝑡)/𝑡 → ∞ as

𝑡 → ∞ it follows from (41) that {‖𝑥
𝑛
‖} is bounded, too.

We may now assume that {𝑥
𝑛
} and {𝑦

𝑛
} both lie in

the closed unit ball 𝐵
𝑋

(otherwise consider the rescaled
sequences {𝛾𝑥

𝑛
} and {𝛾𝑦

𝑛
} for a sufficiently small 𝛾 > 0).

By Proposition 9, there exists a strictly increasing convex
function 𝑔 : R+ → R+ with 𝑔(0) = 0 such that

𝑔 (
𝑥𝑛

 −
𝑦𝑛

) ≤ 𝐷𝜑 (𝑥𝑛, 𝑦𝑛) , ∀𝑛 ∈ N. (42)

Since 𝐷
𝜑
(𝑥
𝑛
, 𝑦
𝑛
) → 0 and 𝑔 is strictly increasing, we

immediately conclude that ‖ 𝑥
𝑛
− 𝑦
𝑛
‖→ 0.

Proposition 11 (see [20, Lemma 3.1]). Let 𝑋 be a smooth
Banach space. Let 𝑢 ∈ 𝑋 and {𝑥

𝑛
} be a sequence in 𝑋 such

that {𝐷
𝜑
(𝑥
𝑛
, 𝑢)} is bounded. Then {𝑥

𝑛
} is bounded.

The statement in the following proposition is evident
from the definition of𝐷

𝜑
(cf. [18, Lemma 7.3(ii)]).

Proposition 12. Let 𝑋 be a smooth Banach space. Then, for
any fixed 𝑥 in 𝑋, the scalar function 𝐷

𝜑
(⋅, 𝑥) is continuous,

weakly lower semicontinuous, and convex on𝑋.

Let 𝑓 : 𝑋 → [0, +∞] be a proper, convex, lower
semicontinuous function. Define

𝐷
𝑓

𝜑
(𝑥, 𝑦) = 𝐷

𝜑
(𝑥, 𝑦) + 𝑓 (𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (43)

Some of the following basic properties of the Bregman
distance𝐷

𝜑
and function𝐷𝑓

𝜑
are known in the literature (see

[18–21]).
The following proposition can be deduced from Butnariu

and Kassay [21, Lemma 2.1].

Proposition 13. Let 𝐶 be a nonempty closed convex subset of
a reflexive, strictly convex, and smooth Banach space 𝑋. Let
𝑥 ∈ 𝑋 and let 𝑓 : 𝑋 → [0, +∞] be a proper, convex, lower
semicontinuous function with 𝐶 ⊂ dom(𝑓). Then there exists
a unique element 𝑥

0
in 𝐶 such that

𝐷
𝑓

𝜑
(𝑥
0
, 𝑥) = inf {𝐷𝑓

𝜑
(𝑧, 𝑥) : 𝑧 ∈ 𝐶} . (44)

Bregman projections are thoroughly studied and used
for iteration schemes such as sequential subspace methods
or split feasibility problems successfully (see, [22–24]). The
notion of𝐷

𝑓
-proximalmappings was introduced and studied

in [1]. Recently, the notion of Moreau proximal mapping [25]
is generalized by Butnariu and Kassay [21] as the proximal
mapping relative to 𝑓 associated with a proper, convex,
lower semicontinuous function 𝜑. Using the idea of [1, 26],
Proposition 13 allows us to extend generalized projectionsΠ

𝐶

as follows.

Definition 14. In the setting of Proposition 13, we define the
(𝜑, 𝑓)-generalized projection from𝑋 onto 𝐶 by

Π
𝜑,𝑓

𝐶
(𝑥) = 𝑥

0
, 𝑥 ∈ 𝑋. (45)

In case 𝜑(𝑡) = 𝑡 and 𝑓 = 0, we notice that Π𝜑,𝑓
𝐶

coincides
withΠ

𝐶
. In case that𝑋 is a Hilbert space and 𝜑(𝑡) = 𝑡, denote

Π
𝜑,𝑓

𝐶
by 𝑃𝑓
𝐶
.

Applying the tools used in [1, 26, 27], we can establish the
following results.

Proposition 15. Let 𝐶 be a nonempty closed convex subset of
a reflexive, strictly convex, and smooth Banach space𝑋 and let
𝑓 : 𝑋 → [0, +∞] be a proper, convex, lower semicontinuous
function with 𝐶 ⊂ dom(𝑓).

(i) Let 𝑥
0
∈ 𝐶 and 𝑥 ∈ 𝑋. Then the following assertions

are equivalent:

(a) 𝑥
0
= Π
𝜑,𝑓

𝐶
(𝑥),

(b) ⟨𝑧 − 𝑥
0
, 𝐽
𝜑
𝑥
0
− 𝐽
𝜑
𝑥⟩ + 𝑓(𝑧) − 𝑓(𝑥

0
) ≥ 0,

∀𝑧 ∈ 𝐶.

(ii) Given 𝑥 in𝑋, one has

𝐷
𝜑
(𝑦, Π
𝜑,𝑓

𝐶
(𝑥)) + 𝐷

𝜑
(Π
𝜑,𝑓

𝐶
(𝑥) , 𝑥)

≤ 𝐷
𝜑
(𝑦, 𝑥) + 𝑓 (𝑦) − 𝑓 (Π

𝜑,𝑓

𝐶
(𝑥)) , ∀𝑦 ∈ 𝐶.

(46)

Proposition 16. Let 𝐶 be a nonempty closed convex subset of
a smooth and uniformly convex Banach space𝑋 and 𝑓 : 𝑋 →

[0, +∞] a proper, convex, lower semicontinuous function with
𝐶 ⊂ dom(𝑓). Let 𝑢 ∈ 𝑋 and let {𝑥

𝑛
} be a bounded

sequence in 𝐶 such that lim
𝑛→+∞

𝑓(𝑥
𝑛
) = 0. If 𝐷𝑓

𝜑
(𝑥
𝑛
, 𝑢) ≤

𝐷
𝑓

𝜑
(Π
𝜑,𝑓

𝐶
(𝑢), 𝑢) for all 𝑛 in N, then lim

𝑛→+∞
𝑥
𝑛
= Π
𝜑,𝑓

𝐶
(𝑢).

Proof. Set Π𝜑,𝑓
𝐶
(𝑢) =: �̃�. Then, by assumption, we have

𝐷
𝑓

𝜑
(𝑥
𝑛
, 𝑢) ≤ 𝐷

𝑓

𝜑
(�̃�, 𝑢) for all 𝑛 inN. By the three-point identity

(36), we have

𝐷
𝑓

𝜑
(𝑥
𝑛
, �̃�) = 𝐷

𝑓

𝜑
(𝑥
𝑛
, 𝑢) + 𝐷

𝑓

𝜑
(𝑢, �̃�)

− ⟨𝑥
𝑛
− 𝑢, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ − 𝑓 (𝑢)

≤ 𝐷
𝑓

𝜑
(�̃�, 𝑢) + 𝐷

𝑓

𝜑
(𝑢, �̃�)

− ⟨𝑥
𝑛
− 𝑢, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ − 𝑓 (𝑢)

≤ ⟨�̃� − 𝑢, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩

− ⟨𝑥
𝑛
− 𝑢, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ + 𝑓 (�̃�)

= ⟨�̃� − 𝑥
𝑛
, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ + 𝑓 (�̃�) .

(47)

Since {𝑥
𝑛
} is a bounded sequence in 𝐶, there exists a

subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} such that {𝑥

𝑛
𝑖

} converges weakly to
some element 𝑧 in 𝐶. Note that

0 ≤ 𝑓 (𝑧) ≤ lim inf
𝑖→+∞

𝑓 (𝑥
𝑛
𝑖

) = 0; (48)
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that is, 𝑓(𝑧) = 0. Using Proposition 15, we have

lim sup
𝑖→+∞

𝐷
𝑓

𝜑
(𝑥
𝑛
𝑖

, �̃�)

≤ lim sup
𝑖→+∞

[⟨�̃� − 𝑥
𝑛
𝑖

, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ + 𝑓 (�̃�)]

≤ ⟨�̃� − 𝑧, 𝐽
𝜑
(�̃�) − 𝐽

𝜑
(𝑢)⟩ + 𝑓 (�̃�)

≤ 𝑓 (𝑧) ,

(49)

which implies that lim
𝑖→+∞

𝐷
𝜑
(𝑥
𝑛
𝑖

, �̃�) = 0. It follows from
Proposition 10 that lim

𝑖→∞
𝑥
𝑛
𝑖

= �̃�. This implies that 𝑥
𝑛

converges strongly to �̃� = Π𝜑,𝑓
𝐶
(𝑢).

4. 𝜑-Firmly Nonexpansive and 𝜑-Resolvent
Operators

Following [1], we study properties of 𝜑-firmly nonexpansive
mappings in Banach spaces.

Definition 17. Let𝑋 be a smooth Banach space, 𝐽
𝜑
: 𝑋 → 𝑋

∗

a duality mapping with gauge function 𝜑, and 𝐶 a nonempty
subset of 𝑋. An operator 𝑇 : 𝐶 → 𝑋 is called 𝜑-firmly
nonexpansive if

⟨𝑇𝑥 − 𝑇𝑦, 𝐽
𝜑
(𝑇𝑥) − 𝐽

𝜑
(𝑇𝑦)⟩

≤ ⟨𝑇𝑥 − 𝑇𝑦, 𝐽
𝜑
(𝑥) − 𝐽

𝜑
(𝑦)⟩, ∀𝑥, 𝑦 ∈ 𝐶.

(50)

In the case of 𝜑(𝑡) = 𝑡, inequality (50) reduces to

⟨𝑇𝑥 − 𝑇𝑦, 𝐽 (𝑇𝑥) − 𝐽 (𝑇𝑦)⟩ ≤ ⟨𝑇𝑥 − 𝑇𝑦, 𝐽 (𝑥) − 𝐽 (𝑦)⟩ ,

∀𝑥, 𝑦 ∈ 𝐶.

(51)

If 𝑇 satisfies condition (51), we call 𝑇 of firmly nonexpansive
type. The class of firmly nonexpansive type operators is
studied by Kohsaka and Takahashi [28]. When𝑋 is a Hilbert
space, inequality (50) reduces to the following inequality
about firmly nonexpansive operators in the classical sense
(see Goebel and Kirk [29]):

𝑇𝑥 − 𝑇𝑦


2

≤ ⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐶. (52)

We now give useful characterizations of 𝜑-firmly nonex-
pansive mappings which can be deduced from the Bregman
distance (5).

Proposition 18. Let 𝑋 be a smooth Banach space and 𝐶 a
nonempty closed convex subset of 𝑋. Let 𝑇 : 𝐶 → 𝐶 be a
𝜑-firmly nonexpansive mapping. Then

𝐷
𝜑
(𝑇𝑥, 𝑇𝑦) + 𝐷

𝜑
(𝑇𝑦, 𝑇𝑥) + 𝐷

𝜑
(𝑇𝑥, 𝑥) + 𝐷

𝜑
(𝑇𝑦, 𝑦)

≤ 𝐷
𝜑
(𝑇𝑥, 𝑦) + 𝐷

𝜑
(𝑇𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝐶.

(53)

The geometry of the fixed point set of𝜑-firmly nonexpan-
sive mappings is established in Reich and Sabach [30, Lemma
15.5] as follows.

Proposition 19. Let 𝑋 be a strictly convex smooth Banach
space and 𝐶 a nonempty closed convex subset of 𝑋. Let 𝑇 :

𝐶 → 𝐶 be a 𝜑-firmly nonexpansive mapping. Then the set
𝐹(𝑇) of fixed points of 𝑇 is closed and convex.

Let 𝐶 be a nonempty closed convex subset of a smooth
Banach space 𝑋 and let 𝑇 : 𝐶 → 𝐶 be a mapping. A point 𝑢
in 𝐶 is an asymptotic fixed point of 𝑇 if 𝐶 contains a sequence
{𝑥
𝑛
} such that 𝑥

𝑛
⇀ 𝑢 and ‖𝑥

𝑛
− 𝑇𝑥
𝑛
‖ → 0; see [31].

We denote the set of asymptotic fixed points of 𝑇 by 𝐹(𝑇).
A mapping 𝑇 : 𝐶 → 𝐶 is relatively 𝜑-nonexpansive if the
following conditions are satisfied:

(i) 𝐹(𝑇) is nonempty;
(ii) 𝐷

𝜑
(𝑝, 𝑇𝑥) ≤ 𝐷

𝜑
(𝑝, 𝑥) for all 𝑥 in 𝐶 and 𝑝 in 𝐹(𝑇);

(iii) 𝐹(𝑇) = 𝐹(𝑇).
The class of relatively𝜑-nonexpansivemappings is larger than
the class of relatively nonexpansive mappings (see [32]).

A mapping 𝑇 : 𝐶 → 𝐶 is 𝜑-firmly quasinonexpansive if
𝐹(𝑇) ̸= 0 and

⟨𝑇𝑥 − 𝑝, 𝐽
𝜑
(𝑥) − 𝐽

𝜑
(𝑇𝑥)⟩ ≥ 0 (54)

for all 𝑥 in 𝐶 and 𝑝 in 𝐹(𝑇). From the definition of the
Bregman distance (5) and (54), the following proposition
follows immediately.

Proposition 20. Let 𝑋 be a smooth Banach space, 𝐶 a
nonempty subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a 𝜑-firmly
quasinonexpansive mapping. Then

𝐷
𝜑
(𝑝, 𝑇𝑥) + 𝐷

𝜑
(𝑇𝑥, 𝑥) ≤ 𝐷

𝜑
(𝑝, 𝑥) (55)

for all 𝑥 in 𝐶 and 𝑝 in 𝐹(𝑇).

The following supplements Reich and Sabach [30, Lemma
15.6].

Proposition 21. Let 𝑋 be a strictly convex Banach space with
a uniformly Gâteaux differentiable norm. Let𝐶 be a nonempty
closed convex subset of 𝑋 and let 𝑇 : 𝐶 → 𝐶 be a 𝜑-firmly
nonexpansive mapping. Then 𝐹(𝑇) = 𝐹(𝑇).

Proof. It is easy to see that 𝐹(𝑇) ⊂ 𝐹(𝑇). It remains to prove
that 𝐹(𝑇) ⊂ 𝐹(𝑇). For this, suppose that 𝑢 ∈ 𝐹(𝑇). Then,
there exists a sequence {𝑥

𝑛
} in 𝐶 such that 𝑥

𝑛
⇀ 𝑢 and ‖𝑥

𝑛
−

𝑇𝑥
𝑛
‖ → 0. We need to prove that 𝑢 ∈ 𝐹(𝑇). Using (53), we

get

𝐷
𝜑
(𝑇𝑢, 𝑢) ≤ 𝐷

𝜑
(𝑇𝑥
𝑛
, 𝑢) + 𝐷

𝜑
(𝑇𝑢, 𝑥

𝑛
) − 𝐷
𝜑
(𝑇𝑥
𝑛
, 𝑇𝑢)

− 𝐷
𝜑
(𝑇𝑢, 𝑇𝑥

𝑛
) − 𝐷
𝜑
(𝑇𝑥
𝑛
, 𝑥
𝑛
) .

(56)

It is not hard to find that (56) is reduced to the relation

𝐷
𝜑
(𝑇𝑢, 𝑢) ≤ Φ (‖𝑇𝑢‖) − Φ (‖𝑢‖) + ⟨𝑢 − 𝑇𝑥

𝑛
, 𝐽
𝜑
(𝑢)⟩

+ ⟨𝑇𝑥
𝑛
− 𝑇𝑢, 𝐽

𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑇𝑥
𝑛
)⟩

+ ⟨𝑇𝑥
𝑛
− 𝑇𝑢, 𝐽

𝜑
(𝑇𝑢)⟩ .

(57)
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We note that 𝑇𝑥
𝑛
⇀ 𝑢. Indeed, for any norm one linear

functional 𝜉 of𝑋, we have

⟨𝑇𝑥
𝑛
− 𝑢, 𝜉⟩ = ⟨𝑇𝑥

𝑛
− 𝑥
𝑛
, 𝜉⟩ + ⟨𝑥

𝑛
− 𝑢, 𝜉⟩ . (58)

Both terms in the right-hand side approach zero. Conse-
quently,

⟨𝑇𝑥
𝑛
− 𝑇𝑢, 𝐽

𝜑
(𝑇𝑢)⟩ → ⟨𝑢 − 𝑇𝑢, 𝐽

𝜑
(𝑇𝑢)⟩ . (59)

Claim. Consider ⟨𝑇𝑥
𝑛
− 𝑇𝑢, 𝐽

𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑇𝑥
𝑛
)⟩ → 0.

Since 𝑥
𝑛
⇀ 𝑢 and ‖𝑥

𝑛
− 𝑇𝑥
𝑛
‖ → 0, there is a constant

𝑀 > 0 such that all ‖𝑥
𝑛
‖, ‖𝑇𝑥

𝑛
‖ < 𝑀. It follows from the

uniform norm to weak∗ continuity of 𝐽
𝜑
on bounded subsets

(Lemma 2); we have

⟨𝑇𝑢, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑇𝑥
𝑛
)⟩ → 0. (60)

Observe that

𝜖
𝑛
:= ⟨𝑇𝑥

𝑛
− 𝑥
𝑛
, 𝐽
𝜑
(𝑥
𝑛
)⟩ → 0. (61)

Moreover, |‖𝑥
𝑛
‖ − ‖𝑇𝑥

𝑛
‖| ≤ ‖𝑥

𝑛
−𝑇𝑥
𝑛
‖ → 0. By the uniform

continuity of 𝜑 on [0,𝑀], we have

⟨𝑇𝑥
𝑛
, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑇𝑥
𝑛
)⟩

= ⟨𝑇𝑥
𝑛
, 𝐽
𝜑
(𝑥
𝑛
)⟩ − ⟨𝑇𝑥

𝑛
, 𝐽
𝜑
(𝑇𝑥
𝑛
)⟩

=
𝑥𝑛

 𝜑 (
𝑥𝑛

) + 𝜖𝑛 −
𝑇𝑥𝑛

 𝜑 (
𝑇𝑥𝑛

)

= (
𝑥𝑛

 −
𝑇𝑥𝑛

) 𝜑 (
𝑥𝑛

)

+
𝑇𝑥𝑛

 (𝜑 (
𝑥𝑛

) − 𝜑 (
𝑇𝑥𝑛

)) + 𝜖𝑛 → 0.

(62)

The claim is thus verified.
We obtain from (57) and the claim that

𝐷
𝜑
(𝑇𝑢, 𝑢) ≤ Φ (‖𝑇𝑢‖) − Φ (‖𝑢‖) + ⟨𝑢 − 𝑇𝑢, 𝐽

𝜑
(𝑇𝑢)⟩. (63)

This is equivalent to

⟨𝑇𝑢 − 𝑢, 𝐽
𝜑
(𝑇𝑢) − 𝐽

𝜑
(𝑢)⟩ ≤ 0. (64)

The strictmonotonicity of the dualitymapping 𝐽
𝜑
implies that

equality must hold. Namely, 𝑇𝑢 = 𝑢 or 𝑢 ∈ 𝐹(𝑇).

The resolvent of an operator 𝐴 : 𝑋 → 2
𝑋
∗

relative to a
Gâteaux differentiable function 𝑓 is introduced and studied
in [1]. We define 𝜑-resolvent operators following [1, 18].

Definition 22. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋 and let 𝐽

𝜑
: 𝑋 → 𝑋

∗ be the duality
mapping with gauge 𝜑. Suppose that 𝐴 : 𝑋 → 2

𝑋
∗

is an
operator satisfying the range condition

𝐷 (𝐴) ⊂ 𝐶 ⊂ 𝐽
−1

𝜑
R (𝐽
𝜑
+ 𝑟𝐴) ∀𝑟 > 0. (65)

For each 𝜆 > 0, the 𝜑-resolvent associated with operator 𝐴 is
the operator 𝑅𝜑,𝐴

𝜆
: 𝐶 → 2

𝑋 defined by

𝑅
𝜑,𝐴

𝜆
𝑥 = {𝑧 ∈ 𝑋 : 𝐽

𝜑
(𝑥) ∈ (𝐽

𝜑
+ 𝜆𝐴) 𝑧} , 𝑥 ∈ 𝐶. (66)

For 𝑥 in 𝐶 and 𝜆 in (0,∞), we have

0 ∈ 𝐴𝑥 ⇐⇒ 𝐽
𝜑
(𝑥) ∈ (𝐽

𝜑
+ 𝜆𝐴) 𝑥

⇐⇒ 𝑥 ∈ (𝐽
𝜑
+ 𝜆𝐴)

−1

𝐽
𝜑
𝑥

⇐⇒ 𝑥 ∈ 𝐹 (𝑅
𝜑,𝐴

𝜆
) .

(67)

If 𝐴 is maximal monotone, then, by Lemma 7, we see that
condition (65) holds for 𝐶 = 𝐷(𝐴).

Remark 23. For smooth𝑋 and 𝜑(𝑡) = 𝑡𝑝−1 with 𝑝 ∈ (1, +∞),
we have 𝐽

𝜑
= 𝐽
𝑝
and 𝑅𝑝,𝐴 = (𝐽

𝑝
+ 𝐴)
−1

𝐽
𝑝
. For 𝑝 = 2, 𝑅𝐴 :=

𝑅
2,𝐴

= (𝐽 + 𝐴)
−1

∘ 𝐽 and this kind of resolvent operators is
studied in the literature (see [28, 33]).

Let 𝐶 be a nonempty closed convex subset of a reflexive,
strictly convex, and smooth Banach space 𝑋. Let 𝐴 : 𝑋 →

2
𝑋
∗

be a monotone operator satisfying the condition𝐷(𝐴) ⊂
𝐶 ⊂ 𝐽

−1

𝜑
R(𝐽
𝜑
+ 𝜆𝐴), where 𝜆 > 0. Using the smoothness and

strict convexity of𝑋, we obtain that𝑅𝜑,𝐴
𝜆

is single-valued.The
conditions 𝐷(𝐴) ⊂ 𝐶 ⊂ 𝐽

−1

𝜑
R(𝐽
𝜑
+ 𝜆𝐴) ensure that 𝑅𝜑,𝐴

𝜆
is

the single-valued 𝜑-resolvent operator form 𝐶 into 𝐷(𝐴). In
other words,

𝑅
𝜑,𝐴

𝜆
𝑥 = (𝐽

𝜑
+ 𝜆𝐴)

−1

𝐽
𝜑
𝑥, ∀𝑥 ∈ 𝐶. (68)

Following [18, 28], we have the following proposition.

Proposition 24. Let 𝐶 be a nonempty closed convex subset of
a reflexive, strictly convex and smooth Banach space𝑋 and let
𝐽
𝜑
: 𝑋 → 𝑋

∗ be the duality mapping with gauge 𝜑. Let 𝐴 :

𝑋 → 2
𝑋
∗

be a monotone operator satisfying the condition
𝐷(𝐴) ⊂ 𝐶 ⊂ 𝐽

−1

𝜑
R(𝐽
𝜑
+𝜆𝐴), where 𝜆 is a positive real number.

Let 𝑅𝜑,𝐴
𝜆

be a resolvent of 𝐴, where

(a) 𝑅𝜑,𝐴
𝜆

is 𝜑-firmly nonexpansive mapping from 𝐶 into 𝐶,

(b) 𝐹(𝑅𝜑,𝐴
𝜆
) = 𝐴
−1

0.

5. Convergence Theorems

Let 𝐶 be a nonempty subset of a Banach space 𝑋 and T =

{𝑇(𝑡) : 𝑡 > 0} a family of mappings from 𝐶 into 𝐶 with
⋂
𝑡>0

𝐹(𝑇(𝑡)) ̸= 0. LetG = {𝐺
𝑡
: 𝑡 > 0} be a family of mappings

from 𝐶 into 𝐶 such that ⋂
𝑡>0

𝐹(𝑇(𝑡)) ⊆ ⋂
𝑡>0

𝐹(𝐺
𝑡
). We say

the familyT := {𝑇(𝑡) : 𝑡 > 0} has property (A)with respect to
the family G = {𝐺

𝑡
: 𝑡 > 0} if the following assertion holds:

for each bounded net {𝑥
𝑠
}
𝑠>0

in 𝐶 if 𝑥
𝑠
− 𝐺
𝑠
𝑥
𝑠
→ 0

as 𝑠 → +∞

then 𝑥
𝑠
− 𝑇 (𝑡) 𝑥

𝑠
→ 0 as 𝑠 → +∞, ∀𝑡 > 0.

(69)
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If T = G and the above condition holds, then we say
T := {𝑇(𝑠) : 𝑠 > 0} has property (A).

Remark 25. IfT is a singleton, that is,T = {𝑇}, or 𝑇(𝑠) = 𝑇

for all 𝑠 > 0, then {𝑇} always has property (A).

We now give some examples.

Example 26. Let 𝐶 be a nonempty closed convex subset of a
Banach space 𝑋 and 𝑇 a nonexpansive mapping from 𝐶 into
𝐶 with 𝐹(𝑇) ̸= 0. Assume 𝑏

𝑡
in R with 0 < 𝑎 ≤ 𝑏

𝑡
≤ 𝑏 < 1 for

all 𝑡 > 0. Define 𝐺
𝑡
: 𝐶 → 𝐶 by 𝐺

𝑡
𝑥 = (1 − 𝑏

𝑡
)𝑥 + 𝑏

𝑡
𝑇𝑥 for

all 𝑥 in 𝐶. Then 𝑇 has property (A) with respect to the family
{𝐺
𝑡
: 𝑡 > 0}.

Proof. Let {𝑥
𝑡
}
𝑡>0

be a bounded net in 𝐶 such that ‖ 𝑥
𝑡
−

𝐺
𝑡
(𝑥
𝑡
) ‖→ 0 as 𝑡 → ∞. Note that

𝑥𝑡 − 𝑇𝑥𝑡
 =

1

𝑏
𝑡

𝑥𝑡 − 𝐺𝑡 (𝑥𝑡)
 (70)

and 0 < 𝑎 ≤ 𝑏
𝑡
≤ 𝑏 < 1 for all 𝑡 > 0. Therefore, ‖ 𝑥

𝑡
− 𝑇𝑥
𝑡
‖→

0 as 𝑡 → +∞.

The following example shows that the family {𝑅𝐴
𝑡
: 𝑡 >

0} of resolvent operators of a maximal monotone operator 𝐴
enjoys property (A).

Example 27. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻 and let 𝐴 ⊂ 𝐻 × 𝐻 be a monotone
operator satisfying the following condition:

𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0

R (𝐼 + 𝑟𝐴) . (71)

Let {𝑧
𝑡
}
𝑡>0

be a bounded net in 𝐶 such that ‖ 𝑧
𝑡
−𝑅
𝐴

𝑡
𝑧
𝑡
‖→ 0

as 𝑡 → +∞. Then ‖ 𝑧
𝑡
− 𝑅
𝐴

𝑟
𝑧
𝑡
‖→ 0 as 𝑡 → +∞ for each

𝑟 > 0.

Proof. Let 𝑟, 𝑡 > 0. By Takahashi [34], we have

1

𝑟


𝑅
𝐴

𝑡
𝑧
𝑡
− 𝑅
𝐴

𝑟
𝑅
𝐴

𝑡
𝑧
𝑡


≤
1

𝑡


𝑧
𝑡
− 𝑅
𝐴

𝑡
𝑧
𝑡


. (72)

Using (72), we have

𝑧
𝑡
− 𝑅
𝐴

𝑟
𝑧
𝑡


≤

𝑧
𝑡
− 𝑅
𝐴

𝑡
𝑧
𝑡


+

𝑅
𝐴

𝑡
𝑧
𝑡
− 𝑅
𝐴

𝑟
𝑅
𝐴

𝑡
𝑧
𝑡



+

𝑅
𝐴

𝑟
𝑅
𝐴

𝑡
𝑧
𝑡
− 𝑅
𝐴

𝑟
𝑧
𝑡



≤ (2 +
𝑟

𝑡
)

𝑧
𝑡
− 𝑅
𝐴

𝑡
𝑧
𝑡


→ 0 as 𝑡 → +∞.

(73)

We now discuss the problem of finding common fixed
points of a sequence of𝜑-firmly nonexpansivemappings.Our
proximal-projection method is based on (a not necessarily
Bregman distance) function 𝐷

𝑓

𝜑
. The proof is based on the

technique in [20].

Theorem 28. Let 𝑋 be a uniformly convex Banach space
with a uniformly Gâteaux differentiable norm. Let 𝜑 be a
gauge function, 𝐶 a nonempty closed convex subset of 𝑋, and
𝑓 : 𝑋 → [0, +∞] a proper, convex, lower semicontinuous
function with 𝐶 ⊂ dom(𝑓). Let 𝑇 : 𝐶 → 𝐶 be a 𝜑-
firmly nonexpansive mapping and T := {𝑇

𝑛
} a sequence of

𝜑-firmly nonexpansive self-mappings on 𝐶 such that 𝐹(𝑇) =
⋂
𝑛∈N 𝐹(𝑇𝑛) ̸= 0 andT has property (A) with respect to 𝑇. For

𝑢 in 𝐶 and 𝐶
1
= 𝐶 with 𝑥

1
= Π
𝜑,𝑓

𝐶
1

(𝑢), define a sequence {𝑥
𝑛
}

in 𝐶 as follows:

𝑦
𝑛
= 𝑇
𝑛
𝑥
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: ⟨𝑧 − 𝑦

𝑛
, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑦
𝑛
)⟩ ≤ 0} ,

𝑥
𝑛+1

= Π
𝜑,𝑓

𝐶
𝑛+1

(𝑢) ∀𝑛 ∈ N.

(74)

Then {𝑥
𝑛
} converges strongly to Π𝜑,𝑓

𝐹(𝑇)
(𝑢).

Proof. We proceed the proof in the following steps:

Step 1. {𝑥
𝑛
} is well defined.

Note that all𝐶
𝑛
are closed and convex. For 𝑝 in 𝐹(T) and

𝑛 in N, we obtain from (54) that

⟨𝑝 − 𝑦
𝑛
, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑦
𝑛
)⟩ ≤ 0. (75)

It follows that 𝑝 ∈ 𝐶
𝑛
and hence 𝐹(T) ⊂ 𝐶

𝑛
. Therefore, {𝑥

𝑛
}

is well defined.

Step 2. {𝑥
𝑛
} is bounded.

Let 𝑝 ∈ 𝐹(T). It follows from Proposition 15; we have

𝐷
𝜑
(𝑥
𝑛
, 𝑢) = 𝐷

𝜑
(Π
𝜑,𝑓

𝐶
𝑛

(𝑢) , 𝑢)

≤ 𝐷
𝜑
(𝑝, 𝑢) − 𝐷

𝜑
(𝑝, Π
𝜑,𝑓

𝐶
𝑛

(𝑢))

+ 𝑓 (𝑝) − 𝑓 (𝑥
𝑛
)

≤ 𝐷
𝜑
(𝑝, 𝑢) + 𝑓 (𝑝) .

(76)

It follows that {𝐷
𝜑
(𝑥
𝑛
, 𝑢)} is bounded and hence from

Proposition 11, we obtain that {𝑥
𝑛
} is bounded.

Step 3. Consider ‖ 𝑥
𝑛
− 𝑇𝑥
𝑛
‖→ 0.

Note that 𝑥
𝑛+1

∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
. It follows from

Proposition 15 that

𝐷
𝜑
(𝑥
𝑛+1

, Π
𝜑,𝑓

𝐶
𝑛

(𝑢)) + 𝐷
𝜑
(Π
𝜑,𝑓

𝐶
𝑛

(𝑢) , 𝑢)

≤ 𝐷
𝜑
(𝑥
𝑛+1

, 𝑢) + 𝑓 (𝑥
𝑛+1

) − 𝑓 (Π
𝜑,𝑓

𝐶
𝑛

(𝑢)) .

(77)

This implies that

𝐷
𝜑
(𝑥
𝑛
, 𝑢) ≤ 𝐷

𝜑
(𝑥
𝑛+1

, 𝑢) − 𝐷
𝜑
(𝑥
𝑛+1

, 𝑥
𝑛
)

+ 𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
) .

(78)
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Therefore, the sequence {𝐷𝑓
𝜑
(𝑥
𝑛
, 𝑢)} (see (43)) is increasing.

Note that {𝐷𝑓
𝜑
(𝑥
𝑛
, 𝑢)} is bounded by (76). It follows that

lim
𝑛→+∞

𝐷
𝑓

𝜑
(𝑥
𝑛
, 𝑢) exists. By (78), we obtain

lim
𝑛→+∞

𝐷
𝑓

𝜑
(𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (79)

One can see that lim
𝑛→+∞

𝑓(𝑥
𝑛
) = 0. Using Proposition 10,

we obtain that lim
𝑛→+∞

‖ 𝑥
𝑛
− 𝑥
𝑛+1

‖= 0. Since 𝑥
𝑛+1

∈ 𝐶
𝑛+1

,
we have

0 ≤ 𝐷
𝜑
(𝑥
𝑛+1

, 𝑦
𝑛
) + 𝐷
𝜑
(𝑦
𝑛
, 𝑥
𝑛
)

≤ 𝐷
𝜑
(𝑥
𝑛+1

, 𝑦
𝑛
) + 𝐷
𝜑
(𝑦
𝑛
, 𝑥
𝑛
)

+ ⟨𝑦
𝑛
− 𝑥
𝑛+1

, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑦
𝑛
)⟩

= 𝐷
𝜑
(𝑥
𝑛+1

, 𝑥
𝑛
) .

(80)

Using (79), we obtain that

lim
𝑛→+∞

[𝐷
𝜑
(𝑥
𝑛+1

, 𝑦
𝑛
) + 𝐷
𝜑
(𝑦
𝑛
, 𝑥
𝑛
)] = 0, (81)

and hence lim
𝑛→+∞

𝐷
𝜑
(𝑦
𝑛
, 𝑥
𝑛
) = 0. Note that {𝑥

𝑛
} is

bounded. Then, one can see from Proposition 10 that {𝑦
𝑛
} is

bounded and

lim
𝑛→+∞

𝑥𝑛 − 𝑦𝑛
 = 0. (82)

This implies that

lim
𝑛→+∞

𝑥𝑛 − 𝑇𝑛𝑥𝑛
 = 0. (83)

Since the family T := {𝑇
𝑛
: 𝑛 ∈ N} has property (A) with

respect to 𝑇, it follows from (83) that lim
𝑛→+∞

‖ 𝑥
𝑛
−𝑇𝑥
𝑛
‖=

0.

Step 4. The sequence {𝑥
𝑛
} converges strongly to Π𝜑,𝑓

𝐹(𝑇)
(𝑢).

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

} of
{𝑥
𝑛
} such that 𝑥

𝑛
𝑖

⇀ 𝑧 ∈ 𝐶. Hence 𝑧 ∈ 𝐹(𝑇) = 𝐹(𝑇). From
Proposition 19, 𝐹(𝑇) is closed and convex.The nonemptiness
of 𝐹(𝑇) implies that the generalized projection Π𝜑,𝑓

𝐹(𝑇)
is well

defined. Note that 𝑥
𝑛
= Π
𝜑,𝑓

𝐶
𝑛

(𝑢) and 𝐹(𝑇) is contained in 𝐶
𝑛
;

we have

𝐷
𝑓

𝜑
(𝑥
𝑛
, 𝑢) ≤ 𝐷

𝑓

𝜑
(Π
𝜑,𝑓

𝐹(𝑇)
(𝑢) , 𝑢) . (84)

Therefore, we conclude from Proposition 16 that {𝑥
𝑛
} con-

verges strongly to Π𝜑,𝑓
𝐹(𝑇)

(𝑢).

Theorem 29. Let 𝑋 be a uniformly convex Banach space
with a uniformly Gâteaux differentiable norm. Let 𝜑 be a
gauge function, 𝐶 a nonempty closed convex subset of 𝑋, and
𝑓 : 𝑋 → [0, +∞] a proper, convex, lower semicontinuous
function with 𝐶 ⊂ dom(𝑓). Let 𝐴 : 𝑋 → 2

𝑋
∗

be a monotone
operator with 𝐴−10 ̸= 0 satisfying the following condition:

𝐷 (𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0

𝐽
−1

𝜑
R (𝐽
𝜑
+ 𝑟𝐴) . (85)

Let 𝜆 be a positive real number; for 𝑢 in 𝐶 and 𝐶
1
= 𝐶 with

𝑥
1
= Π
𝜑,𝑓

𝐶
1

(𝑢), define a sequence {𝑥
𝑛
} in 𝐶 as follows:

𝑦
𝑛
= (𝐽
𝜑
+ 𝜆𝐴)

−1

𝐽
𝜑
𝑥
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: ⟨𝑧 − 𝑦

𝑛
, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑦
𝑛
)⟩ ≤ 0} ,

𝑥
𝑛+1

= Π
𝜑,𝑓

𝐶
𝑛+1

(𝑢) , ∀𝑛 ∈ N.

(86)

Then {𝑥
𝑛
} converges strongly to Π𝜑,𝑓

𝐴
−1
0

(𝑢).

Proof. Set 𝑇 := (𝐽
𝜑
+ 𝜆𝐴)

−1

𝐽
𝜑
. Note that 𝑇 is 𝜑-firmly

nonexpansive mapping from 𝐶 into 𝐶 and 𝐹(𝑇) = 𝐴
−1

0.
Further, every singleton family {𝑇} enjoys property (A).
Therefore, Theorem 29 follows fromTheorem 28.

Remark 30. Compared with other convergence theorems
concerning proximal point algorithms in the literature (see,
e.g., Agarwal et al. [35, Theorem 3.1]; Kamimura and Taka-
hashi [26, Theorem 8]; Matsushita and Takahashi [32, The-
orem 4.3]), Theorem 29 establishes a new proximal point
algorithm for the problem of finding zeros of (not necessarily
maximal) monotone operators in a uniformly convex Banach
space with a uniformly Gâteaux differentiable norm.

We now derive an interesting new result.

Corollary 31. Let 𝐶 be a nonempty closed convex subset of
real Hilbert space 𝐻, and let 𝑓 : 𝑋 → [0, +∞] be a proper,
convex, lower semicontinuous function with 𝐶 ⊂ dom(𝑓). Let
𝐴 ⊂ 𝐻 × 𝐻 be a monotone operator satisfying condition (71)
such that 𝐴−10 ̸= 0. Let {𝜆

𝑛
} be a sequence in (0,∞) such that

lim
𝑛→+∞

𝜆
𝑛
= +∞, for 𝑢 in 𝐶, let 𝐶

1
= 𝐶 with 𝑥

1
= 𝑃
𝑓

𝐶
1

(𝑢),
and define a sequence {𝑥

𝑛
} in 𝐶 as follows:

𝑦
𝑛
= (𝐼 + 𝜆

𝑛
𝐴)
−1

𝑥
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: ⟨𝑧 − 𝑦

𝑛
, 𝑥
𝑛
− 𝑦
𝑛
⟩ ≤ 0} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

(𝑢) , ∀𝑛 ∈ N.

(87)

Then {𝑥
𝑛
} converges strongly to 𝑃𝑓

𝐴
−1
0

(𝑢).

Proof. Set 𝑇 := 𝑅
𝐴

𝜆
= (𝐼 + 𝜆𝐴)

−1 for 𝜆 > 0 and 𝑇
𝑛
:= (𝐼 +

𝜆
𝑛
𝐴)
−1 for all 𝑛 in N. Note that 𝑇 is a firmly nonexpansive

mapping from𝐶 into𝐶 and 𝐹(𝑇) = 𝐴−10. From (83), we have
lim
𝑛→+∞

‖ 𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
‖= 0. Example 27 implies that T :=

{𝑇
𝑟
: 𝑟 > 0} has property (A). It follows that lim

𝑛→+∞
‖ 𝑥
𝑛
−

𝑇𝑥
𝑛
‖= 0. Therefore, Corollary 31 follows from Theorem 28.

Let 𝐶 be a nonempty, closed, and convex subset of a
Banach space 𝑋. Let Θ : 𝐶 × 𝐶 → R be a bi-function,
𝐴 : 𝐶 → 𝑋

∗ a nonlinear operator, and 𝜓 : 𝐶 → R
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a real-valued function. We assume the following conditions
are all satisfied.

(A1) Θ(𝑥, 𝑥) = 0 for all 𝑥 in 𝐶.
(A2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 in 𝐶.
(A3) for all 𝑥, 𝑦, 𝑧 in 𝐶, lim sup

𝑡↓0
Θ(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

Θ(𝑥, 𝑦).
(A4) for all 𝑥 in 𝐶,Θ(𝑥, ⋅) is convex and lower semicontin-

uous.

Blum and Oettli [36] studied the following equilibrium
problem (EP).

Find 𝑥 in 𝐶 such that

Θ(𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (88)

The solution set of (88) is denoted by EP(Θ).
Following [37], we have the following lemma.

Lemma 32. Let 𝐶 be a nonempty closed convex subset of a
reflexive, strictly convex, and smooth Banach space 𝑋, and let
𝜑 be a gauge function. Let Θ : 𝐶 × 𝐶 → R be a bi-function
satisfying conditions (A1)–(A4), and let 𝑟 > 0 and 𝑥 ∈ 𝑋. Then
there exists 𝑧 in 𝐶 such that

Θ(𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽

𝜑
𝑧 − 𝐽
𝜑
𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (89)

We now consider the following generalized mixed equilib-
rium problem (GMEP): find 𝑧 in 𝐶 such that

Θ(𝑧, 𝑦) + ⟨𝐴𝑧, 𝑦 − 𝑧⟩ + 𝜓 (𝑦) − 𝜓 (𝑧) ≥ 0, ∀𝑦 ∈ 𝐶.

(90)

The solution set of (90) is denoted by GMEP(Θ, 𝐴, 𝜓). The
following auxiliary generalized mixed equilibrium problem is
an important tool for finding the solution of GMEP (90).

Let 𝑟 > 0. For a given point 𝑥 in 𝐶, find 𝑧 in 𝐶 such that

Θ(𝑧, 𝑦) + ⟨𝐴𝑧, 𝑦 − 𝑧⟩ + 𝜓 (𝑦) − 𝜓 (𝑧) +
1

𝑟
⟨𝐽
𝜑
𝑧 − 𝐽
𝜑
𝑥, 𝑦 − 𝑧⟩

≥ 0, ∀𝑦 ∈ 𝐶.

(91)

The existence of a solution of the auxiliarymixed equilibrium
problem (91) is guaranteed by [37].

Let 𝐶 be a nonempty closed convex subset of a reflexive,
strictly convex, and smooth Banach space 𝑋 and let 𝜑 be a
gauge function. Let 𝐴 : 𝐶 → 𝑋

∗ be continuous and mono-
tone, Θ : 𝐶 × 𝐶 → R a bi-function satisfying conditions
(A1)–(A4), and 𝜓 : 𝐶 → R a lower semicontinuous and
convex function. For 𝑟 > 0, define the mapping 𝑇(Θ,𝐴,𝜓)

𝑟
:

𝑋 → 2
𝐶 as follows:

𝑇
(Θ,𝐴,𝜓)

𝑟
(𝑥)

= {𝑧 ∈ 𝐶 : Θ (𝑧, 𝑦) + ⟨𝐴𝑧, 𝑦 − 𝑧⟩ + 𝜓 (𝑦)

−𝜓 (𝑧) +
1

𝑟
⟨𝐽
𝜑
𝑧 − 𝐽
𝜑
𝑥, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(92)

Lemma 33 (see [37]). One has the following.

(1) 𝑇(Θ,𝐴,𝜓)
𝑟

is single-valued.

(2) 𝑇(Θ,𝐴,𝜓)
𝑟

is a𝜑-firmly nonexpansivemapping; that is, for
all 𝑥, 𝑦 in𝑋,

⟨𝑇
(Θ,𝐴,𝜓)

𝑟
𝑥 − 𝑇
(Θ,𝐴,𝜓)

𝑟
𝑦, 𝐽
𝜑
𝑇
(Θ,𝐴,𝜓)

𝑟
𝑥 − 𝐽
𝜑
𝑇
(Θ,𝐴,𝜓)

𝑟
𝑦⟩

≤ ⟨𝑇
(Θ,𝐴,𝜓)

𝑟
𝑥 − 𝑇
(Θ,𝐴,𝜓)

𝑟
𝑦, 𝐽
𝜑
𝑥 − 𝐽
𝜑
𝑦⟩ .

(93)

(4) 𝐹(𝑇(Θ,𝐴,𝜓)
𝑟

) = 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜓).
(5) 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜓) is closed and convex.
(6) For all 𝑥 in 𝐹(𝑇(Θ,𝐴,𝜓)

𝑟
) and 𝑦 in𝑋, one has

𝐷
𝜑
(𝑥, 𝑇
(Θ,𝐴,𝜓)

𝑟
𝑦) + 𝐷

𝜑
(𝑇
(Θ,𝐴,𝜓)

𝑟
𝑦, 𝑦) ≤ 𝐷

𝜑
(𝑥, 𝑦) . (94)

The following theorem establishes the strong convergence
of the proximal-projection method for solving generalized
mixed equilibrium problems in the framework of uniformly
convex Banach spaces.

Theorem 34. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex Banach space 𝑋 with a uniformly Gâteaux
differentiable norm. Let 𝜑 be a gauge function and let 𝑓 : 𝑋 →

[0,∞] be a proper, convex, lower semicontinuous functionwith
𝐶 ⊂ dom(𝑓). Let 𝐴 : 𝐶 → 𝑋

∗ be continuous and monotone,
Θ : 𝐶 × 𝐶 → R a bi-function satisfying conditions (A1)–
(A4), and 𝜓 : 𝐶 → R a lower semicontinuous and convex
function. Assume that GMEP(Θ, 𝐴, 𝜓, 𝜑) ̸= 0. For 𝑢 in 𝐶, 𝑟 >
0, and 𝐶

1
= 𝐶 with 𝑥

1
= Π
𝜑,𝑓

𝐶
1

(𝑢), define a sequence {𝑥
𝑛
} in 𝐶

as follows:

𝑦
𝑛
= 𝑇
(Θ,𝐴,𝜓)

𝑟
𝑥
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
: ⟨𝑧 − 𝑦

𝑛
, 𝐽
𝜑
(𝑥
𝑛
) − 𝐽
𝜑
(𝑦
𝑛
)⟩ ≤ 0} ,

𝑥
𝑛+1

= Π
𝜑,𝑓

𝐶
𝑛+1

(𝑢) ∀𝑛 ∈ N.

(95)

Then {𝑥
𝑛
} strongly converges to Π𝜑,𝑓

𝐹(𝑇

(Θ,𝐴,𝜓)

𝑟
)

(𝑢).

Proof. Note that 𝑇(Θ,𝐴,𝜓)
𝑟

is a 𝜑-firmly nonexpansive mapping
from 𝐶 into 𝐶 and 𝐹(𝑇(Θ,𝐴,𝜓)

𝑟
) = GMEP(Θ, 𝐴, 𝜓, 𝜑). There-

fore, Theorem 34 follows fromTheorem 28.
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