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This paper proves the existence of the pullback exponential attractor for the process associated to the nonautonomous Klein-
Gordon-Schrödinger equations on infinite lattices.

1. Introduction

Lattice dynamical systems (LDSs for short), including cou-
pled ordinary differential equations (ODEs), coupled map
lattices, and cellular automata [1], are spatiotemporal sys-
tems with discretization in some variables. In some cases,
LDSs arise as the spatial discretization of partial differential
equations (PDEs) on unbounded or bounded domains. LDSs
occur in a wide variety of applications, ranging from image
processing and pattern recognition [2–4] to electrical engi-
neering [5], chemical reaction theory [6, 7], laser systems [8],
material science [9], biology [10], and so forth.

Nowadays, LDSs have drawn much attention frommath-
ematicians and physicists [1]. Various properties of solutions
for LDSs have been widely studied. For example, the stochas-
tic LDSs were investigated in [11, 12]. The global and uniform
attractors of LDSs were examined in [13–19].The exponential
and uniform exponential attractors of LDSs were investigated
by [20–24].

At the same time, the asymptotic theory of LDSs has
been widely used on many concrete lattice equations from
mathematical physics. For example, lattice reaction-diffusion
equations [25], discrete nonlinear Schrödinger equations
[26], lattice FitzHugh-Nagumo systems [27], lattice Klein-
Gordon-Schrödinger (KGS) equations [28], and lattice three
component reversible Gray-Scott equations [29].

Very recently, Zhou and Han [30] presented some suffi-
cient conditions for the existence of the pullback exponential

attractor for the continuous process on Banach spaces and
weighted spaces of infinite sequences. Also, they applied
their results to study the existence of pullback exponential
attractors for first-order nonautonomous differential equa-
tions and partly dissipative differential equations on infinite
lattices with time-dependent coupled coefficients and time-
dependent external terms in weighted spaces.

In this paper, we will use the abstract theory of [30] to
study the pullback exponential behavior of solutions for the
following nonautonomous lattice systems:
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where 𝐴 is a linear operator defined as
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𝑚
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𝑚−1

, ∀𝑢 = (𝑢
𝑚
)
𝑚∈Z

, (4)

𝑧
𝑚
(𝑡) ∈ C, 𝑢

𝑚
(𝑡) ∈ R, C and R are the sets of complex and

real numbers, respectively, Z is the set of integer numbers,
𝑖 = √−1 is the unit of the imaginary numbers, and 𝛼, 𝛽, ],
and 𝜇 are positive constants.
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Equations (1)-(2) can be regarded as a discrete analogue
of the following nonautonomous KGS equations on R:

𝑖𝑧
𝑡
+ 𝑧
𝑥𝑥
+ 𝑖𝛼𝑧 + 𝑧𝑢 = 𝑓 (𝑥, 𝑡) ,
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𝑥𝑥
+ 𝜇𝑢 − 𝛽|𝑧|

2

= 𝑔 (𝑥, 𝑡) .

(5)

Equations (5) describe the interaction of a scalar nucleon
interacting with a neutral scalar meson through Yukawa
coupling [31], where 𝑧 and 𝑢 represent the complex scalar
nucleon field and the real meson field, respectively, and the
complex-valued function𝑓(𝑥, 𝑡) and the real-valued function
𝑔(𝑥, 𝑡) are the time-dependent external sources. There are
many works concerning the Cauchy problem and the initial
boundary value problem of the continuous model of KGS
equations or its related version, see [32–36] and references
therein.

We want to mention that the lattice KGS equations have
been studied by [28, 37]. In [37], the authors first presented
some sufficient conditions for the existence of the uniform
exponential attractor for a family of continuous processes on
separable Hilbert spaces and the space of infinite sequences.
Then, they studied the existence of uniform exponential
attractors for the dissipative nonautonomous KGS lattice
system and the Zakharov lattice system driven by quasi-
periodic external forces. In [28], the authors first proved
the existence of compact kernel sections and gave an upper
bound of the Kolmogorov 𝜀-entropy for these kernel sections.
Also they verified the upper semicontinuity of the kernel
sections. Articles in [28, 37] use the same transformation of
the variable 𝑢 = (𝑢

𝑚
)
𝑚∈Z.

The aim of the present paper is to use the abstract result of
[30] to prove the existence of pullback exponential attractors
for the LDSs (1)–(3). When verifying the discrete squeezing
property (see Lemma 5(II)) of the generated process, we
encounter the difficulty coming from the nonlinear terms
𝑢
𝑚
𝑧
𝑚
and |𝑧

𝑚
|
2 in the coupled lattice equations. To overcome

this difficulty, we make a proper transformation of the
variable 𝑢 = (𝑢

𝑚
)
𝑚∈Z and use the technique of cutoff

functions. We want to remark that the idea concerning the
transformation of the variable 𝑢 originates from articles in
[28, 37], but our transformation is other than that of [28, 37].

The rest of the paper is organized as follows. In Section 2,
we first introduce some spaces and operators. Then, we
recall some results on the existence, uniqueness, and some
estimates of solutions. Section 3 is devoted to proving the
existence of the pullback exponential attractor for the process
associated to the lattice KGS equations.

2. Preliminaries

We first introduce the mathematical setting of our problem.
Set
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For brevity, we use𝑋 to denote ℓ2 or 𝐿2, and equip𝑋with
the inner product and norm as
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where V
𝑚
denotes the conjugate of V

𝑚
. For any two elements

𝑢, V ∈ 𝑋, we define a bilinear form on𝑋 by
(𝑢, V)
𝜇
= (𝐵𝑢, 𝐵V) + 𝜇 (𝑢, V) , (8)

where𝜇 is the constant in (2) and𝐵 is a linear operator defined
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In fact, 𝐵∗ is the adjoint operator of 𝐵 and one can check
that
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(11)

Clearly, the bilinear form (⋅, ⋅)
𝜇
defined by (8) is also an

inner product in𝑋. Since
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then ℓ2, ℓ2
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where 𝑧(2)
𝑚

stands for the conjugate of 𝑧(2)
𝑚
.
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For convenience, we will express (1)–(3) as an abstract
Cauchy problem of first-order ODE with respect to time 𝑡
in 𝐸
𝜇
. To this end, we put 𝑢 = (𝑢
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2
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Set
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𝜇]

2 (𝜇 + ]2)
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) . (20)

Then, (16)–(18) can be written as
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Let C
𝑏
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functions from R into 𝑋, then for each 𝑓(𝑡) ∈ C
𝑏
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𝑡∈R∑𝑚∈Z |𝑓𝑚(𝑡)|

2

< +∞. Write
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𝑚
(𝑡))
𝑚∈Z
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𝑏
(R, 𝑋) :

for each 𝜏 ∈ R, ∀𝜀 > 0, ∃𝑀 (𝜀, 𝜏) ∈ N,

such that ∑
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≤ 𝜀

for any 𝑠 ≤ 𝜏} .

(23)

We next recall some results of solutions to (21)-(22).

Lemma 1 (see [28]). Let 𝑓(𝑡) = (𝑓
𝑚
(𝑡))
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𝑏
(R, 𝐿2),

𝑔(𝑡) = (𝑔
𝑚
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𝑚∈Z ∈ C

𝑏
(R, ℓ2). Then, for any initial data

𝜓
𝜏
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𝜏
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𝜏
, 𝑧
𝜏
)
𝑇

∈ 𝐸
𝜇
, there exists a unique solution
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𝜇
of (21)-(22), such that 𝜓(𝑡) ∈

C([𝜏, +∞), 𝐸
𝜇
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𝜇
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𝜏
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𝜏
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𝜏
, 𝑧
𝜏
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𝑇
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𝜇
󳨃󳨀→ 𝜓 (𝑡)

= (𝑢 (𝑡) , V (𝑡) , 𝑧 (𝑡))
𝑇

∈ 𝐸
𝜇
, ∀𝑡 ≥ 𝜏

(24)

generates a continuous process {𝑈(𝑡, 𝜏)}
𝑡≥𝜏

on 𝐸
𝜇
, where V

𝜏
=

𝑢
1𝜏
+ 𝛿𝑢
𝜏
.

Lemma 2 (see [28]). Let 𝑓(𝑡) = (𝑓
𝑚
(𝑡))
𝑚∈Z ∈ C

𝑏
(R, 𝐿2),

𝑔(𝑡) = (𝑔
𝑚
(𝑡))
𝑚∈Z ∈ C

𝑏
(R, ℓ2). Then, the solution 𝜓(𝑡) =

(𝑢(𝑡), V(𝑡), 𝑧(𝑡))𝑇 ∈ 𝐸
𝜇
of (21)-(22) corresponding to initial

data 𝜓
𝜏
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𝜏
, V
𝜏
, 𝑧
𝜏
)
𝑇

∈ 𝐸
𝜇
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≤ 𝐶
0
e−2𝜗0(𝑡−𝜏) + 1

2
𝑅
2

0
, ∀𝑡 ≥ 𝜏, (25)

where 𝐶
0
, 𝜗
0
, and 𝑅

0
are positive constants independent of 𝑡

and 𝜏.

Lemma 3 (see [28]). Let 𝑓(𝑡) = (𝑓
𝑚
(𝑡))
𝑚∈Z ∈ C

𝑏
(R, 𝐿2),

𝑔(𝑡) = (𝑔
𝑚
(𝑡))
𝑚∈Z ∈ C

𝑏
(R, ℓ2). Then, the process {𝑈(𝑡, 𝜏)}

𝑡≥𝜏

corresponding to (21)-(22) possesses a uniformly bounded
absorbing set B

0
⊂ 𝐸
𝜇
, such that for any bounded set B of

𝐸
𝜇
, there exists a time 𝑡(𝜏,B) ≥ 𝜏 yielding

𝑈 (𝑡, 𝜏)B ⊂ B
0
, ∀𝑡 ≥ 𝑡 (𝜏,B) , (26)

whereB
0
= B(0, 𝑅

0
) ⊂ 𝐸
𝜇
is a closed ball centered at 0 with

radius 𝑅
0
.

Lemma 3 shows that there exists a time 𝑡
0
=̇ 𝑡
0
(𝜏,B
0
) ≥ 𝜏,

such that

𝑈 (𝑡, 𝜏)B
0
⊂ B
0
, ∀𝑡 ≥ 𝑡

0
. (27)

Lemma 4 (see [28]). Let𝑓(𝑡) = (𝑓
𝑚
(𝑡))
𝑚∈Z ∈ Hwith𝑋 = 𝐿

2

and 𝑔(𝑡) = (𝑔
𝑚
(𝑡))
𝑚∈Z ∈ H with 𝑋 = ℓ

2, respectively. Then,
for any 𝜀 > 0, there exist 𝑡∗=̇ 𝑡(𝜀,B

0
) > 𝑡
0
and𝑀

0
(𝜀, 𝜏,B

0
) ∈

N, such that when 𝑡 ≥ 𝑡∗, the solution𝑈(𝑡+𝜏, 𝜏)𝜓
𝜏
= 𝜓(𝑡+𝜏) =

(𝜓
𝑚
(𝑡 + 𝜏))

𝑚∈Z ∈ 𝐸𝜇 of (21)-(22) with 𝜓𝜏 ∈ B
0
satisfies

∑

|𝑚|>𝑀0(𝜀,𝜏,B0)

󵄨󵄨󵄨󵄨(𝑈 (𝑡 + 𝜏, 𝜏) 𝜓𝜏)𝑚

󵄨󵄨󵄨󵄨

2

𝐸𝜇

= ∑

|𝑚|>𝑀0(𝜀,𝜏,B0)

󵄨󵄨󵄨󵄨𝜓𝑚 (𝑡 + 𝜏)
󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ 𝜀
2

,

(28)

where |𝜓
𝑚
|
2

𝐸𝜇

= |(𝐵𝑢)
𝑚
|
2

+ 𝜇𝑢
2

𝑚
+ V2
𝑚
+ |𝑧
𝑚
|
2.

3. Existence of the Pullback
Exponential Attractors

In this section, we prove the existence of the pullback
exponential attractor for the process {𝑈(𝑡, 𝜏)}

𝑡≥𝜏
defined by

(24). Write

𝐸
(𝑁)

𝜇
= {𝜓 = (𝜓

𝑚
)
𝑚∈Z

∈ 𝐸
𝜇
| 𝜓
𝑚
= (0, 0, 0)

𝑇 if |𝑚| > 𝑁} ,
(29)

then 𝐸(𝑁)
𝜇

is a 4(2𝑁 + 1)-dimensional subspace of 𝐸
𝜇
. Define

a bounded projection 𝑃
𝑁
: 𝐸
𝜇
󳨃→ 𝐸
(𝑁)

𝜇
⊂ 𝐸
𝜇
by

(𝑃
𝑁
𝜓)
𝑚
= {

𝜓
𝑚
, |𝑚| ≤ 𝑁;

0, |𝑚| > 𝑁,
𝜓 = (𝜓

𝑚
)
𝑚∈Z

∈ 𝐸
𝜇
.

(30)
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Lemma 5. (I) For any 𝑇 > 𝑡
0
, there exists some 𝐿

𝑇
>

0 (independent of 𝜏), such that for every 𝜏 ∈ R and any
𝑡 ∈ [𝑡
0
, 𝑇],
󵄩󵄩󵄩󵄩󵄩
𝑈 (𝑡 + 𝜏, 𝜏) 𝜓

(1)

𝜏
− 𝑈 (𝑡 + 𝜏, 𝜏) 𝜓

(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇

≤ 𝐿
𝑇

󵄩󵄩󵄩󵄩󵄩
𝜓
(1)

𝜏
− 𝜓
(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇
, ∀𝜓

(1)

𝜏
, 𝜓
(2)

𝜏
∈ B
0
.

(31)

(II) There exist two positive constants 𝑇∗ > 𝑡
0
and 𝛾 ∈

(0, 1/2), and a 4(2𝑁∗ + 1)-dimensional orthogonal projection
𝑃
𝑁
∗ : 𝐸
𝜇
󳨃→ 𝐸
(𝑁
∗
)

𝜇
for some𝑁∗ ∈ N, such that for every 𝜏 ∈ R

and 𝜓(1)
𝜏
, 𝜓
(2)

𝜏
∈ B
0
,

󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃

𝑁
∗) [𝑈 (𝑇

∗

+ 𝜏, 𝜏) 𝜓
(1)

𝜏
− 𝑈 (𝑇

∗

+ 𝜏, 𝜏) 𝜓
(2)

𝜏
]
󵄩󵄩󵄩󵄩󵄩𝐸𝜇

≤ 𝛾
󵄩󵄩󵄩󵄩󵄩
𝜓
(1)

𝜏
− 𝜓
(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇
.

(32)

Proof. (I) For any 𝜏 ∈ R, let

𝜓
(1)

(𝑡) = 𝑈 (𝑡, 𝜏) 𝜓
(1)

𝜏
,

𝜓
(2)

(𝑡) = 𝑈 (𝑡, 𝜏) 𝜓
(2)

𝜏
, ∀𝑡 ≥ 𝜏

(33)

be two solutions of (21)-(22) with initial conditions 𝜓(1)
𝜏
,

𝜓
(2)

𝜏
∈ B
0
, respectively. Set

𝑢
𝑑
(𝑡) = 𝑢

(1)

(𝑡) − 𝑢
(2)

(𝑡) , V
𝑑
(𝑡) = V

(1)

(𝑡) − V
(2)

(𝑡) ,

𝑧
𝑑
(𝑡) = 𝑧

(1)

(𝑡) − 𝑧
(2)

(𝑡) , 𝜓
𝑑
(𝑡) = 𝜓

(1)

(𝑡) − 𝜓
(2)

(𝑡) .

(34)

From (21)-(22), we get

𝜓̇
𝑑
+ Θ𝜓
𝑑
= 𝐹 (𝜓

(1)

, 𝑡) − 𝐹 (𝜓
(2)

, 𝑡) , ∀𝑡 > 𝜏.

𝜓
𝑑
(𝜏) = 𝜓

(1)

𝜏
− 𝜓
(2)

𝜏
.

(35)

Taking the real part of the inner product of (35) with 𝜓
𝑑

in 𝐸
𝜇
, we obtain

1

2

d
d𝑡
󵄩󵄩󵄩󵄩𝜓𝑑

󵄩󵄩󵄩󵄩

2

𝐸𝜇

+ Re (Θ𝜓
𝑑
+ 𝐹 (𝜓

(2)

, 𝑡)

− 𝐹 (𝜓
(1)

, 𝑡) , 𝜓
𝑑
)
𝐸𝜇

= 0, ∀𝑡 ≥ 𝜏.

(36)

Since Θ : 𝐸
𝜇
󳨃→ 𝐸
𝜇
is a bounded linear operator, 𝐹 :

𝐸
𝜇
× R 󳨃→ 𝐸

𝜇
is a locally Lipschitz continuous operator (see

Lemma 2.2 in [28]), and B
0
is a bounded set in 𝐸

𝜇
, we see

that there exist two positive constants 𝐶
1
and 𝐾

1
= 𝐾
1
(B
0
),

such that

Re (Θ𝜓
𝑑
+ 𝐹 (𝜓

(2)

, 𝑡) − 𝐹 (𝜓
(1)

, 𝑡) , 𝜓
𝑑
)
𝐸𝜇

≤ (𝐶
1

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩𝐸𝜇

+
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝜓
(2)

, 𝑡) − 𝐹 (𝜓
(1)

, 𝑡)
󵄩󵄩󵄩󵄩󵄩𝐸𝜇

)
󵄩󵄩󵄩󵄩𝜓𝑑

󵄩󵄩󵄩󵄩𝐸𝜇

≤ (𝐶
1
+ 𝐾
1
)
󵄩󵄩󵄩󵄩𝜓𝑑

󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ≥ 𝜏.

(37)

Combining (36) and (37), we get

d
d𝑡
󵄩󵄩󵄩󵄩𝜓𝑑

󵄩󵄩󵄩󵄩

2

𝐸𝜇

− 𝐾
2

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

≤ 0, ∀𝑡 ≥ 𝜏, (38)

where𝐾
2
= 2(𝐶

1
+𝐾
1
). Applying Gronwall inequality to (38)

on [𝜏, 𝜏 + 𝑡] with 𝑡 ∈ [𝑡
0
, 𝑇], we obtain

󵄩󵄩󵄩󵄩𝜓𝑑 (𝑡 + 𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

≤ e𝐾2𝑡󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ∈ [𝑡
0
, 𝑇] . (39)

Thus,

󵄩󵄩󵄩󵄩𝜓𝑑 (𝑡 + 𝜏)
󵄩󵄩󵄩󵄩𝐸𝜇

=
󵄩󵄩󵄩󵄩󵄩
𝜓
(1)

(𝑡 + 𝜏) − 𝜓
(2)

(𝑡 + 𝜏)
󵄩󵄩󵄩󵄩󵄩𝐸𝜇

=
󵄩󵄩󵄩󵄩󵄩
𝑈 (𝑡 + 𝜏, 𝜏) 𝜓

(1)

𝜏
− 𝑈 (𝑡 + 𝜏, 𝜏) 𝜓

(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇

≤ 𝐿
𝑇

󵄩󵄩󵄩󵄩󵄩
𝜓
(1)

𝜏
− 𝜓
(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇
, ∀𝑡 ∈ [𝑡

0
, 𝑇] ,

(40)

where 𝐿
𝑇
= √e𝐾2𝑇 does not depend on 𝜏.

(II) Define a smooth function 𝜒(𝑥) ∈ C1(R
+
, [0, 1]), such

that

𝜒 (𝑥) = {
0, 0 ≤ 𝑥 ≤ 1;

1, 𝑥 ≥ 2,

󵄨󵄨󵄨󵄨󵄨
𝜒
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜒
0
(positive constant) , ∀𝑥 ∈ R

+
.

(41)

Set

𝑝
𝑑
= (𝑝
𝑑𝑚
)
𝑚∈Z

with 𝑝
𝑑𝑚

= 𝜒(
|𝑚|

𝑀
)𝑢
𝑑𝑚
,

𝑞
𝑑
= (𝑞
𝑑𝑚
)
𝑚∈Z

with 𝑞
𝑑𝑚

= 𝜒(
|𝑚|

𝑀
) V
𝑑𝑚
,

𝑤
𝑑
= (𝑤
𝑑𝑚
)
𝑚∈Z

with 𝑤
𝑑𝑚

= 𝜒(
|𝑚|

𝑀
)𝑧
𝑑𝑚
,

𝜙
𝑑
= (𝜙
𝑑𝑚
)
𝑚∈Z

with 𝜙
𝑑𝑚

= (𝑝
𝑑𝑚
, 𝑞
𝑑𝑚
, 𝑤
𝑑𝑚
) ,

(42)

where𝑀 is a positive integer that will be specified later. From
(16), we see that

𝑖𝑧̇
𝑑
− 𝐴𝑧
𝑑
+ 𝑖𝛼𝑧
𝑑
+ 𝑧
(1)

𝑢
(1)

− 𝑧
(2)

𝑢
(2)

= 0. (43)

Taking the imaginary part of the inner product of (43)
with 𝑤

𝑑
in 𝐿2, we get

1

2

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

−Im (𝐴𝑧
𝑑
, 𝑤
𝑑
)+𝛼 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

+ Im (𝑧
(1)

𝑢
(1)

− 𝑧
(2)

𝑢
(2)

, 𝑤
𝑑
) = 0.

(44)
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Now, we have

− Im (𝐴𝑧
𝑑
, 𝑤
𝑑
)

= − Im (𝐵𝑧
𝑑
, 𝐵𝑤
𝑑
)

= − Im(∑

𝑚∈Z

(𝑧
𝑑𝑚+1

− 𝑧
𝑑𝑚
)

× (𝜒 (
|𝑚 + 1|

𝑀
)𝑧
𝑑𝑚+1

− 𝜒(
|𝑚|

𝑀
)𝑧
𝑑𝑚
))

= Im(∑

𝑚∈Z

(𝜒(
|𝑚|

𝑀
)𝑧
𝑑𝑚+1

𝑧
𝑑𝑚

+𝜒(
|𝑚 + 1|

𝑀
)𝑧
𝑑𝑚+1

𝑧
𝑑𝑚
))

= Im(∑

𝑚∈Z

(𝜒(
|𝑚 + 1|

𝑀
) − 𝜒(

|𝑚|

𝑀
)) 𝑧
𝑑𝑚+1

𝑧
𝑑𝑚
)

≥ −∑

𝑚∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜒
󸀠

(
𝑚̃

𝑀
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑀

󵄨󵄨󵄨󵄨𝑧𝑑𝑚+1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

≥ −
2𝜒
0

𝑀

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ≥ 𝜏,

(45)

where 𝑚̃ locates between |𝑚 + 1| and |𝑚|. According to
Lemma 4, we know that there exist 𝑡

1
(𝑡
1

> 𝑡
0
) and

𝑀
1
(𝜀, 𝜏,B

0
) ∈ N, such that when 𝑡 ≥ 𝑡

1
and 𝑀 >

𝑀
1
(𝜀, 𝜏,B

0
), we obtain

Im ∑

𝑚∈Z

(𝑧
(1)

𝑚
𝑢
(1)

𝑚
− 𝑧
(2)

𝑚
𝑢
(2)

𝑚
, 𝜒 (

|𝑚|

𝑀
) (𝑧
(1)

𝑚
− 𝑧
(2)

𝑚
))

≤ ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
𝑢
(1)

𝑚
− 𝑧
(2)

𝑚
𝑢
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

= ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
(𝑢
(1)

𝑚
− 𝑢
(2)

𝑚
) + 𝑢
(2)

𝑚
(𝑧
(1)

𝑚
− 𝑧
(2)

𝑚
)
󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

≤
𝛼

4
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
√𝛼𝜇𝛿

2

× ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑢
(1)

𝑚
− 𝑢
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

≤
𝛼

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
𝜇𝛿

4
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑢
(1)

𝑚
− 𝑢
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

,

(46)

which implies that when 𝑡 ≥ 𝑡
1
and𝑀 > 𝑀

1
(𝜀, 𝜏,B

0
)

Im (𝑧
(1)

𝑢
(1)

− 𝑧
(2)

𝑢
(2)

, 𝑤
𝑑
)

= Im ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) (𝑧
(1)

𝑚
𝑢
(1)

𝑚
− 𝑧
(2)

𝑚
𝑢
(2)

𝑚
, (𝑧
(1)

𝑚
− 𝑧
(2)

𝑚
))

≥ −
𝛼

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚
− 𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

−
𝜇𝛿

4
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨󵄨
𝑢
(1)

𝑚
− 𝑢
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

.

(47)

Then, taking (44)–(47) into account, we obtain for every
𝑡 ≥ 𝑡
1
and𝑀 > 𝑀

1
(𝜀, 𝜏,B

0
) that

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

+ 𝛼∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

≤
𝜇𝛿

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚
+
4𝜒
0

𝑀

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

.

(48)

From (17) and (19), we obtain

V̇
𝑑
+ (] − 𝛿) V

𝑑
+ (𝛿 (𝛿 − ]) + 𝜇) 𝑢

𝑑

+ 𝐴𝑢
𝑑
− 𝛽 (

󵄨󵄨󵄨󵄨󵄨
𝑧
(1)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)
󵄨󵄨󵄨󵄨󵄨

2

) = 0.

(49)

Taking the inner product of (49) with 𝑞
𝑑
in ℓ2, we obtain

1

2

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚
+ (] − 𝛿)

× ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚
+ ((𝛿 (𝛿 − ]) + 𝜇) 𝑢

𝑑
, 𝑞
𝑑
)

+ (𝐴𝑢
𝑑
, 𝑞
𝑑
) − 𝛽 (

󵄨󵄨󵄨󵄨󵄨
𝑧
(1)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)
󵄨󵄨󵄨󵄨󵄨

2

, 𝑞
𝑑
) = 0.

(50)

It is clear that 𝑞
𝑑
= 𝑝̇
𝑑
+ 𝛿𝑝
𝑑
. Then, (50) can be rewritten

as
d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) (𝜇𝑢

2

𝑑𝑚
+ V
2

𝑑𝑚
)

+ 2 (] − 𝛿) ∑
𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚

+ 2𝜇𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚

+ 2𝛿 (𝛿 − ]) (𝑢
𝑑
, 𝑞
𝑑
) + 2 (𝐴𝑢

𝑑
, 𝑞
𝑑
)

− 2𝛽 (
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)
󵄨󵄨󵄨󵄨󵄨

2

, 𝑞
𝑑
) = 0.

(51)

Also, we have

(𝐴𝑢
𝑑
, 𝑞
𝑑
) = (𝐴𝑢

𝑑
, 𝑝̇
𝑑
) + 𝛿 (𝐴𝑢

𝑑
, 𝑝
𝑑
)

= (𝐵𝑢
𝑑
, 𝐵𝑝̇
𝑑
) + 𝛿 (𝐵𝑢

𝑑
, 𝐵𝑝
𝑑
) .

(52)
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By some computations, we get

(𝐵𝑢
𝑑
, 𝐵𝑝̇
𝑑
)

= ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
(𝐵𝑝̇
𝑑
)
𝑚

= ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
[𝜒 (

|𝑚 + 1|

𝑀
) 𝑢̇
𝑑𝑚+1

− 𝜒(
|𝑚|

𝑀
) 𝑢̇
𝑑𝑚
]

= ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
[(𝐵𝑢̇
𝑑
)
𝑚
𝜒(

|𝑚|

𝑀
)

+ (𝜒(
|𝑚 + 1|

𝑀
) − 𝜒(

|𝑚|

𝑀
)) 𝑢̇
𝑑𝑚+1

]

= ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) (𝐵𝑢

𝑑
)
𝑚
(𝐵𝑢̇
𝑑
)
𝑚

+ ∑

𝑚∈Z

𝜒
󸀠

(
𝑚̃

𝑀
)
1

𝑀
(𝑢
𝑑𝑚+1

− 𝑢
𝑑𝑚
)

× (V
𝑑𝑚+1

− 𝛿𝑢
𝑑𝑚+1

)

≥
1

2

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

−
2𝜒
0
(𝜇 + 𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ≥ 𝜏,

𝛿 (𝐵𝑢
𝑑
, 𝐵𝑝
𝑑
)

= 𝛿 ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
(𝐵𝑝
𝑑
)
𝑚

= 𝛿 ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
[𝜒 (

|𝑚 + 1|

𝑀
)𝑢
𝑑𝑚+1

− 𝜒(
|𝑚|

𝑀
)𝑢
𝑑𝑚
]

= 𝛿 ∑

𝑚∈Z

(𝐵𝑢
𝑑
)
𝑚
[(𝐵𝑢
𝑑
)
𝑚
𝜒(

|𝑚|

𝑀
)

+ (𝜒(
|𝑚 + 1|

𝑀
) − 𝜒(

|𝑚|

𝑀
))𝑢
𝑑𝑚+1

]

= 𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 𝛿 ∑

𝑚∈Z

𝜒
󸀠

(
𝑚̃

𝑀
)
1

𝑀
(𝑢
𝑑𝑚+1

− 𝑢
𝑑𝑚
) 𝑢
𝑑𝑚+1

≥ 𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

−
2𝜒
0
𝛿

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ≥ 𝜏.

(53)

Here 𝑚̃ locates between |𝑚 + 1| and |𝑚|. Inserting (53) into
(52), we get

(𝐴𝑢
𝑑
, 𝑞
𝑑
) ≥

1

2

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

−
2𝜒
0
(𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑡 ≥ 𝜏.

(54)

According to Lemma 4, we can see that there exist 𝑡
2
> 𝑡
1

and𝑀
2
(𝜀, 𝜏,B

0
) > 𝑀

1
(𝜀, 𝜏,B

0
), such that when 𝑡 ≥ 𝑡

2
and

𝑀 > 𝑀
2
(𝜀, 𝜏,B

0
),

𝛽 (
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)
󵄨󵄨󵄨󵄨󵄨

2

, 𝑞
𝑑
)

= 𝛽∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)(

󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨

2

) V
𝑑𝑚

≤ 𝛽∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) (
󵄨󵄨󵄨󵄨󵄨
𝑧
(1)

𝑚

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧
(2)

𝑚

󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨V𝑑𝑚

󵄨󵄨󵄨󵄨

≤ 𝛽
√2𝛼]

2𝛽
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨V𝑑𝑚

󵄨󵄨󵄨󵄨

≤
]

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚
+
𝛼

4
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

.

(55)

It follows from (51) and (54)-(55) that when 𝑀 >

𝑀
2
(𝜀, 𝜏,B

0
) and 𝑡 ≥ 𝑡

2
, we have

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) [
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 𝜇𝑢
2

𝑑𝑚
+ V
2

𝑑𝑚
]

+ 2𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 2𝜇𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚
+ (] − 2𝛿)

× ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚
− 2𝛿 (] − 𝛿) (𝑢

𝑑
, 𝑞
𝑑
)

≤
𝛼

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

+
4𝜒
0
(𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

.

(56)

Combining (48) and (56), when 𝑡 ≥ 𝑡
2
, we obtain

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) [
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 𝜇𝑢
2

𝑑𝑚
+ V
2

𝑑𝑚
+
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

]

+ 2𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2
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+
3𝜇𝛿

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚
+ (] − 2𝛿)

× ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚
+
𝛼

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

− 2𝛿 (] − 𝛿) (𝑢
𝑑
, 𝑞
𝑑
) ≤

4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇

×
󵄩󵄩󵄩󵄩𝜓𝑑

󵄩󵄩󵄩󵄩

2

𝐸𝜇

, ∀𝑀 > 𝑀
2
(𝜀, 𝜏,B

0
) .

(57)

Since 𝛿2]2 = 𝜇𝛿(]/2 − 𝛿), we get for any𝑚 ∈ Z that

𝜇𝛿𝑢
2

𝑑𝑚
+ (

]

2
− 𝛿) V

2

𝑑𝑚
− 2𝛿 (] − 𝛿) 𝑢

𝑑𝑚
V
𝑑𝑚

≥ 𝜇𝛿𝑢
2

𝑑𝑚
+ (

]

2
− 𝛿) V

2

𝑑𝑚
− 2𝛿]

󵄨󵄨󵄨󵄨𝑢𝑑𝑚V𝑑𝑚
󵄨󵄨󵄨󵄨 ≥ 0.

(58)

Thus,

𝜇𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚
+ (

]

2
− 𝛿) ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚

− 2𝛿 (] − 𝛿) (𝑢
𝑑
, 𝑞
𝑑
) ≥ 0.

(59)

We then conclude from (57) and (59) that when 𝑀 >

𝑀
2
(𝜀, 𝜏,B

0
) and 𝑡 ≥ 𝑡

2
,

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) [
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+ 𝜇𝑢
2

𝑑𝑚
+ V
2

𝑑𝑚
+
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

]

+ 2𝛿 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨(𝐵𝑢𝑑)𝑚

󵄨󵄨󵄨󵄨

2

+
𝜇𝛿

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)𝑢
2

𝑑𝑚
+ (

]

2
− 𝛿) ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
) V
2

𝑑𝑚

+
𝛼

2
∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝑧𝑑𝑚

󵄨󵄨󵄨󵄨

2

≤
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

.

(60)

Choosing 𝜗 = min{𝛿/2, ]/2 − 𝛿, 𝛼/2}, we obtain

d
d𝑡

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚

󵄨󵄨󵄨󵄨

2

𝐸𝜇

+ 𝜗 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚

󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑
󵄩󵄩󵄩󵄩

2

𝐸𝜇

,

∀𝑡 ≥ 𝑡
2
, ∀𝑀 > 𝑀

2
(𝜀, 𝜏,B

0
) .

(61)

Applying Gronwall inequality to (61) from 𝜏 + 𝑡
2
to 𝜏 +

𝑡 with 𝑡 > 𝑡
2
, we get for every 𝜓

(1)

𝜏
, 𝜓
(2)

𝜏
∈ B

0
, 𝑀 >

𝑀
2
(𝜀, 𝜏,B

0
) and 𝑡 ≥ 𝑡

2
that

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝑡 + 𝜏)

󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ e−𝜗(𝑡−𝑡2)∑
𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝜏 + 𝑡2)

󵄨󵄨󵄨󵄨

2

𝐸𝜇

+
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇
∫

𝜏+𝑡

𝜏+𝑡2

󵄩󵄩󵄩󵄩𝜓𝑑 (𝑠)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

e−𝜗(𝑡+𝜏−𝑠)d𝑠.

(62)

By (39), when𝑀 > 𝑀
2
(𝜀, 𝜏,B

0
) and 𝑡 ≥ 𝑡

2
we have

e−𝜗(𝑡−𝑡2)∑
𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝜏 + 𝑡2)

󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ e−𝜗(𝑡−𝑡2)󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏 + 𝑡2)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

≤ e−𝜗(𝑡−𝑡2)+𝐾2𝑡2󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

,

4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇
∫

𝜏+𝑡

𝜏+𝑡2

󵄩󵄩󵄩󵄩𝜓𝑑 (𝑠)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

e−𝜗(𝑡+𝜏−𝑠)d𝑠

≤
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

× ∫

𝜏+𝑡

𝜏+𝑡2

e−𝜗(𝑡+𝜏)+(𝜗+𝐾2)𝑠−𝐾2𝜏d𝑠

=
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇

󵄩󵄩󵄩󵄩𝜓𝑑(𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

e−𝜗(𝑡+𝜏)−𝐾2𝜏

× ∫

𝜏+𝑡

𝜏+𝑡2

e(𝜗+𝐾2)𝑠d𝑠

≤
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇 (𝜗 + 𝐾
2
)

󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

e𝐾2𝑡.

(63)

Thus, it follows from (62)-(63) that for any 𝑡 ≥ 𝑡
2
and

𝑀 > 𝑀
2
(𝜀, 𝜏,B

0
),

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝑡 + 𝜏)

󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ e−𝜗(𝑡−𝑡2)+𝐾2𝑡2󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

+
4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀𝜇 (𝜗 + 𝐾
2
)

󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)
󵄩󵄩󵄩󵄩

2

𝐸𝜇

e𝐾2𝑡.

(64)

Pick two sufficient large numbers 𝑇∗ ≥ 𝑡
2
and 𝑀

∗

>

𝑀
2
(𝜀, 𝜏,B

0
) to satisfy

e−𝜗(𝑇
∗
−𝑡2)+𝐾2𝑡2 +

4𝜒
0
(2𝜇 + 2𝛿 + 1)

𝑀∗𝜇 (𝜗 + 𝐾
2
)

e𝐾2𝑇
∗

=̇ 𝛾
2

<
1

4
. (65)
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Then, from (64), we have for𝑁∗ > 2𝑀∗ that

∑

|𝑚|>𝑁
∗

󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝑇
∗

+ 𝜏)
󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀∗
)
󵄨󵄨󵄨󵄨𝜓𝑑𝑚 (𝑇

∗

+ 𝜏)
󵄨󵄨󵄨󵄨

2

𝐸𝜇

≤ 𝛾
2󵄩󵄩󵄩󵄩𝜓𝑑 (𝜏)

󵄩󵄩󵄩󵄩

2

𝐸𝜇

;

(66)

that is,
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑃

𝑁
∗) [𝑈 (𝑇

∗

+ 𝜏, 𝜏) 𝜓
(1)

𝜏
− 𝑈 (𝑇

∗

+ 𝜏, 𝜏) 𝜓
(2)

𝜏
]
󵄩󵄩󵄩󵄩󵄩𝐸𝜇

≤ 𝛾
󵄩󵄩󵄩󵄩󵄩
𝜓
(1)

𝜏
− 𝜓
(2)

𝜏

󵄩󵄩󵄩󵄩󵄩𝐸𝜇
,

(67)

where 𝛾 < 1/2. The proof is complete.

Now, we can state the main result of this paper.

Theorem 6. Let the conditions of Lemma 4 hold. Then,
the process {𝑈(𝑡, 𝜏)}

𝑡≥𝜏
associated with (21)-(22) possesses a

pullback exponential attractor {A(𝑡)}
𝑡∈R, satisfying

(1) (compactness and finiteness of dimension) for each
𝑡 ∈ R, {A(𝑡)} is a compact set of 𝐸

𝜇
, and the fractal

dimension dim
𝐹
A(𝑡) is finite and uniformly bounded

in 𝑡; that is,

sup
𝑡∈R

dim
𝐹
A (𝑡) < ∞; (68)

(2) (positive invariant property) 𝑈(𝑡, 𝜏)A(𝜏) ⊂ A(𝑡) for
all 𝑡 ≥ 𝜏;

(3) (pullback exponential attractivity) there exist an expo-
nent 𝜂 > 0 and two positive-valued functions 𝑄,F :

R
+
󳨃→ R
+
, such that for any bounded setB ⊂ 𝐸

𝜇
,

Dist
𝐸𝜇
(𝑈 (𝑡, 𝜏)B,A (𝑡)) ≤ 𝑄 (‖B‖

𝐸𝜇
) e−𝜂(𝑡−𝜏),

𝜏 ∈ R, 𝜏 +F (‖B‖
𝐸𝜇
) ≤ 𝑡 < ∞,

(69)

where Dist
𝐸𝜇
(⋅, ⋅) is the Hausdorff semidistance between two

subsets of 𝐸
𝜇
.

Proof. Using Lemmas 2.3 and 3.1 and Theorem 2 of [30], we
obtain the result.

Remark 7. The spectrum of Lyapunov exponents is the most
precise tool for identification of the character of motion of
a dynamical system [38]. There are some works on the esti-
mation of the dominant Lyapunov exponent of nonsmooth
systems by means of synchronization method, one can refer
to the articles of Stefański et al. [38–40]. In [38], Stefański
and Kapitaniak presented a method to estimate the value
of largest Lyapunov exponent both for discrete dynamical
systems of known difference equations and also for discrete
maps reconstructed from the time evolution of the given
system. Following this clue, we can ask naturally the problem

that whether the method presented in [38] could be applied
to estimate Lyapunov exponents for the trajectories on the
pullback attractor {A(𝑡)}. It is an interesting and challenging
issue for us to investigate.
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