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We perturb the vector field 𝑥̇ = −𝑦𝐶(𝑥, 𝑦), ̇𝑦 = 𝑥𝐶(𝑥, 𝑦) with a polynomial perturbation of degree 𝑛, where 𝐶(𝑥, 𝑦) = (1 − 𝑦

2
)

𝑚,
and study the number of limit cycles bifurcating from the period annulus surrounding the origin.

1. Introduction and Main Result

The main task in the qualitative theory of real plane differ-
ential systems is to determine the number of limit cycles,
which is related to Hilbert’s 16th problem as well as weakened
Hilbert’s 16th problem, posed by Arnold in [1].

Consider a planar system of the form

𝑥̇ = −𝑦𝐶 (𝑥, 𝑦) + 𝜀𝑃 (𝑥, 𝑦) ,

̇𝑦 = 𝑥𝐶 (𝑥, 𝑦) + 𝜀𝑄 (𝑥, 𝑦) ,

(1)

where 𝑃, 𝑄, and 𝐶 are real polynomials, 𝐶(0, 0) ̸= 0, and 𝜀 is
a small real parameter. It is well known that the number of
zeros of the Abelian integral

𝑀(𝜌) = ∫

𝛾𝜌

𝑄 (𝑥, 𝑦) 𝑑𝑥 − 𝑃 (𝑥, 𝑦) 𝑑𝑦

𝐶 (𝑥, 𝑦)

, (2)

where 𝛾

𝜌
= {(𝑥, 𝑦) : 𝑥

2
+ 𝑦

2
= 𝜌

2
}, controls the number of

limit cycles of (1) that bifurcate from the periodic orbits of the
unperturbed system (1) with 𝜀 = 0; see [2].

The problem of finding lower and upper bounds for
the number of zeros of 𝑀(𝜌), when 𝑃 and 𝑄 are arbitrary
polynomials of a given degree, say 𝑛, and 𝐶 is a particular
polynomial, has been faced in several recent papers. In the
case of perturbing the linear center by arbitrary polynomials
𝑃 and𝑄 of degree 𝑛, that is, considering 𝑥̇ = −𝑦+𝜀𝑝(𝑥, 𝑦), ̇𝑦 =

𝑥+𝜀𝑞(𝑥, 𝑦), there are at most [(𝑛−1)/2] limit cycles up to first
order in 𝜀, see [3], where [⋅] denotes the integer part function.

Also it is known that perturbing the quadratic center 𝑥̇ =

−𝑦(1 + 𝑥), ̇𝑦 = 𝑥(1 + 𝑥) inside the polynomial systems of
degree 𝑛 we can obtain at most 𝑛 limit cycles up to first order
in 𝜀 (see [4]). The authors of [5] studied the perturbation of
the cubic center 𝑥̇ = −𝑦(1+𝑥)(2+𝑥), ̇𝑦 = 𝑥(1+𝑥)(2+𝑥) inside
the polynomial differential systems of degree 𝑛, and they
obtained that 2𝑛+2−(−1)

𝑛 is an upped bound for the number
of limit cycles up to first order in 𝜀. In [6], the authors studied
the perturbations of 𝑥̇ = −𝑦(𝑎+𝑥)(𝑏+𝑦), ̇𝑦 = 𝑥(𝑎+𝑥)(𝑏+𝑦),
and they obtained that 3[(𝑛−1)/2]+4 if 𝑎 ̸= 𝑏 and, respectively,
2[(𝑛−1)/2]+2 if 𝑎 = 𝑏, up to first order in 𝜀, are upper bounds
for the number of the limit cycles. In [7] the authors studied
the maximum number 𝜎 of limit cycles which can bifurcate
from the periodic orbits of the quartic center 𝑥̇ = −𝑦𝑓(𝑥, 𝑦),
̇𝑦 = 𝑥𝑓(𝑥, 𝑦) with 𝑓(𝑥, 𝑦) = (𝑥 + 𝑎)(𝑦 + 𝑏)(𝑥 + 𝑐) and

𝑎𝑏𝑐 ̸= 0 by perturbing it inside the class of polynomial vector
fields of degree 𝑛. They proved that 4[(𝑛 − 1)/2] + 4 ≤ 𝜎 ≤

5[(𝑛 − 1)/2] + 14. In [8] the authors studied the bifurcation of
limit cycles of the system 𝑥̇ = −𝑦(𝑥

2
−𝑎

2
)(𝑦

2
−𝑏

2
) + 𝜀𝑃(𝑥, 𝑦),

̇𝑦 = 𝑥(𝑥

2
− 𝑎

2
)(𝑦

2
− 𝑏

2
) + 𝜀𝑄(𝑥, 𝑦) for 𝜀 sufficiently small,

where 𝑎, 𝑏 ∈ 𝑅−0 and 𝑃,𝑄 are polynomials of degree 𝑛.They
obtained that up to first order in 𝜀 the upper bound for the
number of limit cycles that bifurcate from the period annulus
of the quintic center given by 𝜀 = 0 is (3/2)(𝑛+sin2(𝑛𝜋/2))+1

if 𝑎 ̸= 𝑏 or 𝑛 − 1 if 𝑎 = 𝑏. More results can be found in [9, 10].
But few of these algebraic curves have a multiple factor.

In [11], the authors took 𝐶(𝑥, 𝑦) = (1 − 𝑦)

𝑚 and proved that
an upper bound for the number of zeros of 𝑀(𝜌) on (0,1) is
𝑛 + 𝑚 − 1 and that this bound is reached when 𝑚 = 1. The
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approach of [11] is mainly based on the explicit computation
of𝑀(𝜌). In [12], the authors obtained the maximum of zeros
of 𝑀(𝜌), taking into account their multiplicities, is [(𝑚 +

𝑛)/2] − 1 when 𝑛 < 𝑚 − 1 and 𝑛 when 𝑛 ≥ 𝑚 − 1. In [12], the
authors improve the upper bound given in [11] and provide
the optimal upper bound for the zeros of𝑀(𝜌). In this paper,
motivated by [12] we take 𝐶(𝑥, 𝑦) = (1 − 𝑦

2
)

𝑚 and obtain the
following theorem.

Theorem 1. Consider (1) with 𝐶(𝑥, 𝑦) = (1 − 𝑦

2
)

𝑚. Let

𝑀(𝜌) = ∫

𝛾𝜌

𝑄 (𝑥, 𝑦) 𝑑𝑥 − 𝑃 (𝑥, 𝑦) 𝑑𝑦

(1 − 𝑦

2
)

𝑚
, (3)

where 𝛾
𝜌
= {(𝑥, 𝑦) : 𝑥

2
+𝑦

2
= 𝜌

2
}, 𝜌 ∈ (0, 1), and 𝑃 and𝑄 are

polynomials of degree 𝑛. Then the maximum number of zeros
of 𝑀(𝜌), taking into account their multiplicities, is 𝑚 + [(𝑛 −

1)/2] − 1 when 𝑛 < 2𝑚 − 1 and 2[(𝑛 + 1)/2] − 1 when 𝑛 ≥

2𝑚−1. Moreover, when𝑚 = 1, 2 and 𝑛 = 2, the corresponding
maximumnumber, which is 1, can be reached by taking suitable
𝑃 and 𝑄.

2. Preliminary Results

To study the property of 𝑀(𝜌), we need to make some
preliminaries. First we introduce a function of the form

𝐼

𝑗
(𝜌) = ∫

2𝜋

0

1

(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃, (4)

where 𝜌 ∈ [0, 1) and 𝑗 is an integer.
This section contains some preliminary computations to

express the Abelian integral 𝑀(𝜌) given in (3) in terms of
polynomials.

Lemma 2. Let 𝑅
𝑙
(𝑥) be a polynomial of degree 𝑙 in 𝑥. Then for

𝜌 ∈ [0, 1) and𝑚 ≥ 0 it holds that

∫

2𝜋

0

𝑅

𝑙
(𝜌

2sin2𝜃)

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃 =

𝑙

∑

𝑗=0

𝛼

𝑚−𝑗
𝐼

𝑚−𝑗
(𝜌) , (5)

for some 𝛼
𝑗
∈ 𝑅.

Proof. Note that, for 𝑗 ≥ 0,

∫

2𝜋

0

𝜌

2𝑗sin2𝑗𝜃
(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃

= ∫

2𝜋

0

(1 − (1 − 𝜌

2sin2𝜃))
𝑗

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃

=

𝑗

∑

𝑘=0

(

𝑗

𝑘

) (−1)

𝑘
∫

2𝜋

0

(1 − 𝜌

2sin2𝜃)
𝑘

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃

=

𝑗

∑

𝑘=0

(

𝑗

𝑘

) (−1)

𝑘
𝐼

𝑚−𝑘
(𝜌) .

(6)

The result follows by applying the above formula to each term
of

𝑅

𝑙
(𝜌

2sin2𝜃) =

𝑙

∑

𝑗=0

𝑟

𝑗
(𝜌

2sin2𝜃)
𝑗

. (7)

Lemma 3. Let 𝐼
𝑗
be the functions introduced in (4). Then, for

1 ̸= 𝑗 ∈ 𝑍,

(𝜌

2
− 1) 𝐼

𝑗
(𝜌) =

3 − 2𝑗

2𝑗 − 2

(2 − 𝜌

2
) 𝐼

𝑗−1
(𝜌) +

𝑗 − 2

𝑗 − 1

𝐼

𝑗−2
(𝜌) .

(8)

Proof. Note that

𝐼

𝑗−1
(𝜌) = ∫

2𝜋

0

1 − 𝜌

2sin2𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃

= 𝐼

𝑗
(𝜌) − 𝜌

2
∫

2𝜋

0

sin2𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃.

(9)

Using integration by parts in the last integral, we obtain

𝜌

2
∫

2𝜋

0

sin2𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃

= 𝜌

2
∫

2𝜋

0

sin 𝜃

(1 − 𝜌

2sin2𝜃)𝑗
𝑑 (− cos 𝜃)

=

−𝜌

2 sin 𝜃 cos 𝜃
(1 − 𝜌

2sin2𝜃)𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝜋

0

+ ∫

2𝜋

0

((𝜌

2cos2𝜃(1 − 𝜌

2sin2𝜃)
𝑗

+2𝑗𝜌

4sin2𝜃cos2𝜃(1 − 𝜌

2sin2𝜃)
𝑗−1

)

× ((1 − 𝜌

2sin2𝜃)
2𝑗

)

−1

)𝑑𝜃

= ∫

2𝜋

0

𝜌

2cos2𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃 + 2𝑗∫

2𝜋

0

𝜌

4sin2𝜃cos2𝜃
(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

= 𝜌

2
𝐼

𝑗
+ ∫

2𝜋

0

1 − 𝜌

2sin2𝜃 − 1

(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃

+ 2𝑗∫

2𝜋

0

𝜌

4sin2𝜃 (1 − sin2𝜃)

(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃.

(10)
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Note that

∫

2𝜋

0

𝜌

4sin2𝜃 (1 − sin2𝜃)

(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

= 𝜌

2
∫

2𝜋

0

𝜌

2sin2𝜃
(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

− ∫

2𝜋

0

𝜌

4sin4𝜃
(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

= 𝜌

2
∫

2𝜋

0

1 − (1 − 𝜌

2sin2𝜃)

(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

− ∫

2𝜋

0

[1 − (1 − 𝜌

2sin2𝜃)]
2

(1 − 𝜌

2sin2𝜃)𝑗+1
𝑑𝜃

= 𝜌

2
(𝐼

𝑗+1
− 𝐼

𝑗
) − (𝐼

𝑗+1
− 2𝐼

𝑗
+ 𝐼

𝑗−1
) .

(11)

Then

𝜌

2
∫

2𝜋

0

sin2𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃

= 𝜌

2
𝐼

𝑗
+ (𝐼

𝑗−1
− 𝐼

𝑗
)

+ 2𝑗 [𝜌

2
(𝐼

𝑗+1
− 𝐼

𝑗
) − 𝐼

𝑗+1
+ 2𝐼

𝑗
− 𝐼

𝑗−1
] .

(12)

Substituting the formula above into (9), we find

𝐼

𝑗−1
(𝜌) = (1 − 2𝑗) (2 − 𝜌

2
) 𝐼

𝑗
(𝜌) + (2𝑗 − 1) 𝐼

𝑗−1
(𝜌)

+ 2𝑗 (1 − 𝜌

2
) 𝐼

𝑗+1
(𝜌) .

(13)

Replacing 𝑗 by 𝑗 − 1, we can obtain the conclusion.

Lemma 4. The functions in (4) satisfy

𝐼

𝑗
(𝜌) =

1

(1 − 𝜌

2
)

𝑗−1/2
𝐼

1−𝑗
(𝜌) , 𝑗 ∈ 𝑍. (14)

Moreover,

𝐼

𝑗
(𝜌) = 𝑅

(−𝑗)
(𝜌

2
) , 𝑗 ≤ 0,

𝐼

𝑗
(𝜌) =

𝑅

𝑗−1
(𝜌

2
)

(1 − 𝜌

2
)

𝑗−1/2
, 𝑗 ≥ 1,

(15)

where 𝑅
𝑙
denotes a polynomial of (exact) degree 𝑙.

Proof. It is easy to check that equality (14) is true for 𝑗 = 0, 1.
Now we prove that it is true for any 𝑗 ≥ 2 by induction.

Suppose that it is true for 𝑗 and 𝑗 + 1; that is,

(1 − 𝜌

2
)

𝑗−1/2

𝐼

𝑗
(𝜌) = 𝐼

1−𝑗
(𝜌) ,

(1 − 𝜌

2
)

𝑗+1/2

𝐼

𝑗+1
(𝜌) = 𝐼

−𝑗
(𝜌) .

(16)

We need to prove that

(1 − 𝜌

2
)

𝑗+3/2

𝐼

𝑗+2
(𝜌) = 𝐼

−(𝑗+1)
(𝜌) .

(17)

By Lemma 3, we have

(1 − 𝜌

2
) 𝐼

𝑗+2
(𝜌) = −

2𝑗 + 1

2𝑗 + 2

(𝜌

2
− 2) 𝐼

𝑗+1
(𝜌) −

𝑗

𝑗 + 1

𝐼

𝑗
(𝜌) .

(18)

Hence,

(1 − 𝜌

2
)

𝑗+3/2

𝐼

𝑗+2
(𝜌)

= −

2𝑗 + 1

2𝑗 + 2

(𝜌

2
− 2) (1 − 𝜌

2
)

𝑗+1/2

𝐼

𝑗+1
(𝜌)

−

𝑗

𝑗 + 1

(1 − 𝜌

2
)

𝑗+1/2

𝐼

𝑗
(𝜌) .

(19)

Then it follows from assumption (16) that

(1 − 𝜌

2
)

𝑗+3/2

𝐼

𝑗+2
(𝜌)

= −

2𝑗 + 1

2𝑗 + 2

(𝜌

2
− 2) 𝐼

−𝑗
(𝜌)

−

𝑗

𝑗 + 1

(1 − 𝜌

2
) 𝐼

1−𝑗
(𝜌) .

(20)

By Lemma 3 again we have

(1 − 𝜌

2
) 𝐼

1−𝑗
(𝜌)

= −

2𝑗 + 1

2𝑗

(𝜌

2
− 2) 𝐼

−𝑗
(𝜌) −

𝑗 + 1

𝑗

𝐼

−(𝑗+1)
(𝜌) .

(21)

Substituting it into (20) we obtain

(1 − 𝜌

2
)

𝑗+3/2

𝐼

𝑗+2
(𝜌)

= −

2𝑗 + 1

2𝑗 + 2

(𝜌

2
− 2) 𝐼

−𝑗
(𝜌)

−

𝑗

𝑗 + 1

[−

2𝑗 + 1

2𝑗

(𝜌

2
− 2) 𝐼

−𝑗
(𝜌) −

𝑗 + 1

𝑗

𝐼

−(𝑗+1)
(𝜌)]

= 𝐼

−(𝑗+1)
(𝜌) ,

(22)

which gives (17). Hence equality (14) holds for 𝑗 ≥ 0.
If 𝑗 ≤ −1, then ̃

𝑗 = 1 − 𝑗 ≥ 2. By applying (14) for ̃

𝑗 ≥ 2, it
is easy to see that (14) holds for all 𝑗 ≤ −1.

The first formula in (15) for the case of 𝑗 ≤ 0 follows
directly from (4). The second one follows from the first one
together with (14). This completes the proof.



4 Abstract and Applied Analysis

Some explicit expressions of 𝐼
𝑗
(𝜌) are

𝐼

1
(𝜌) =

2𝜋

(1 − 𝜌

2
)

1/2
,

𝐼

2
(𝜌) =

(2 − 𝜌

2
) 𝜋

(1 − 𝜌

2
)

3/2
,

𝐼

3
(𝜌) =

(3𝜌

4
− 8𝜌

2
+ 8) 𝜋

4(1 − 𝜌

2
)

5/2
,

𝐼

0
(𝜌) = 2𝜋,

𝐼

−1
(𝜌) = (2 − 𝜌

2
) 𝜋,

𝐼

−2
(𝜌) =

(3𝜌

4
− 8𝜌

2
+ 8) 𝜋

4

.

(23)

Lemma 5. For any nonnegative integer numbers 𝑝, 𝑞, and 𝑚,
one has

∫

2𝜋

0

sin2𝑝+1𝜃cos𝑞𝜃
(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃 = 0, (24)

∫

2𝜋

0

sin𝑝𝜃cos2𝑞+1𝜃
(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃 = 0. (25)

Proof. Since the integrand is an odd function of 𝜃, (24)
follows. Further

∫

2𝜋

0

sin𝑝𝜃cos2𝑞+1𝜃
(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃 = ∫

2𝜋

0

sin𝑝𝜃(1 − sin2𝜃)
𝑞

(1 − 𝜌

2sin2𝜃)𝑗
𝑑 sin 𝜃 = 0.

(26)

Then (25) follows, and the proof is ended.

Lemma6. Let𝑀(𝜌) be the Abelian integral given in (3).Then,
there exist polynomials ̃

𝑅

𝑙
of degree 𝑙, 𝑙 = 0, 1, . . . , [(𝑛 + 1)/2],

such that, for 𝜌 ∈ [0, 1),

𝑀(𝜌) =

[(𝑛+1)/2]+1

∑

𝑗=1

̃

𝑅

[(𝑛+1)/2]+1−𝑗
(𝜌

2
) 𝐼

𝑚+1−𝑗
(𝜌) . (27)

Proof. In polar coordinates, 𝑥 = 𝜌 cos 𝜃 and 𝑦 = 𝜌 sin 𝜃, the
integral𝑀(𝜌) writes as

𝑀(𝜌) = −∫

2𝜋

0

( (𝑄 (𝜌 cos 𝜃, 𝜌 sin 𝜃) 𝜌 sin 𝜃

+𝑃 (𝜌 cos 𝜃, 𝜌 sin 𝜃) 𝜌 cos 𝜃)

× ((1 − 𝜌

2sin2𝜃)
𝑚

)

−1

)𝑑𝜃.

(28)

Note that

∫

2𝜋

0

sin𝑝𝜃cos2𝑞𝜃
(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃 = ∫

2𝜋

0

sin𝑝𝜃(1 − sin2𝜃)
𝑞

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃.

(29)

Then by Lemma 5, we have

𝑀(𝜌) =

𝑛

∑

𝑗=1

𝑅

𝑗
(cos 𝜃, sin 𝜃) 𝜌

𝑗

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃

=

[(𝑛+1)/2]

∑

𝑗=1

𝑆

𝑗
(sin2𝜃) 𝜌2𝑗

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃,

(30)

where 𝑅
𝑗
(𝑥, 𝑦) denotes a homogeneous polynomial of degree

𝑗 in (𝑥, 𝑦), and 𝑆

𝑗
(𝑥) denotes a polynomial of degree 𝑗 in 𝑥

having the form

𝑆

𝑗
(sin2𝜃) =

𝑗

∑

𝑙=0

𝑠

2𝑗,2𝑙
(sin2𝜃)

𝑙

. (31)

By the above formula, we get

[(𝑛+1)/2]

∑

𝑗=1

𝑆

𝑗
(sin2𝜃) 𝜌2𝑗

= 𝑠

2,2
sin2𝜃𝜌2 + 𝑠

4,4
sin4𝜃𝜌4

+ ⋅ ⋅ ⋅ + 𝑠

2[(𝑛+1)/2],2[(𝑛+1)/2]
sin2[(𝑛+1)/2]𝜃𝜌2[(𝑛+1)/2]

+ 𝜌

2
(𝑠

2,0
+ 𝑠

4,2
sin2𝜃𝜌2 + ⋅ ⋅ ⋅ + 𝑠

2[(𝑛+1)/2],2[(𝑛+1)/2]−2

× sin2[(𝑛+1)/2]−2𝜃𝜌2[(𝑛+1)/2]−2)

+ ⋅ ⋅ ⋅ + 𝜌

2[(𝑛+1)/2]−2
(𝑠

2[(𝑛+1)/2]−2,0
+ 𝑠

2[(𝑛+1)/2],2
sin2𝜃𝜌2)

+ 𝜌

2[(𝑛+1)/2]
(𝑠

2[(𝑛+1)/2],0
)

= 𝑇

[(𝑛+1)/2]
(𝜌

2sin2𝜃) + 𝜌

2
𝑇

[(𝑛+1)/2]−1
(𝜌

2sin2𝜃)

+ 𝜌

4
𝑇

[(𝑛+1)/2]−2
(𝜌

2sin2𝜃)

+ ⋅ ⋅ ⋅ + 𝜌

2[(𝑛+1)/2]
𝑇

0
(𝜌

2sin2𝜃)

=

[(𝑛+1)/2]

∑

𝑗=0

𝜌

2𝑗
𝑇

[(𝑛+1)/2]−𝑗
(𝜌

2sin2𝜃) ,

(32)

where 𝑇

𝑖
is a polynomial of degree 𝑖 in 𝜌

2sin2𝜃, 𝑖 =

0, 1, . . . , [(𝑛 + 1)/2].
Hence by (30) and Lemma 2,

𝑀(𝜌)

=

[(𝑛+1)/2]

∑

𝑗=1

𝑆

𝑗
(sin2𝜃) 𝜌2𝑗

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃

=

[(𝑛+1)/2]

∑

𝑗=0

𝜌

2𝑗
∫

2𝜋

0

𝑇

[(𝑛+1)/2]−𝑗
(𝜌

2sin2𝜃)

(1 − 𝜌

2sin2𝜃)𝑚
𝑑𝜃
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=

[(𝑛+1)/2]

∑

𝑗=0

𝜌

2𝑗
(𝛼

𝑚
𝐼

𝑚
(𝜌) + 𝛼

𝑚−1
𝐼

𝑚−1
(𝜌)

+ ⋅ ⋅ ⋅ + 𝛼

𝑚−[(𝑛+1)/2]+𝑗
𝐼

𝑚−[(𝑛+1)/2]+𝑗
(𝜌))

=

[(𝑛+1)/2]+1

∑

𝑗=1

̃

𝑅

([(𝑛+1)/2]+1−𝑗)
(𝜌

2
) 𝐼

𝑚+1−𝑗
(𝜌) .

(33)

This ends the proof.

Assume 𝛿 =
√
1 − 𝜌

2, 𝜌 ∈ [0, 1). By Lemma 4, we have

𝐼

∗

𝑗
(𝛿) = 𝑅

∗

−𝑗
(𝛿

2
) , 𝑗 ≤ 0,

𝐼

∗

𝑗
(𝛿) =

𝑅

∗

𝑗−1
(𝛿

2
)

𝛿

2𝑗−1
, 𝑗 ≥ 1,

(34)

where

𝑅

∗

−𝑗
(𝛿

2
) = 𝑅

−𝑗
(1 − 𝛿

2
) , 𝐼

∗

𝑗
(𝛿) = 𝐼

𝑗
(

√

1 − 𝛿

2
) , (35)

where 𝑅∗
𝑙
denotes a polynomial of degree 𝑙.

Lemma 7. Let𝑀(𝜌) be the Abelian integral given in (3). Then
for 𝛿 ∈ (0, 1]

𝑀 (𝜌) =

𝑅

∗

𝑚+[(𝑛−1)/2]
(𝛿

2
)

𝛿

2𝑚−1
, 𝑛 < 2𝑚 − 1,

𝑀 (𝜌) =

𝑅

∗

2[(𝑛+1)/2]
(𝛿)

𝛿

, 𝑚 = 1 (𝑛 ≥ 2𝑚 − 1) ,

𝑀 (𝜌) =

𝑅

∗

𝑚+[(𝑛+1)/2]−1
(𝛿

2
)

𝛿

2𝑚−1
+ 𝑅

∗

[(𝑛+1)/2]−𝑚
(𝛿

2
) ,

𝑚 ̸= 1 (𝑛 ≥ 2𝑚 − 1) .

(36)

Proof. We have the following cases.
Case 1 (𝑚 + 1 − ([(𝑛 + 1)/2] + 1) > 0). In this case we have
[(𝑛 + 1)/2] < 𝑚, or 𝑛 < 2𝑚 − 1.

By Lemmas 4 and 6, we have

𝑀(𝜌) =

̃

𝑅

[(𝑛+1)/2]
(𝜌

2
) 𝐼

𝑚
(𝜌)

+

̃

𝑅

[(𝑛+1)/2]−1
(𝜌

2
) 𝐼

𝑚−1
(𝜌)

+ ⋅ ⋅ ⋅ +

̃

𝑅

0
(𝜌

2
) 𝐼

𝑚−[(𝑛+1)/2]
(𝜌) .

(37)

Let𝑀(𝜌) = 𝑀

∗
(𝛿). Then

𝑀

∗
(𝛿)

= 𝑅

∗

[(𝑛+1)/2]
(𝛿

2
) 𝐼

∗

𝑚
(𝛿) + 𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
) 𝐼

∗

𝑚−1
(𝛿)

+ ⋅ ⋅ ⋅ + 𝑅

∗

0
(𝛿

2
) 𝐼

∗

𝑚−[(𝑛+1)/2]
(𝛿)

= 𝑅

∗

[(𝑛+1)/2]
(𝛿

2
)

𝑅

∗

𝑚−1
(𝛿

2
)

𝛿

2𝑚−1
+ 𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
)

𝑅

∗

𝑚−2
(𝛿

2
)

𝛿

2𝑚−3

+ ⋅ ⋅ ⋅ + 𝑅

∗

0
(𝛿

2
)

𝑅

∗

𝑚−[(𝑛+1)/2]−1
(𝛿

2
)

𝛿

2𝑚−2[(𝑛+1)/2]−1

=

𝑅

∗

𝑚+[(𝑛−1)/2]
(𝛿

2
)

𝛿

2𝑚−1
,

(38)

where

𝑅

∗

[(𝑛+1)/2]+𝑚−1
(𝛿

2
)

= 𝑅

∗

[(𝑛+1)/2]
(𝛿

2
) 𝑅

∗

𝑚−1
(𝛿

2
) + 𝛿

2
𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
) 𝑅

∗

𝑚−2
(𝛿

2
)

+ ⋅ ⋅ ⋅ + 𝛿

(2[(𝑛+1)/2])
𝑅

∗

0
(𝛿

2
) 𝑅

∗

𝑚−[(𝑛+1)/2]−1
(𝛿

2
) ,

(39)

which is a polynomial of degree [(𝑛 + 1)/2] + 𝑚 − 1 (= [(𝑛 −

1)/2] + 𝑚) in 𝛿

2.
Hence,

𝑀(𝜌) = 𝑀

∗
(𝛿) =

𝑅

∗

[(𝑛−1)/2]+𝑚
(𝛿

2
)

𝛿

2𝑚−1
.

(40)

Case 2 (𝑚 + 1 − ([(𝑛 + 1)/2] + 1) ≤ 0). In this case we have
[(𝑛 + 1)/2] ≥ 𝑚 or 𝑛 ≥ 2𝑚 − 1.

(i) When𝑚 = 1, we have

𝑀(𝜌) =

[(𝑛+1)/2]+1

∑

𝑗=1

̃

𝑅

[(𝑛+1)/2]+1−𝑗
(𝜌

2
) 𝐼

2−𝑗
(𝜌)

=

̃

𝑅

[(𝑛+1)/2]) (𝜌
2
) 𝐼

1
(𝜌) +

̃

𝑅

[(𝑛+1)/2]−1
(𝜌

2
) 𝐼

0
(𝜌)

+

̃

𝑅

[(𝑛+1)/2]−2
(𝜌

2
) 𝐼

−1
(𝜌)

+ ⋅ ⋅ ⋅ +

̃

𝑅

0
(𝜌

2
) 𝐼

1−[(𝑛+1)/2]
(𝜌) .

(41)

Thus,

𝑀

∗
(𝛿)

= 𝑅

∗

[(𝑛+1)/2]
(𝛿

2
)

𝑅

∗

0
(𝛿

2
)

𝛿

+ 𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
) ⋅ 2𝜋

+ 𝑅

∗

[(𝑛+1)/2]−2
(𝛿

2
) 𝑅

∗

1
(𝛿

2
)

+ ⋅ ⋅ ⋅ + 𝑅

∗

0
(𝛿

2
) 𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
)

=

𝑅

∗

2[(𝑛+1)/2]
(𝛿)

𝛿

,

(42)
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where

𝑅

∗

2[(𝑛+1)/2]
(𝛿)

= 𝑅

∗

[(𝑛+1)/2]
(𝛿

2
) 𝑅

∗

0
(𝛿

2
)

+ 2𝜋𝛿𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
) + 𝛿𝑅

∗

[(𝑛+1)/2]−2
(𝛿

2
) 𝑅

∗

1
(𝛿

2
)

+ ⋅ ⋅ ⋅ + 𝛿𝑅

∗

0
(𝛿

2
) 𝑅

∗

[(𝑛+1)/2]−1
(𝛿

2
) .

(43)

Then

𝑀

∗
(𝛿) =

𝑅

∗

2[(𝑛+1)/2]
(𝛿)

𝛿

.

(44)

(ii) When𝑚 ̸= 1, by Lemmas 4 and 6, we have

𝑀(𝜌) =

̃

𝑅

[(𝑛+1)/2]+𝑚−1
(𝜌

2
)

(1 − 𝜌

2
)

𝑚−1/2

+

[(𝑛+1)/2]−𝑚

∑

𝑗=0

̃

𝑅

[(𝑛+1)/2]−𝑚−𝑗
(𝜌

2
) 𝐼

−𝑗
(𝜌)

=

̃

𝑅

[(𝑛+1)/2]+𝑚−1
(𝜌

2
)

(1 − 𝜌

2
)

𝑚−1/2
+

̃

𝑅

[(𝑛+1)/2]−𝑚
(𝜌

2
) 𝐼

0
(𝜌)

+

̃

𝑅

[(𝑛+1)/2]−𝑚−1
(𝜌

2
) 𝐼

−1
(𝜌)

+ ⋅ ⋅ ⋅ +

̃

𝑅

0
(𝜌

2
) 𝐼

−([(𝑛+1)/2]−𝑚)
(𝜌) .

(45)

Thus,

𝑀

∗
(𝛿)

=

𝑅

∗

[(𝑛+1)/2]+𝑚−1
(𝛿

2
)

𝛿

2𝑚−1
+ 𝑅

∗

[(𝑛+1)/2]−𝑚
(𝛿

2
) 𝑅

∗

0
(𝛿

2
)

+ 𝑅

∗

[(𝑛+1)/2]−𝑚−1
(𝛿

2
) 𝑅

∗

1
(𝛿

2
)

+ ⋅ ⋅ ⋅ + 𝑅

∗

0
(𝛿

2
) 𝑅

∗

[(𝑛+1)/2]−𝑚
(𝛿

2
)

=

𝑅

∗

[(𝑛+1)/2]+𝑚−1
(𝛿

2
)

𝛿

2𝑚−1
+ 𝑅

∗

[(𝑛+1)/2]−𝑚
(𝛿

2
) .

(46)

This ends the proof.

The following lemma can be found in [5].

Lemma 8. Consider the family of functions

𝐹 (𝑥) = 𝐴

𝑖
(𝑥) + 𝐵

𝑗
(𝑥) (𝑎 − 𝑥)

𝛼
, (47)

defined on (−∞, 𝑎), where𝐴
𝑖
and𝐵

𝑗
are polynomials of degrees

𝑖 and 𝑗, respectively, and 𝛼 ∉ 𝑍. Then each nontrivial function
of the form has at most 𝑖 + 𝑗 + 1 real zeros, taking into account
their multiplicities. Moreover, there exist polynomials 𝐴

𝑖
and

𝐵

𝑗
such that the corresponding function has exactly this number

of zeros on (−∞, 𝑎).

3. Proof of Theorem 1

Proof. By Lemma 7, when 𝑛 < 2𝑚 − 1 we have

𝑀(𝜌) =

𝑅

∗

𝑚+[(𝑛−1)/2]
(𝛿

2
)

𝛿

2𝑚−1
.

(48)

As the numerator of the above expression is a polynomial in
𝛿

2 of degree 𝑚 + [(𝑛 − 1)/2], the maximum number of zeros
of𝑀(𝜌) in [0,1) is𝑚 + [(𝑛 − 1)/2].

When𝑚 = 1 (𝑛 ≥ 2𝑚 − 1), then

𝑀(𝜌) =

𝑅

∗

2[(𝑛+1)/2]
(𝛿)

𝛿

.

(49)

As before, the maximum number of zeros of 𝑀(𝜌) in [0,1) is
2[(𝑛 + 1)/2].

When𝑚 ̸= 1 (𝑛 ≥ 2𝑚 − 1), we have

𝑀(𝜌) =

̃

𝑀(𝛿

2
) =

𝑅

∗

𝑚+[(𝑛+1)/2]−1
(𝛿

2
)

𝛿

2𝑚−1
+ 𝑅

∗

[(𝑛+1)/2]−𝑚
(𝛿

2
) .

(50)

Then, using Lemma 8, ̃𝑀(𝛿

2
) has at most (𝑚 + [(𝑛 + 1)/2] −

1) + ([(𝑛 + 1)/2] − 𝑚) + 1 = 2[(𝑛 + 1)/2] zeros in 𝛿

2
∈ (0, 1].

Finally, for all 𝑛 and 𝑚 we know that 𝑀(0) =

̃

𝑀(1) =

0. Then the maximum number of zeros of 𝑀(𝜌), taking into
account their multiplicities, is 𝑚 + [(𝑛 − 1)/2] − 1 when 𝑛 <

2𝑚 − 1 and 2[(𝑛 + 1)/2] − 1 when 𝑛 ≥ 2𝑚 − 1. The proof is
completed.

4. Two Illustration Examples on
the Maximum Number

Consider the system

𝑥̇ = −𝑦 (1 − 𝑦

2
) + 𝜀𝑃 (𝑥, 𝑦) ,

̇𝑦 = 𝑥 (1 − 𝑦

2
) + 𝜀𝑄 (𝑥, 𝑦) ,

(51)

where

𝑃 (𝑥, 𝑦) = ∑

𝑖+𝑗≤2

𝑝

𝑖𝑗
𝑥

𝑖
𝑦

𝑗
, 𝑄 (𝑥, 𝑦) = ∑

𝑖+𝑗≤2

𝑞

𝑖𝑗
𝑥

𝑖
𝑦

𝑗

(52)

and 𝜀 is a small real parameter.
Let

𝑀(𝜌) = ∫

𝛾𝜌

𝑄 (𝑥, 𝑦) 𝑑𝑥 − 𝑃 (𝑥, 𝑦) 𝑑𝑦

1 − 𝑦

2
, (53)

where 𝛾

𝜌
= {(𝑥, 𝑦) : 𝑥

2
+ 𝑦

2
= 𝜌

2
}, 𝜌 ∈ (0, 1). Assuming

𝑥 = 𝜌 cos 𝜃, 𝑦 = 𝜌 sin 𝜃, we have

𝑀(𝜌) = −∫

2𝜋

0

𝑝

10
𝜌

2
+ (𝑞

01
− 𝑝

10
) 𝜌

2sin2𝜃
1 − 𝜌

2sin2𝜃
𝑑𝜃

= [−𝑝

10
𝜌

2
− (𝑞

01
− 𝑝

10
)] 𝐼

1
+ (𝑞

01
− 𝑝

10
) 𝐼

0
,

(54)
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where

𝐼

𝑗
(𝜌) = ∫

2𝜋

0

1

(1 − 𝜌

2sin2𝜃)𝑗
𝑑𝜃, 𝜌 ∈ [0, 1) , (55)

Let 𝛿 =
√
1 − 𝜌

2, 𝜌 ∈ [0, 1). Then

̃

𝑀(𝛿) = 𝑀(𝜌) =

(𝛿 − 1) (𝑝

10
𝛿 + 𝑞

01
)

𝛿

.

(56)

Obviously ̃

𝑀(𝛿) = 0 for 𝛿 ∈ (0, 1) if and only if 𝛿 = −𝑞

01
/𝑝

10
.

Thus for system (51) the function𝑀(𝜌) can have 1 simple zero
in 𝜌 ∈ (0, 1).

Now we consider the system

𝑥̇ = −𝑦(1 − 𝑦

2
)

2

+ 𝜀𝑃 (𝑥, 𝑦) ,

̇𝑦 = 𝑥(1 − 𝑦

2
)

2

+ 𝜀𝑄 (𝑥, 𝑦) ,

(57)

where

𝑃 (𝑥, 𝑦) = ∑

𝑖+𝑗≤2

𝑝

𝑖𝑗
𝑥

𝑖
𝑦

𝑗
, (58)

𝑄 (𝑥, 𝑦) = ∑

𝑖+𝑗≤2

𝑞

𝑖𝑗
𝑥

𝑖
𝑦

𝑗
, (59)

and 𝜀 is a small real parameter.
Let

𝑀(𝜌) = ∫

𝛾𝜌

𝑄 (𝑥, 𝑦) 𝑑𝑥 − 𝑃 (𝑥, 𝑦) 𝑑𝑦

(1 − 𝑦

2
)

2

= [−𝑝

10
𝜌

2
− (𝑞

01
− 𝑝

10
)] 𝐼

2
+ (𝑞

01
− 𝑝

10
) 𝐼

1
,

(60)

where 𝛾
𝜌
= {(𝑥, 𝑦) : 𝑥

2
+ 𝑦

2
= 𝜌

2
}, 𝜌 ∈ (0, 1).

As before, let 𝛿 =
√
1 − 𝜌

2, 𝜌 ∈ [0, 1). Then

𝑀(𝛿) = 𝑀(𝜌) =

(1 − 𝛿

2
) (−𝑝

10
𝛿

2
− 𝑞

01
)

𝛿

3
.

(61)

It follows that 𝑀(𝛿) = 0 for ∈ (0, 1) if and only if 𝛿 =

√−𝑞

01
/𝑝

10
. Thus for system (57) the function𝑀(𝜌) can have

1 simple zero in 𝜌 ∈ (0, 1).
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