
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 621315, 8 pages
http://dx.doi.org/10.1155/2013/621315

Research Article
Successive Iteration of Positive Solutions for Fourth-Order
Two-Point Boundary Value Problems

Yongping Sun, Xiaoping Zhang, and Min Zhao

College of Electron and Information, Zhejiang University of Media and Communications, Hangzhou, Zhejiang 310018, China

Correspondence should be addressed to Yongping Sun; sunyongping@126.com

Received 1 March 2013; Revised 12 June 2013; Accepted 14 June 2013

Academic Editor: Chuanzhi Bai

Copyright © 2013 Yongping Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We are concernedwith a fourth-order two-point boundary value problem.We prove the existence of positive solutions and establish
iterative schemes for approximating the solutions.The interesting point of ourmethod is that the nonlinear term is involved with all
lower-order derivatives of unknown function, and the iterative scheme starts off with a known cubic function or the zero function.
Finally we give two examples to verify the effectiveness of the main results.

1. Introduction

The bending of an elastic beam can be described with
some fourth-order boundary value problems. Owing to their
importance in engineering, physics, and material mechanics,
boundary value problems for elastic beam equations have
attracted much attention of many authors. Many methods,
such as upper and lower solutions method, shooting method,
coincidence degree theory, or fixed point theorem and so
on, have been developed to derive existence of solutions for
fourth-order differential equations with two-point boundary
conditions; see [1–20] and many references cited therein.
However, almost all of the papers wementioned focused their
attention on the existence of solutions or positive solutions.
In the existing literature, there are few papers that concern
with the computational methods of solutions or positive
solutions; see [21–24]. In this paper, by the successively
iterative technique, we study the existence and iteration of
monotone positive solutions for the following fourth-order
differential equation:

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡) , 𝑢
󸀠󸀠󸀠

(𝑡)) ,

a.e. 𝑡 ∈ [0, 1] ,
(1)

together with two-point boundary conditions

𝑢 (0) = 𝑢
󸀠

(1) = 𝑢
󸀠󸀠

(0) = 𝑢
󸀠󸀠󸀠

(1) = 0. (2)

Throughout this paper, the following conditions are satisfied:

(𝐴1) 𝑓 ∈ 𝐶([0, 1] × [0,∞) × [0,∞) × (−∞, 0] × (−∞, 0],
[0,∞));

(𝐴2) 𝑞 ∈ 𝐿
1
[0, 1] is nonnegative and 0 < ∫1

0
𝑞(𝑠)𝑑𝑠 < ∞.

In material mechanics, (1) describes the deflection of a
beam under a certain force. The boundary conditions of the
forms (2)mean that the elastic beam is simply fixed at the end
𝑡 = 0 and fastened with a sliding clamp at the end 𝑡 = 1.

Fourth-order differential equations with boundary con-
ditions (2) have been studied. For example, Graef and Yang in
[7] studied the nonlinear fourth-order differential equation:

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝜆𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) , 0 < 𝑡 < 1, (3)

together with boundary conditions (2). The authors estab-
lished some sufficient conditions for the existence and nonex-
istence of positive solutions.Themain tool is the Kranosel’skii
fixed point theorem. Using the Leggett-Williams fixed point
theorem,Yang [18] established an existence criterion for triple
positive solutions of the nonlinear fourth-order differential
equation:

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝑔 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) , 0 < 𝑡 < 1, (4)

with two-point boundary conditions (2). By applying iterative
techniques, Sun and Wang [21] investigated the existence
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and iteration of monotone positive solution for the following
elastic beam equation

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) , 0 < 𝑡 < 1, (5)

with boundary conditions (2). By using Leray-Schauder
nonlinear alternate, Leray-Schauder fixed point theorem and
a fixed point theorem due to Avery and Peterson, Sun [15]
presented some results on the existence and multiplicity of
positive solutions to problem (1)-(2). Bai [3] proposed a con-
structive method which yields two monotone sequences that
converge uniformly to extremal solutions to the following
differential equations

𝑢
󸀠󸀠󸀠󸀠

(𝑡) − 𝑀𝑢
󸀠󸀠

(𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡) , 𝑢
󸀠󸀠󸀠

(𝑡)) , 0 < 𝑡 < 1,

(6)

or

𝑢
󸀠󸀠󸀠󸀠

(𝑡) − 𝑀𝑢
󸀠󸀠

(𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡) , 𝑢
󸀠󸀠

(𝑡)) , 0 < 𝑡 < 1,

(7)

with boundary conditions (2), if there exists an upper solution
𝛽 and a lower solution 𝛼 with 𝛽 ⩽ 𝛼. By placing some
restrictions on the nonlinear term 𝑓, Bai [4] obtained the
existence results for the fourth-order two-point boundary
value problem (1)-(2) via the lower and upper solution
method. In particular, a new truncating technique and
an appropriate Nagumo-type condition are introduced and
employed. In addition, Yao studied (1)with nonhomogeneous
boundary condition

𝑢 (0) = 𝑎, 𝑢
󸀠

(1) = 𝑏, 𝑢
󸀠󸀠

(0) = 𝑐, 𝑢
󸀠󸀠󸀠

(1) = 𝑑.

(8)

In [20] the author obtained local existence theorem via Leray-
Schauder fixed point theorem. In [22] Yao constructed an
iterative sequence by the monotonic technique and proved
that the sequence approximates successively to the solution
of the equation under suitable assumptions.

Motivated by the above-mentioned works, this paper
investigates the existence and iteration of positive solutions
for problem (1)-(2). It is noted that the successively iterative
scheme starts off with the zero function or a simple cubic
function, which is feasible for the computational purpose. At
the end of the paper, two examples are included to illustrate
the main results.

2. Preliminaries

In this section, we introduce some necessary definitions and
properties of the Green function.

Definition 1 (see [25, 26]). Let 𝐸 be a real Banach space. A
nonempty closed convex set 𝐾 ⊂ 𝐸 is called a cone of 𝐸 if it
satisfies the following two conditions:

(1) 𝑥 ∈ 𝐾, 𝜆 ⩾ 0 imply 𝜆𝑥 ∈ 𝐾;
(2) 𝑥 ∈ 𝐾, −𝑥 ∈ 𝐾 imply 𝑥 = 0.

Definition 2 (see [25, 26]). An operator is called completely
continuous if it is continuous and maps bounded sets into
precompact sets.

The Green’s function 𝐺 : [0, 1] × [0, 1] → [0, +∞) for
problem (1)-(2) is given by

𝐺 (𝑡, 𝑠) =

1

6

{

{

{

(6𝑡 − 3𝑡
2
− 𝑠
2
) 𝑠, 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

(6𝑠 − 3𝑠
2
− 𝑡
2
) 𝑡, 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1,

(9)

so solving the boundary value problem (1)-(2) is equivalent
to finding a solution to the integral equation

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠.

(10)

Some properties of functions 𝐺(𝑡, 𝑠) are summarized as
follows.

Lemma 3. For all 𝑡, 𝑠 ∈ [0, 1], the following inequalities hold
true:

0 ⩽ −

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

⩽ 1, 0 ⩽ −

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

⩽ 𝑡,

0 ⩽

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

⩽

1

2

(1 − 𝑡
2
) , 0 ⩽ 𝐺 (𝑡, 𝑠) ⩽

1

6

(3𝑡 − 𝑡
3
) .

(11)

Proof. For any fixed 𝑠 ∈ [0, 1], from (9) we obtain

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

= {

0, 0 ⩽ 𝑠 < 𝑡 ⩽ 1,

−1, 0 ⩽ 𝑡 < 𝑠 ⩽ 1,

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

= {

−𝑠, 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

−𝑡, 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1,

(12)

then,

0 ⩽ −

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

⩽ 1, 0 ⩽ −

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

⩽ 𝑡, 𝑡, 𝑠 ∈ [0, 1] .

(13)

For all 𝑡, 𝑠 ∈ [0, 1], it follows from (9) that

0 ⩽

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

=

{

{

{

(1 − 𝑡) 𝑠, 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

𝑠 −

1

2

𝑠
2
−

1

2

𝑡
2
, 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1,

⩽

1

2

(1 − 𝑡
2
) .

(14)

For all 𝑡, 𝑠 ∈ [0, 1], if 𝑠 ⩽ 𝑡, it yields

𝐺 (𝑡, 𝑠) =

1

6

(6𝑡 − 3𝑡
2
− 𝑠
2
) 𝑠 =

1

6

[3 − 3(1 − 𝑡)
2
− 𝑠
2
] 𝑠

⩽

1

6

(3 − 𝑠
2
) 𝑠 ⩽

1

6

(3𝑡 − 𝑡
3
) .

(15)
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While 𝑡 ⩽ 𝑠, we have

𝐺 (𝑡, 𝑠) =

1

6

(6𝑠 − 3𝑠
2
− 𝑡
2
) 𝑡 =

1

6

[3 − 3(1 − 𝑠)
2
− 𝑡
2
] 𝑡

⩽

1

6

(3𝑡 − 𝑡
3
) .

(16)

The proof is completed.

In what follows we will consider the Banach space 𝐸 =
𝐶
3
[0, 1] equipped with norm

‖𝑢‖ = max {max
0⩽𝑡⩽1

|𝑢 (𝑡)| ,max
0⩽𝑡⩽1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
,max
0⩽𝑡⩽1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
,

max
0⩽𝑡⩽1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
} .

(17)

Define the cone 𝐾 ⊂ 𝐶3[0, 1] by

𝐾 = {𝑢 ∈ 𝐶
3

[0, 1] : 𝑢 (𝑡) ⩾ 0, 𝑢
󸀠

(𝑡) ⩾ 0, 𝑢
󸀠󸀠

(𝑡) ⩽ 0,

𝑢
󸀠󸀠󸀠

(𝑡) ⩽ 0, 𝑡 ∈ [0, 1]} .

(18)

For 𝑢 ∈ 𝐾, we give an operator 𝑇 by

(𝑇𝑢) (𝑡)

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠.

(19)

Obviously, the fixed points of 𝑇 are monotone and nonnega-
tive solutions of the problem (1)-(2).

Lemma 4. Consider that 𝑇 : 𝐾 → 𝐾 is completely contin-
uous.

Proof. Suppose that 𝑢 ∈ 𝐾. Using (𝐴1), (𝐴2), (19), and
Lemma 3, we obtain (𝑇𝑢)(𝑡) ⩾ 0, (𝑇𝑢)󸀠(𝑡) ⩾ 0, (𝑇𝑢)󸀠󸀠(𝑡) ⩽ 0,
(𝑇𝑢)
󸀠󸀠󸀠
(𝑡) ⩽ 0, for all 𝑡 ∈ [0, 1]. Then 𝑇(𝐾) ⊆ 𝐾. Using

arguments similar to those of [21, 22], one can prove that 𝑇
is a completely continuous operator.

3. Main Results

In this section, we give the main results of this paper.

Theorem 5. Assume that there exists 𝑅 > 0 such that

(𝐻1) 𝑓(𝑡, 𝑥
1
, 𝑦
1
, 𝑧
1
, 𝑤
1
) ⩽ 𝑓(𝑡, 𝑥

2
, 𝑦
2
, 𝑧
2
, 𝑤
2
) for any 0 ⩽ 𝑡 ⩽

1, 0 ⩽ 𝑥
1
⩽ 𝑥
2
⩽ 𝑅, 0 ⩽ 𝑦

1
⩽ 𝑦
2
⩽ 𝑅, 0 ⩽ −𝑧

1
⩽ −𝑧
2
⩽

𝑅, 0 ⩽ −𝑤
1
⩽ −𝑤
2
⩽ 𝑅;

(𝐻2) max
0⩽𝑡⩽1

𝑓(𝑡, 𝑅, 𝑅, −𝑅, −𝑅) ⩽ Λ𝑅, where Λ =

(∫

1

0
𝑞(𝑠)𝑑𝑠)

−1

;

(𝐻3) 𝑓(𝑡, 0, 0, 0, 0) ̸≡ 0.
Then problem (1)-(2) has two monotone positive solutions 𝑤∗
and V∗ satisfying ‖𝑤∗‖ ⩽ 𝑅, ‖V∗‖ ⩽ 𝑅 and lim

𝑛→∞
‖𝑤
𝑛
−

𝑤
∗
‖ = 0, lim

𝑛→∞
‖V
𝑛
−V∗‖ = 0, where𝑤

𝑛
= 𝑇
𝑛
𝑤
0
, V
𝑛
= 𝑇
𝑛V
0
,

𝑛 = 1, 2, . . ., 𝑤
0
(𝑡) = (𝑅/6)(3𝑡 − 𝑡

3
), and V

0
(𝑡) = 0, for 𝑡 ∈

[0, 1].

Proof. Let 𝐾
𝑅
= {𝑢 ∈ 𝐾 : ‖𝑢‖ ⩽ 𝑅}; it follows that 𝑇 : 𝐾

𝑅
→

𝐾
𝑅
. In fact, if 𝑢 ∈ 𝐾

𝑅
, then ‖𝑢‖ ⩽ 𝑅; thus, for any 𝑡 ∈ [0, 1],

0 ⩽ 𝑢 (𝑡) ⩽ max
0⩽𝑡⩽1

𝑢 (𝑡) ⩽ ‖𝑢‖ ⩽ 𝑅,

0 ⩽ 𝑢
󸀠

(𝑡) ⩽ max
0⩽𝑡⩽1

𝑢
󸀠

(𝑡) ⩽ ‖𝑢‖ ⩽ 𝑅,

0 ⩽ −𝑢
󸀠󸀠

(𝑡) ⩽ max
0⩽𝑡⩽1

(−𝑢
󸀠󸀠

(𝑡)) ⩽ ‖𝑢‖ ⩽ 𝑅,

0 ⩽ −𝑢
󸀠󸀠󸀠

(𝑡) ⩽ max
0⩽𝑡⩽1

(−𝑢
󸀠󸀠󸀠

(𝑡)) ⩽ ‖𝑢‖ ⩽ 𝑅,

(20)

which together with the conditions (𝐻1) and (𝐻2) implies
that
0 ⩽ (𝑇𝑢) (𝑡)

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

⩽

1

6

(3𝑡 − 𝑡
3
)∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽

1

2

Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 =

1

2

𝑅, 𝑡 ∈ [0, 1] ,

0 ⩽ (𝑇𝑢)
󸀠

(𝑡)

= ∫

1

0

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

⩽

1

2

(1 − 𝑡
2
)∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽

1

2

Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 =

1

2

𝑅, 𝑡 ∈ [0, 1] ,

0 ⩽ −(𝑇𝑢)
󸀠󸀠

(𝑡)

= −∫

1

0

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

⩽ 𝑡 ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽ Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 = 𝑅, 𝑡 ∈ [0, 1] ,

0 ⩽ −(𝑇𝑢)
󸀠󸀠󸀠

(𝑡)

= −∫

1

0

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

𝑞 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢
󸀠

(𝑠) , 𝑢
󸀠󸀠

(𝑠) , 𝑢
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

⩽ ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽ Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 = 𝑅, 𝑡 ∈ [0, 1] .

(21)

Hence, we have shown that ‖𝑇𝑢‖ ⩽ 𝑅, that is, 𝑇 : 𝐾
𝑅
→ 𝐾
𝑅
.

(1) Let 𝑤
0
(𝑡) = (𝑅/6)(3𝑡 − 𝑡

3
), 𝑡 ∈ [0, 1]; then ‖𝑤

0
‖ =

𝑅 and 𝑤
0
∈ 𝐾
𝑅
. Denote 𝑤

𝑛
= 𝑇
𝑛
𝑤
0
, 𝑛 = 1, 2, 3, . . .. Since
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𝑇 : 𝐾
𝑅
→ 𝐾

𝑅
, we have 𝑤

𝑛
∈ 𝑇(𝐾

𝑅
) ⊆ 𝐾

𝑅
, 𝑛 = 1, 2, 3, . . ..

Since 𝑇 is completely continuous, we assert that {𝑤
𝑛
}
∞

𝑛=1
is a

sequentially compact set.
Since 𝑤

1
= 𝑇𝑤

0
∈ 𝐾
𝑅
, by Lemma 3, (𝐻1), and (𝐻2), we

obtain

𝑤
1
(𝑡)

= (𝑇𝑤
0
) (𝑡)

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠, 𝑤
0
(𝑠) , 𝑤

󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠) , 𝑤

󸀠󸀠󸀠

0
(𝑠)) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑞 (𝑠) 𝑓 (𝑠,

𝑅

6

(3𝑠 − 𝑠
3
) ,

𝑅

2

(1 − 𝑠
2
) , −𝑅𝑠, −𝑅) 𝑑𝑠

⩽

1

6

(3𝑡 − 𝑡
3
) ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽

𝑅

6

(3𝑡 − 𝑡
3
)Λ∫

1

0

𝑞 (𝑠) 𝑑𝑠 =

𝑅

6

(3𝑡 − 𝑡
3
) = 𝑤

0
(𝑡) ,

𝑡 ∈ [0, 1] ,

𝑤
󸀠

1
(𝑡)

= (𝑇𝑤
0
)
󸀠

(𝑡)

= ∫

1

0

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑤
0
(𝑠) , 𝑤

󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠) , 𝑤

󸀠󸀠󸀠

0
(𝑠)) 𝑑𝑠

= ∫

1

0

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

𝑞 (𝑠) 𝑓 (𝑠,

𝑅

6

(3𝑠 − 𝑠
3
) ,

𝑅

2

(1 − 𝑠
2
) , −𝑅𝑠, −𝑅) 𝑑𝑠

⩽

1

2

(1 − 𝑡
2
)∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽

𝑅

2

(1 − 𝑡
2
)Λ∫

1

0

𝑞 (𝑠) 𝑑𝑠 =

𝑅

2

(1 − 𝑡
2
) = 𝑤

󸀠

0
(𝑡) ,

𝑡 ∈ [0, 1] ,

− 𝑤
󸀠󸀠

1
(𝑡)

= −(𝑇𝑤
0
)
󸀠󸀠

(𝑡)

= −∫

1

0

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

𝑞 (𝑠) 𝑓 (𝑠, 𝑤
0
(𝑠) , 𝑤

󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠) , 𝑤

󸀠󸀠󸀠

0
(𝑠)) 𝑑𝑠

= −∫

1

0

𝜕
2
𝐺 (𝑡, 𝑠)

𝜕𝑡
2

𝑞 (𝑠) 𝑓 (𝑠,

𝑅

6

(3𝑠 − 𝑠
3
) ,

𝑅

2

(1 − 𝑠
2
) , −𝑅𝑠, −𝑅) 𝑑𝑠

⩽ 𝑡 ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽ 𝑡Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 = 𝑅𝑡 = −𝑤
󸀠󸀠

0
(𝑡) , 𝑡 ∈ [0, 1] ,

− 𝑤
󸀠󸀠󸀠

1
(𝑡)

= −(𝑇𝑤
0
)
󸀠󸀠󸀠

(𝑡)

= −∫

1

0

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

𝑞 (𝑠) 𝑓 (𝑠, 𝑤
0
(𝑠) , 𝑤

󸀠

0
(𝑠) , 𝑤

󸀠󸀠

0
(𝑠) , 𝑤

󸀠󸀠󸀠

0
(𝑠)) 𝑑𝑠

= −∫

1

0

𝜕
3
𝐺 (𝑡, 𝑠)

𝜕𝑡
3

𝑞 (𝑠) 𝑓 (𝑠,

𝑅

6

(3𝑠 − 𝑠
3
) ,

𝑅

2

(1 − 𝑠
2
) , −𝑅𝑠, −𝑅) 𝑑𝑠

⩽ ∫

1

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑅, 𝑅, −𝑅, −𝑅) 𝑑𝑠

⩽ Λ𝑅∫

1

0

𝑞 (𝑠) 𝑑𝑠 = 𝑅 = −𝑤
󸀠󸀠󸀠

0
(𝑡) , 𝑡 ∈ [0, 1] .

(22)

Thus,

𝑤
1
(𝑡) ⩽ 𝑤

0
(𝑡) , 𝑤

󸀠

1
(𝑡) ⩽ 𝑤

󸀠

0
(𝑡) , −𝑤

󸀠󸀠

1
(𝑡) ⩽ −𝑤

󸀠󸀠

0
(𝑡) ,

− 𝑤
󸀠󸀠󸀠

1
(𝑡) ⩽ −𝑤

󸀠󸀠󸀠

0
(𝑡) , 𝑡 ∈ [0, 1] .

(23)

Furthermore, it follows from (𝐻1) that

𝑤
2
(𝑡) = (𝑇𝑤

1
) (𝑡) ⩽ (𝑇𝑤

0
) (𝑡) = 𝑤

1
(𝑡) , 𝑡 ∈ [0, 1] ,

𝑤
󸀠

2
(𝑡) = (𝑇𝑤

1
)
󸀠

(𝑡) ⩽ (𝑇𝑤
0
)
󸀠

(𝑡) = 𝑤
󸀠

1
(𝑡) , 𝑡 ∈ [0, 1] ,

−𝑤
󸀠󸀠

2
(𝑡) = −(𝑇𝑤

1
)
󸀠󸀠

(𝑡) ⩽ −(𝑇𝑤
0
)
󸀠󸀠

(𝑡)

= −𝑤
󸀠󸀠

1
(𝑡) , 𝑡 ∈ [0, 1] ,

−𝑤
󸀠󸀠󸀠

2
(𝑡) = −(𝑇𝑤

1
)
󸀠󸀠󸀠

(𝑡) ⩽ −(𝑇𝑤
0
)
󸀠󸀠󸀠

(𝑡)

= −𝑤
󸀠󸀠󸀠

1
(𝑡) , 𝑡 ∈ [0, 1] .

(24)

By the induction, we obtain

𝑤
𝑛+1
(𝑡) ⩽ 𝑤

𝑛
(𝑡) , 𝑤

󸀠

𝑛+1
(𝑡) ⩽ 𝑤

󸀠

𝑛
(𝑡) ,

− 𝑤
󸀠󸀠

𝑛+1
(𝑡) ⩽ −𝑤

󸀠󸀠

𝑛
(𝑡) , −𝑤

󸀠󸀠󸀠

𝑛+1
(𝑡) ⩽ −𝑤

󸀠󸀠󸀠

𝑛
(𝑡) ,

𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . .

(25)

Hence, there exists𝑤∗ ∈ 𝐾
𝑅
such that lim

𝑛→∞
‖𝑤
𝑛
−𝑤
∗
‖ = 0.

Applying the continuity of 𝑇 and using 𝑤
𝑛+1

= 𝑇𝑤
𝑛
, we

obtain 𝑇𝑤∗ = 𝑤∗, which implies that 𝑤∗ is a nonnegative
solution of problem (1)-(2). Furthermore, by (𝐻3) we know
that the zero function is not a solution of problem (1)-(2).
Thus, max

0⩽𝑡⩽1
𝑤
∗
(𝑡) > 0. From the definition of the cone 𝐾,
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it yields 𝑤∗(𝑡) ⩾ 𝑡‖𝑤∗‖ > 0, (𝑤∗)󸀠(𝑡) ⩾ 0, 𝑡 ∈ (0, 1); that is,
𝑤
∗
(𝑡) is a monotone positive solution of problem (1)-(2).
(2) Let V

0
(𝑡) = 0, 𝑡 ∈ [0, 1]; then V

0
∈ 𝐾
𝑅
. Let V

𝑛
=

𝑇
𝑛V
0
, 𝑛 = 1, 2, 3, . . .. With respect to 𝑇 : 𝐾

𝑅
→ 𝐾

𝑅
, we

obtain V
𝑛
∈ 𝑇(𝐾

𝑅
) ⊆ 𝐾
𝑅
, 𝑛 = 1, 2, 3, . . .. Since𝑇 is completely

continuous, we assert that {V
𝑛
}
∞

𝑛=1
is a sequentially compact

set.
Since V

1
= 𝑇V
0
= 𝑇0 ∈ 𝐾

𝑅
, we obtain

𝑅 ⩾ V
1
(𝑡) = (𝑇V

0
) (𝑡) = (𝑇0) (𝑡) ⩾ 0 = V

0
(𝑡) , 𝑡 ∈ [0, 1] ,

𝑅 ⩾ V󸀠
1
(𝑡) = (𝑇V

0
)
󸀠

(𝑡) = (𝑇0)
󸀠

(𝑡) ⩾ 0 = V󸀠
0
(𝑡) , 𝑡 ∈ [0, 1] ,

𝑅 ⩾ −V󸀠󸀠
1
(𝑡) = −(𝑇V

0
)
󸀠󸀠

(𝑡) = −(𝑇0)
󸀠󸀠

(𝑡)

⩾ 0 = −V󸀠󸀠
0
(𝑡) , 𝑡 ∈ [0, 1] ,

𝑅 ⩾ −V󸀠󸀠󸀠
1
(𝑡) = −(𝑇V

0
)
󸀠󸀠󸀠

(𝑡) = −(𝑇0)
󸀠󸀠󸀠

(𝑡)

⩾ 0 = −V󸀠󸀠󸀠
0
(𝑡) , 𝑡 ∈ [0, 1] .

(26)

So by (𝐻1), we have

V
2
(𝑡) = (𝑇V

1
) (𝑡) ⩾ (𝑇V

0
) (𝑡) = V

1
(𝑡) , 𝑡 ∈ [0, 1] ,

V󸀠
2
(𝑡) = (𝑇V

1
)
󸀠

(𝑡) ⩾ (𝑇V
0
)
󸀠

(𝑡) = V󸀠
1
(𝑡) , 𝑡 ∈ [0, 1] ,

−V󸀠󸀠
2
(𝑡) = −(𝑇V

1
)
󸀠󸀠

(𝑡) ⩾ −(𝑇V
0
)
󸀠󸀠

(𝑡)

= −V󸀠󸀠
1
(𝑡) , 𝑡 ∈ [0, 1] ,

−V󸀠󸀠󸀠
2
(𝑡) = −(𝑇V

1
)
󸀠󸀠󸀠

(𝑡) ⩾ −(𝑇V
0
)
󸀠󸀠󸀠

(𝑡)

= −V󸀠󸀠󸀠
1
(𝑡) , 𝑡 ∈ [0, 1] .

(27)

By the induction, we further obtain

V
𝑛+1
(𝑡) ⩾ V

𝑛
(𝑡) , V󸀠

𝑛+1
(𝑡) ⩾ V󸀠

𝑛
(𝑡) , −V󸀠󸀠

𝑛+1
(𝑡) ⩾ −V󸀠󸀠

𝑛
(𝑡) ,

− V󸀠󸀠󸀠
𝑛+1
(𝑡) ⩾ −V󸀠󸀠󸀠

𝑛
(𝑡) , 𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . .

(28)

Hence, there exists V∗ ∈ 𝐾
𝑅
such that lim

𝑛→∞
‖V
𝑛
− V∗‖ = 0,

and V∗ is amonotone positive solution of problem (1)-(2).The
proof is completed.

Corollary 6. Suppose that (𝐻
1
) and (𝐻

3
) hold. Assume

(𝐻4) lim
𝑥→+∞

max
0⩽𝑡⩽1

𝑓(𝑡, 𝑥, 𝑥, −𝑥, −𝑥)/𝑥 < Λ.
Then problem (1)-(2) has at least two monotone positive
solutions 𝑤∗ and V∗ satisfying the conclusion of Theorem 5.

Remark 7. 𝑤∗ and V∗ may coincide with each other and then
the problem (1)-(2) has only one monotone positive solution
in𝐾
𝑅
.

Remark 8. By the proof of Theorem 5, {𝑤
𝑛
}
∞

𝑛=1
and {V

𝑛
}
∞

𝑛=1

converge in 𝐶3[0, 1] to the monotone positive solution 𝑤∗
and V∗ of the problem (1)-(2), respectively. In addition, the
sequences {𝑤

𝑛
}
∞

𝑛=1
, {V
𝑛
}
∞

𝑛=1
, {𝑤
󸀠

𝑛
}
∞

𝑛=1
, and {V󸀠

𝑛
}
∞

𝑛=1
are increas-

ing, while the sequences {𝑤󸀠󸀠
𝑛
}
∞

𝑛=1
, {V󸀠󸀠
𝑛
}
∞

𝑛=1
, {𝑤
󸀠󸀠󸀠

𝑛
}
∞

𝑛=1
, and

{V󸀠󸀠󸀠
𝑛
}
∞

𝑛=1
are decreasing.

Remark 9. The iterative schemes inTheorem 5 start off with a
known cubic function or the zero function, which is feasible
for the computational purpose.

4. Examples

In this section we provide two examples to illustrate the
application of our results.

Example 1. Consider the problem

𝑢
󸀠󸀠󸀠󸀠

(𝑡) =

1

2

𝑡 +

1

18

𝑢
2

(𝑡) +

1

6

𝑢
󸀠

(𝑡) −

1

6

𝑢
󸀠󸀠

(𝑡)

−

1

6

𝑢
󸀠󸀠󸀠

(𝑡) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢
󸀠

(1) = 𝑢
󸀠󸀠

(0) = 𝑢
󸀠󸀠󸀠

(1) = 0.

(29)

For this problem, 𝑓(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) = 𝑡 + (1/9)𝑥2 + (1/3)𝑦 −
(1/3)𝑧 − (1/3)𝑤 and 𝑞(𝑡) = 1/2. By the calculations, the
conditions (𝐴1), (𝐴2), and (𝐻1)–(𝐻3) ofTheorem 5 hold for
𝑅 = 6. From Theorem 5, we have that problem (29) has two
monotone positive solutions 𝑤∗ and V∗ satisfying ‖𝑤∗‖ ⩽
6, ‖V∗‖ ⩽ 6 and lim

𝑛→∞
‖𝑤
𝑛
− 𝑤
∗
‖ = 0, lim

𝑛→∞
‖V
𝑛
− V∗‖ =

0.
Moreover, the two iterative schemes are

𝑤
0
(𝑡) = 3𝑡 − 𝑡

3
, 𝑡 ∈ [0, 1] ,

𝑤
𝑛+1
(𝑡)

=

1

12

∫

𝑡

0

(𝑡 − 𝑠)
3

× (𝑠 +

1

9

𝑤
2

𝑛
(𝑠) +

1

3

𝑤
󸀠

𝑛
(𝑠) −

1

3

𝑤
󸀠󸀠

𝑛
(𝑠) −

1

3

𝑤
󸀠󸀠󸀠

𝑛
(𝑠)) 𝑑𝑠

+

𝑡

12

∫

1

0

(6𝑠 − 3𝑠
2
− 𝑡
2
)

× (𝑠 +

1

9

𝑤
2

𝑛
(𝑠) +

1

3

𝑤
󸀠

𝑛
(𝑠) −

1

3

𝑤
󸀠󸀠

𝑛
(𝑠)

−

1

3

𝑤
󸀠󸀠󸀠

𝑛
(𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . ,

V
0
(𝑡) = 0, 𝑡 ∈ [0, 1] ,
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V
𝑛+1
(𝑡) =

1

12

∫

𝑡

0

(𝑡 − 𝑠)
3

× (𝑠 +

1

9

V2
𝑛
(𝑠)+

1

3

V󸀠
𝑛
(𝑠) −

1

3

V󸀠󸀠
𝑛
(𝑠) −

1

3

V󸀠󸀠󸀠
𝑛
(𝑠)) 𝑑𝑠

+

𝑡

12

∫

1

0

(6𝑠 − 3𝑠
2
− 𝑡
2
)

× (𝑠 +

1

9

V2
𝑛
(𝑠) +

1

3

V󸀠
𝑛
(𝑠) −

1

3

V󸀠󸀠
𝑛
(𝑠)

−

1

3

V󸀠󸀠󸀠
𝑛
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . .

(30)

Using Matlab 7.5, the second and third terms of the two
schemes are as follows:

𝑤
1
(𝑡) =

3559

4536

𝑡 −

2761

7560

𝑡
3
+

1

16

𝑡
4
+

1

80

𝑡
5
−

1

5040

𝑡
8

+

1

90720

𝑡
10
, 𝑡 ∈ [0, 1] ,

𝑤
2
(𝑡) =

5

48

𝑡 −

33627935

1111065984

𝑡
3
−

134954777

11110659840

𝑡
5

+

28810105

8888527872

𝑡
6
+

75364613

9258883200

𝑡
7

−

22814857

7407106560

𝑡
8
−

31759981

24690355200

𝑡
9

+

3292141

4115059200

𝑡
10
−

1777

32659200

𝑡
11

−

735019

35554111488

𝑡
12
+

48893

49380710400

𝑡
13

−

1227799

888852787200

𝑡
14
+

280289

444426393600

𝑡
15

+

10099

148142131200

𝑡
16
−

223

5290790400

𝑡
17

+

1

1567641600

𝑡
18
+

19

98761420800

𝑡
19

+

1

10973491200

𝑡
20
+

19

444426393600

𝑡
21

−

1

98761420800

𝑡
22
−

1

888852787200

𝑡
23

+

1

3555411148800

𝑡
24
, 𝑡 ∈ [0, 1] ,

V
1
(𝑡) =

5

48

𝑡 −

1

24

𝑡
3
+

1

240

𝑡
5
, 𝑡 ∈ [0, 1] ,

V
2
(𝑡) =

5

48

𝑡 −

5159

124416

𝑡
3
+

4859

1244160

𝑡
5
+

25

995328

𝑡
6

+

1

7776

𝑡
7
−

5

248832

𝑡
8
−

19

622080

𝑡
9

+

1

165888

𝑡
10
+

11

3110400

𝑡
11
−

1

1244160

𝑡
12

−

1

6220800

𝑡
13
+

1

24883200

𝑡
14
, 𝑡 ∈ [0, 1] .

(31)

Example 2 (see [22]). Consider the problem

𝑢
󸀠󸀠󸀠󸀠

(𝑡) =

min {𝑡, 1 − 𝑡}
48√|1 − 2𝑡|

× {2 + [𝑢 (𝑡) + 𝑢
󸀠

(𝑡)]

3

− [𝑢
󸀠󸀠

(𝑡) + 𝑢
󸀠󸀠󸀠

(𝑡)]

3

} ,

𝑡 ∈ [0,

1

2

)⋃(

1

2

, 1] ,

𝑢 (0) = 𝑢
󸀠

(1) = 𝑢
󸀠󸀠

(0) = 𝑢
󸀠󸀠󸀠

(1) = 0.

(32)

In this problem,𝑓(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) = (1/48)[2+(𝑥+𝑦)3−(𝑧+𝑤)3]
and 𝑞(𝑡) = (min{𝑡, 1 − 𝑡})/√|1 − 2𝑡|. Obviously, 𝑞(𝑡) and
𝑓(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) satisfy conditions (𝐴1) and (𝐴2). In addition,
𝑓(𝑡, 𝑥, 𝑦, 𝑧, 𝑤) is increasing with regard to 𝑥 and 𝑦 and is
decreasing with 𝑧 and 𝑤, and 𝑓(𝑡, 0, 0, 0, 0) ̸≡ 0. Moreover,

max
0⩽𝑡⩽1

𝑓(𝑡,

1

30

,

1

30

, −

1

30

, −

1

30

) =

1

48

[2 +

2

3375

] <

3

2

×

1

30

,

∫

1

0

𝑞 (𝑡) 𝑑𝑡 = ∫

1

0

min {𝑡, 1 − 𝑡}
√|1 − 2𝑡|

𝑑𝑡 =

2

3

.

(33)

Therefore, assumptions (𝐻1)–(𝐻3) ofTheorem 5 are satisfied
with 𝑅 = 1/30. From Theorem 5, problem (32) has two
monotone positive solutions 𝑤∗ and V∗ satisfying ‖𝑤∗‖ ⩽
1/30, ‖V∗‖ ⩽ 1/30 and lim

𝑛→∞
‖𝑤
𝑛
−𝑤
∗
‖ = 0, lim

𝑛→∞
‖V
𝑛
−

V∗‖ = 0.
Moreover, the two iterative schemes are

𝑤
0
(𝑡) =

1

180

(3𝑡 − 𝑡
3
) , 𝑡 ∈ [0, 1] ,

𝑤
𝑛+1
(𝑡)

=

1

144

∫

𝑡

0

(𝑡 − 𝑠)
3min {𝑠, 1 − 𝑠}
√|1 − 2𝑠|

× {2 + [𝑤
𝑛
(𝑠) + 𝑤

󸀠

𝑛
(𝑠)]

3

−[𝑤
󸀠󸀠

𝑛
(𝑠) + 𝑤

󸀠󸀠󸀠

𝑛
(𝑠)]

3

} 𝑑𝑠
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+

𝑡

144

∫

1

0

(6𝑠 − 3𝑠
2
− 𝑡
2
)

min {𝑠, 1 − 𝑠}
√|1 − 2𝑠|

× {[2 + 𝑤
𝑛
(𝑠) + 𝑤

󸀠

𝑛
(𝑠)]

3

−[𝑤
󸀠󸀠

𝑛
(𝑠) + 𝑤

󸀠󸀠󸀠

𝑛
(𝑠)]

3

} 𝑑𝑠,

𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . ,

V
0
(𝑡) = 0, 𝑡 ∈ [0, 1] ,

V
𝑛+1
(𝑡)

=

1

144

∫

𝑡

0

(𝑡 − 𝑠)
3min {𝑠, 1 − 𝑠}
√|1 − 2𝑠|

× {2 + [V
𝑛
(𝑠) + V󸀠

𝑛
(𝑠)]

3

−[V󸀠󸀠
𝑛
(𝑠) + V󸀠󸀠󸀠

𝑛
(𝑠)]

3

} 𝑑𝑠

+

𝑡

144

∫

1

0

(6𝑠 − 3𝑠
2
− 𝑡
2
)

min {𝑠, 1 − 𝑠}
√|1 − 2𝑠|

× {2 + [V
𝑛
(𝑠) + V󸀠

𝑛
(𝑠)]

3

−[V󸀠󸀠
𝑛
(𝑠) + V󸀠󸀠󸀠

𝑛
(𝑠)]

3

} 𝑑𝑠,

𝑡 ∈ [0, 1] , 𝑛 = 0, 1, 2, . . . .

(34)

Using Mathlab 7.5, the second terms of the two schemes
are given as follows:

𝑤
1
(𝑡)

= −

8449074379661

23951656146600000

+

441468132942481

19516164267600000

𝑡

−

10842948935033

1951616426760000

𝑡
2

−

785738110303

169705776240000

𝑡
3

+ (

8449074379661

23951656146600000

+

122149319510627

60221306882880000

𝑡

+

2602305979889593

702581913633600000

𝑡
2

−

265540119476783

150553267207200000

𝑡
3

−

13518333667229

19161324917280000

𝑡
4

−

1855160149

117096985605600000

𝑡
5

−

74353511

17564547840840000

𝑡
6

−

26984453

175645478408400000

𝑡
7

+

1291391

117096985605600000

𝑡
8

−

4131727

38322649834560000

𝑡
9

−

31823

2105640100800000

𝑡
10

+

3953

491316023520000

𝑡
11

+

509

216757069200000

𝑡
12

+

1

5704133400000

𝑡
13

)

× √1 − 2𝑡, for 𝑡 ∈ [0, 1
2

] ,

𝑤
1
(𝑡)

= −

8449074379661

23951656146600000

+

441468132942481

19516164267600000

𝑡

−

10842948935033

1951616426760000

𝑡
2

−

785738110303

169705776240000

𝑡
3

+ (−

929396364017203

2107745740900800000

+

62633084321047

22910279792400000

𝑡

−

817863130365013

140516382726720000

𝑡
2

+

2416385432114987

526936435225200000

𝑡
3

−

10620690488597

15055326720720000

𝑡
4

−

568554781

117096985605600000

𝑡
5

−

686043443

175645478408400000

𝑡
6

−

546781

3054703972320000

𝑡
7

+

46120147

234193971211200000

𝑡
8

−

1594511

19161324917280000

𝑡
9

−

23767

867028276800000

𝑡
10

+

11287

2456580117600000

𝑡
11

+

13

6193059120000

𝑡
12

+

1

5704133400000

𝑡
13

)

× √2𝑡 − 1, for 𝑡 ∈ [1
2

, 1] ,

V
1
(𝑡) = −

1

2835

+

19

840

𝑡 −

1

180

𝑡
2

−

1

216

𝑡
3

+ (

1

2835

−

23

11340

𝑡 +

1

270

𝑡
2

−

1

576

𝑡
3

−

2

2835

𝑡
4

)√1 − 2𝑡, for 𝑡 ∈ [0, 1
2

] ,

V
1
(𝑡) = −

1

2835

+

19

840

𝑡 −

1

180

𝑡
2

−

1

216

𝑡
3

+ (−

1

2268

+

31

11340

𝑡 −

11

1890

𝑡
2

+

13

2835

𝑡
3

−

2

2835

𝑡
4

)√2𝑡 − 1, for 𝑡 ∈ [1
2

, 1] .

(35)

Remark 10. This example was carried out firstly in [22], in
which the author showed that the solution 𝑢∗ ∈ 𝐶3[0, 1] is
nontrivial, ‖𝑢∗‖ ⩽ 1, and the iterative scheme starts off with

𝑢
0
(𝑡) = −

7

24

∫

1

0

𝐺 (𝑡, 𝑠)

min {𝑠, 1 − 𝑠}
√|1 − 2𝑠|

𝑑𝑠. (36)

In the present paper, we proved that the solution𝑢∗ ∈ 𝐶3[0, 1]
is monotone positive, ‖𝑢∗‖ ⩽ 1/30, and the iterative scheme
starts off with 𝑢

0
(𝑡) = (1/180)(3𝑡 − 𝑡

3
) or 𝑢
0
(𝑡) = 0, which is

much more simple than that of [22].
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