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We propose a two-dimensional predatory-prey model with discrete and distributed delay. By the use of a new variable, the original
two-dimensional system transforms into an equivalent three-dimensional system. Firstly, we study the existence and local stability
of equilibria of the new system. And, by choosing the time delay 𝜏 as a bifurcation parameter, we show that Hopf bifurcation can
occur as the time delay 𝜏 passes through some critical values. Secondly, by the use of normal form theory and central manifold
argument, we establish the direction and stability of Hopf bifurcation. At last, an example with numerical simulations is provided
to verify the theoretical results. In addition, some simple discussion is also presented.

1. Introduction

Since the pioneering theoretical works by Lotka [1] and
Volterra [2], there were a lot of authors who studied all kinds
of predator-prey models modeled by ordinary differential
equations (ODEs). To reflect that the dynamical behavior of
the models depends on the past history of the system, it is
often necessary to incorporate time delays into the models.
Therefore, a more realistic predator-prey model should be
described by delayed differential equations (DDEs) [3–11]. In
general, delay differential equations exhibitmore complicated
dynamics on stability, periodic structure, bifurcation, and so
on [12–26]. In [27, 28], the authors investigated the effect of
the discrete delay on the stability of the model. In [29], the
effect of the distributed delay on the stability of themodel was
investigated. In [11], the authors proposed a Logistic model
with discrete and distributed delays:

𝑥


(𝑡) = 𝑟𝑥 (𝑡) [1 − 𝑎
1
𝑥 (𝑡 − 𝜏) − 𝑎

2
∫

𝑡

−∞

𝑓 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] ,

(1)

where the parameters 𝑟, 𝜏, 𝑎
1
, 𝑎
2
are positive constants. The

function 𝑓 in (1) is called the delayed kernel, which is the
weight given to the population 𝑡 time units ago. And it was

assumed that 𝑓(𝑡) ≥ 0 for all 𝑡 ≥ 0, together with the
normalization condition

∫

∞

0

𝑓 (𝑡) d𝑡 = 1, (2)

which ensures that the steady states of the model (1) are
unaffected by the delay. They studied the stability of the
positive equilibrium and existence of Hopf bifurcations, and
direction and stability of the Hopf bifurcation were also
analyzed. In [7], the authors proposed and investigated the
following predator-prey model with time delay:

𝑥


(𝑡) = 𝑥 (𝑡) [𝑟
1
− 𝑎
11
𝑥 (𝑡 − 𝜏) − 𝑎

12
𝑦 (𝑡 − 𝜏)] ,

𝑦


(𝑡) = 𝑦 (𝑡) [−𝑟
2
+ 𝑎
21
𝑥 (𝑡 − 𝜏) − 𝑎

22
𝑦 (𝑡 − 𝜏)] ,

(3)

where 𝑥(𝑡) and 𝑦(𝑡) can be interpreted as the population
densities of the prey and the predator at time 𝑡, respectively.
𝑟
1
> 0 denotes the intrinsic growth rate of the prey, and 𝑟

2
> 0

denotes the death rate of the predator. For the convenience
of computation, they chose the same 𝜏 > 0 as delays; the
delay 𝜏 represents the feedback time delay of the prey species
to the growth of itself in term 𝑎

11
𝑥(𝑡 − 𝜏), represents the

feedback time delay of the predator species to the growth
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of itself in term 𝑎
22
𝑦(𝑡 − 𝜏), represents the hunting delay in

term 𝑎
12
𝑦(𝑡 − 𝜏), and represents the time of the predator

maturation in term 𝑎
21
𝑥(𝑡−𝜏).The parameters 𝑎

𝑖𝑗
(𝑖, 𝑗 = 1, 2)

are all positive constants. They studied the stability of the
positive equilibrium and existence of Hopf bifurcations.

Motivated by [7, 11, 27–29] and the references cited
therein, in the present paper, we will consider the following
predator-prey model with discrete and distributed delay:

𝑁


(𝑡) = 𝑁 (𝑡) [𝛼
1
− 𝑎
11
𝑁(𝑡 − 𝜏) − 𝑎

12
𝑃 (𝑡 − 𝜏)] ,

𝑃


(𝑡)

= 𝑃 (𝑡) [−𝛼
2
+ 𝑎
21
∫

𝑡

−∞

𝐺 (𝑡 − 𝑠)𝑁 (𝑠) d𝑠 − 𝑎
22
𝑃 (𝑡 − 𝜏)] ,

(4)

where 𝑁(𝑡) and 𝑃(𝑡) can be interpreted as the population
densities of the prey and the predator at time 𝑡, respectively.
𝛼
1
> 0 denotes the intrinsic growth rate of the prey and𝛼

2
> 0

denotes the death rate of the predator; 𝜏 > 0 represents the
feedback time delay of the prey species to the growth of itself
in term 𝑎

11
𝑁(𝑡− 𝜏), represents the feedback time delay of the

predator species to the growth of itself in term 𝑎
22
𝑃(𝑡 − 𝜏),

and represents the hunting delay in term 𝑎
12
𝑃(𝑡 − 𝜏); 𝑎

𝑖𝑗
>

0 (𝑖, 𝑗 = 1, 2). The function 𝐺(𝑡) is the same as the function
𝑓(𝑠) in system (1). Following the ideas of Cushing [30], we
define 𝐺(𝑡) as the following weak kernel function:

𝐺 (𝑡) = 𝛼𝑒
−𝛼𝑡

, 𝛼 > 0. (5)

Next, we define a new variable:

𝑢 (𝑡) = ∫

𝑡

−∞

𝛼𝑒
−𝛼(𝑡−𝑠)

𝑁(𝑠) d𝑠, (6)

then using the linear chain trick technique, system (4) can be
transformed into the following equivalent system:

𝑁


(𝑡) = 𝑁 (𝑡) [𝛼
1
− 𝑎
11
𝑁(𝑡 − 𝜏) − 𝑎

12
𝑃 (𝑡 − 𝜏)] ,

𝑃


(𝑡) = 𝑃 (𝑡) [−𝛼
2
+ 𝑎
21
𝑢 (𝑡) − 𝑎

22
𝑃 (𝑡 − 𝜏)] ,

𝑢


(𝑡) = 𝛼𝑁 (𝑡) − 𝛼𝑢 (𝑡) .

(7)

The organization of this paper is as follows. In Section 2,
wewill consider the existence and stability of equilibria of sys-
tem (7).The existence ofHopf bifurcation is also discussed. In
Section 3, by use of normal form theory and central manifold
argument, we illustrate the direction and stability of Hopf
bifurcation. In Section 4, we provide an example with some
numerical simulations to verify the theoretical results, andwe
also give some brief discussion.

2. Local Stability of Equilibria and
the Existence of Hopf Bifurcations

In this section, we will finish two tasks: (a) investigating the
existence and stability of equilibriums of system (7) and (b)
studying the effect of time delay on the system (7); that is,

we will choose 𝜏 as bifurcating parameter to analyze Hopf
bifurcation.

Let the right equations of system (7) equal zero; we get the
following algebraic equations:

𝑁 = 𝑁(𝛼
1
− 𝑎
11
𝑁 − 𝑎

12
𝑃) ,

𝑃 = 𝑃 (−𝛼
2
+ 𝑎
21
𝑢 − 𝑎
22
𝑃) ,

𝑢 = 𝛼𝑁 − 𝛼𝑢.

(8)

By simple computation, we know that the trivial equilib-
rium and boundary equilibrium of system (7) always exist
with values 𝐸

0
= (0, 0, 0) and 𝐸

1
= (𝛼

1
/𝑎
11
, 0, 𝛼
1
/𝑎
11
),

respectively. In addition, we have the following results.

(i) The eigenvalues of characteristic equations at the
trivial equilibrium 𝐸

0
are 𝜆
1
= 𝛼
1
> 0, 𝜆

2
= −𝛼
2
< 0,

and 𝜆
3
= −𝛼 < 0, which means that this equilibrium

is always unstable.
(ii) The eigenvalues of characteristic equations at the

boundary equilibrium𝐸
1
are𝜆
1
= 0 and𝜆

2
= −𝛼 < 0,

and other eigenvalues are determined by 𝜆+𝛼
1
𝑒
−𝜆𝜏

=

0. When 𝜏 = 0, it is easy to see that 𝜆
3
= −𝛼
1
< 0,

which means that this equilibrium is locally stable;
whereas when 𝜏 > 0, the sign of the real part of the
eigenvalues can not be determined, which means that
this equilibrium may be locally stable or unstable.

In fact, there exists a unique positive equilibrium 𝐸
2
=

(𝑁
∗
, 𝑢
∗
, 𝑃
∗
) for system (7) provided that 𝛼

1
𝑎
21
− 𝛼
2
𝑎
11

> 0,
holds. Here

𝑁
∗
= 𝑢
∗
=

𝛼
1
𝑎
22
+ 𝛼
2
𝑎
12

𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21

, 𝑃
∗
=

𝛼
1
𝑎
21
− 𝛼
2
𝑎
11

𝑎
11
𝑎
22
+ 𝑎
12
𝑎
21

.

(9)

Next, we always assume that

(H1) 𝛼
1
𝑎
21
− 𝛼
2
𝑎
11

> 0 holds.

The characteristic equation for system (7) at the equilib-
rium 𝐸

2
takes the form

𝜆
3
+ 𝑑
1
𝜆
2
+ (𝑑
2
𝜆
2
+ 𝑑
3
𝜆 + 𝑑
4
) 𝑒
−𝜆𝜏

+ (𝑑
5
𝜆 + 𝑑
6
) 𝑒
−2𝜆𝜏

= 0,

(10)

where

𝑑
1
= 𝛼, 𝑑

2
= 𝑎
11
𝑁
∗
+ 𝑎
22
𝑃
∗
,

𝑑
3
= 𝛼𝑎
11
𝑁
∗
+ 𝛼𝑎
22
𝑃
∗
,

𝑑
4
= 𝛼𝑎
21
𝑎
12
𝑁
∗
𝑃
∗
, 𝑑

5
= 𝑎
11
𝑎
22
𝑁
∗
𝑃
∗
,

𝑑
6
= 𝛼𝑎
11
𝑎
22
𝑁
∗
𝑃
∗
.

(11)

Multiplying 𝑒𝜆𝜏 onboth sides of (10), we obtain equivalent
characteristic equation as

(𝜆
3
+ 𝑑
1
𝜆
2
) 𝑒
𝜆𝜏

+ (𝑑
2
𝜆
2
+ 𝑑
3
𝜆 + 𝑑
4
) + (𝑑

5
𝜆 + 𝑑
6
) 𝑒
−𝜆𝜏

= 0.

(12)
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When 𝜏 = 0, characteristic equation (10) or (12) becomes

𝜆
3
+ (𝑑
1
+ 𝑑
2
) 𝜆
2
+ (𝑑
3
+ 𝑑
5
) 𝜆 + 𝑑

4
+ 𝑑
6
= 0. (13)

It is easy to confirm that 𝑑
1
+ 𝑑
2
> 0, 𝑑

4
+ 𝑑
6
> 0 and (𝑑

1
+

𝑑
2
)(𝑑
3
+ 𝑑
5
) > 𝑑

4
+ 𝑑
6
. By the Routh-Hurwitz criterion we

know that all the roots of (13) have negative real parts. Thus,
the positive equilibrium 𝐸

2
is locally asymptotically stable for

𝜏 = 0.
Next, we will consider the eigenvalues of (12) for 𝜏 > 0.

Suppose that there is a pure imaginary root 𝜆 = 𝑖𝜔, 𝜔 > 0,
then we get

(−𝑖𝜔
3
− 𝑑
1
𝜔
2
) (cos𝜔𝜏 + 𝑖 sin𝜔𝜏) − 𝑑

2
𝜔
2
+ 𝑑
3
𝑖𝜔

+ 𝑑
4
+ (𝑑
5
𝑖𝜔 + 𝑑

6
) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0.

(14)

Separating the real and imaginary parts, we have

(−𝑑
1
𝜔
2
+ 𝑑
6
) cos𝜔𝜏 + (𝜔

3
+ 𝑑
5
𝜔) sin𝜔𝜏 = 𝑑

2
𝜔
2
− 𝑑
4
,

(𝑑
5
𝜔 − 𝜔

3
) cos𝜔𝜏 − (𝑑

1
𝜔
2
+ 𝑑
6
) sin𝜔𝜏 = −𝑑

3
𝜔.

(15)

By simple calculation, we can obtain the following equations:

sin𝜔𝜏 =

𝑑
2
𝜔
5
+ (𝑑
1
𝑑
3
− 𝑑
4
− 𝑑
2
𝑑
5
) 𝜔
3
+ (𝑑
4
𝑑
5
− 𝑑
3
𝑑
6
) 𝜔

𝜔
6
+ 𝑑
2

1
𝜔
4
− 𝑑
2

5
𝜔
2
− 𝑑
2

6

,

cos𝜔𝜏 =

(𝑑
3
− 𝑑
1
𝑑
2
) 𝜔
4
+ (𝑑
1
𝑑
4
− 𝑑
2
𝑑
6
+ 𝑑
3
𝑑
5
) 𝜔
2
+ 𝑑
4
𝑑
6

𝜔
6
+ 𝑑
2

1
𝜔
4
− 𝑑
2

5
𝜔
2
− 𝑑
2

6

.

(16)

Let

𝑒
1
= 𝑑
2

1
, 𝑒

2
= −𝑑
2

5
, 𝑒

3
= −𝑑
2

6
,

𝑒
4
= 𝑑
2
, 𝑒

5
= 𝑑
1
𝑑
3
− 𝑑
4
− 𝑑
2
𝑑
5
,

𝑒
6
= 𝑑
4
𝑑
5
− 𝑑
3
𝑑
6
, 𝑒

7
= 𝑑
3
− 𝑑
1
𝑑
2
,

𝑒
8
= 𝑑
1
𝑑
4
− 𝑑
2
𝑑
6
+ 𝑑
3
𝑑
5
, 𝑒

9
= 𝑑
4
𝑑
6
,

(17)

then sin𝜔𝜏, cos𝜔𝜏 can be written as

sin𝜔𝜏 =

𝑒
4
𝜔
5
+ 𝑒
5
𝜔
3
+ 𝑒
6
𝜔

𝜔
6
+ 𝑒
1
𝜔
4
+ 𝑒
2
𝜔
2
+ 𝑒
3

, (18)

cos𝜔𝜏 =

𝑒
7
𝜔
4
+ 𝑒
8
𝜔
2
+ 𝑒
9

𝜔
6
+ 𝑒
1
𝜔
4
+ 𝑒
2
𝜔
2
+ 𝑒
3

. (19)

By adding the square of (18) and (19), we obtain

𝜔
12
+ 𝑓
1
𝜔
10
+ 𝑓
2
𝜔
8
+ 𝑓
3
𝜔
6
+ 𝑓
4
𝜔
4
+ 𝑓
5
𝜔
2
+ 𝑓
6
= 0, (20)

where

𝑓
1
= 2𝑒
1
− 𝑒
2

4
, 𝑓

2
= 𝑒
2

1
+ 2𝑒
2
− 2𝑒
4
𝑒
5
− 𝑒
2

7
,

𝑓
3
= 2𝑒
3
+ 2𝑒
1
𝑒
2
− 2𝑒
4
𝑒
6
− 2𝑒
7
𝑒
8
− 𝑒
2

5
,

𝑓
4
= 2𝑒
1
𝑒
3
+ 𝑒
2

2
− 2𝑒
5
𝑒
6
− 2𝑒
7
𝑒
9
− 𝑒
2

8
,

𝑓
5
= 2𝑒
2
𝑒
3
− 𝑒
2

6
− 2𝑒
8
𝑒
9
, 𝑓

6
= 𝑒
2

3
− 𝑒
2

9
.

(21)

Denote 𝑧 = 𝜔
2, then (20) becomes

𝑧
6
+ 𝑓
1
𝑧
5
+ 𝑓
2
𝑧
4
+ 𝑓
3
𝑧
3
+ 𝑓
4
𝑧
2
+ 𝑓
5
𝑧 + 𝑓
6
= 0. (22)

Let

𝐺 (𝑧) = 𝑧
6
+ 𝑓
1
𝑧
5
+ 𝑓
2
𝑧
4
+ 𝑓
3
𝑧
3
+ 𝑓
4
𝑧
2
+ 𝑓
5
𝑧 + 𝑓
6
, (23)

then the following assumption holds true.

(H2) Equation (22) has at least one positive real root.

In fact, if all the parameters of system (7) are given, it is
easy to calculate the root of (22) by using a computer. Since
lim
𝑧→∞

𝐺(𝑧) = +∞, we conclude that if𝑓
6
< 0, then (22) has

at least one positive real root. Without loss of generality, we
assume that (22) has six positive roots, defined by 𝑧

1
, 𝑧
2
, 𝑧
3
,

𝑧
4
, 𝑧
5
, and 𝑧

6
, respectively. Then (20) has six positive roots:

𝜔
1
= √𝑧
1
, 𝜔

2
= √𝑧
2
, 𝜔

3
= √𝑧
3
,

𝜔
4
= √𝑧
4
, 𝜔

5
= √𝑧
5
, 𝜔

6
= √𝑧
6
.

(24)

By (19), we get

cos𝜔
𝑘
𝜏 =

𝑒
7
𝜔
4

𝑘
+ 𝑒
8
𝜔
2

𝑘
+ 𝑒
9

𝜔
6

𝑘
+ 𝑒
1
𝜔
4

𝑘
+ 𝑒
2
𝜔
2

𝑘
+ 𝑒
3

. (25)

If we denote

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

{arccos(
𝑒
7
𝜔
4

𝑘
+ 𝑒
8
𝜔
2

𝑘
+ 𝑒
9

𝜔
6

𝑘
+ 𝑒
1
𝜔
4

𝑘
+ 𝑒
2
𝜔
2

𝑘
+ 𝑒
3

) + 2𝑗𝜋} , (26)

where 𝑘 = 1, 2, . . . , 6 and 𝑗 = 0, 1, 2, . . ., then ±𝑖𝜔
𝑘
is a pair

of purely imaginary roots of (12). Define

𝜏
0
= 𝜏
(0)

𝑘0

= min
𝑘∈{1,2,...,6}

{𝜏
(0)

𝑘
} , 𝜔

0
= 𝜔
𝑘0
. (27)

Here, we use the method by [25–27], which is different from
[31].

In order to obtain the main result, it is necessary to make
the following assumption.

(H3) Re(𝑑𝜆/𝑑𝜏)|
𝜏=𝜏0

̸= 0.

Taking the derivative of 𝜆 with respect to 𝜏 in (12), it is easy
to obtain

(3𝜆
2
+ 2𝑑
1
𝜆) 𝑒
𝜆𝜏 𝑑𝜆

𝑑𝜏

+ (𝜆
3
+ 𝑑
1
𝜆
2
) 𝑒
𝜆𝜏
(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏

)

+ (2𝑑
2
𝜆 + 𝑑
3
)

𝑑𝜆

𝑑𝜏

+ 𝑑
5
𝑒
−𝜆𝜏 𝑑𝜆

𝑑𝜏

+ (𝑑
5
𝜆 + 𝑑
6
) 𝑒
−𝜆𝜏

(−𝜆 − 𝜏

𝑑𝜆

𝑑𝜏

) = 0,

(28)

which is equivalent to

𝑑𝜆

𝑑𝜏

= (𝜆 (𝑑
5
𝜆 + 𝑑
6
) 𝑒
−𝜆𝜏

− 𝜆 (𝜆
3
+ 𝑑
1
𝜆
2
) 𝑒
𝜆𝜏
)

× ((3𝜆
2
+ 2𝑑
1
𝜆) 𝑒
𝜆𝜏

+ (𝜆
3
+ 𝑑
1
𝜆
2
) 𝜏𝑒
𝜆𝜏

+𝑑
5
𝑒
−𝜆𝜏

− (𝑑
5
𝜆 + 𝑑
6
) 𝜏𝑒
−𝜆𝜏

+ 2𝑑
2
𝜆 + 𝑑
3
)

−1

.

(29)
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By (12), we have

(

𝑑𝜆

𝑑𝜏

)

−1

=

(3𝜆
2
+ 2𝑑
1
𝜆) 𝑒
𝜆𝜏

+ 𝑑
5
𝑒
−𝜆𝜏

+ 2𝑑
2
𝜆 + 𝑑
3

𝜆 (𝑑
5
𝜆 + 𝑑
6
) 𝑒
−𝜆𝜏

− 𝜆 (𝜆
3
+ 𝑑
1
𝜆
2
) 𝑒
𝜆𝜏

−

𝜏

𝜆

(30)

=

(3𝜆
2
+ 2𝑑
1
𝜆) 𝑒
𝜆𝜏

+ 𝑑
5
𝑒
−𝜆𝜏

+ 2𝑑
2
𝜆 + 𝑑
3

𝑑
2
𝜆
3
+ 𝑑
3
𝜆
2
+ 𝑑
4
𝜆 + 2𝜆 (𝑑

5
𝜆 + 𝑑
6
) 𝑒
−𝜆𝜏

−

𝜏

𝜆

.

(31)

Take 𝜆 = 𝑖𝜔 into the above equation, we get

((−3𝜔
2
+ 2𝑑
1
𝑖𝜔) (cos𝜔𝜏 + 𝑖 sin𝜔𝜏)

+ 𝑑
5
(cos𝜔𝜏 − 𝑖 sin𝜔𝜏) + 2𝑑

2
𝑖𝜔 + 𝑑

3
)

× (−𝑑
2
𝑖𝜔
3
− 𝑑
3
𝜔
2
+ 𝑑
4
𝑖𝜔 + 2𝑖𝜔 (𝑑

5
𝑖𝜔 + 𝑑

6
)

× (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) )
−1

−

𝜏

𝑖𝜔

= ((−3𝜔
2
+ 𝑑
5
) cos𝜔𝜏 − 2𝑑

1
𝜔 sin𝜔𝜏 + 𝑑

3

+ 𝑖 [(−3𝜔
2
− 𝑑
5
) sin𝜔𝜏 + 2𝑑

1
𝜔 cos𝜔𝜏 + 2𝑑

2
𝜔])

× ((−3𝑑
3
𝜔
2
− 2𝑑
5
𝜔
2 cos𝜔𝜏 + 2𝑑

6
𝜔 sin𝜔𝜏)

+ 𝑖 (−𝑑
2
𝜔
3
+ 𝑑
4
𝜔 + 2𝑑

6
𝜔 cos𝜔𝜏

+2𝑑
5
𝜔
2 sin𝜔𝜏)

−1

) −

𝜏

𝑖𝜔

.

(32)

Let

𝑄 = (−3𝑑
3
𝜔
2
− 2𝑑
5
𝜔
2 cos𝜔𝜏 + 2𝑑

6
𝜔 sin𝜔𝜏)

2

+ (−𝑑
2
𝜔
3
+ 𝑑
4
𝜔 + 2𝑑

6
𝜔 cos𝜔𝜏 + 2𝑑

5
𝜔
2 sin𝜔𝜏)

2

> 0.

(33)

Then we get

𝑄Re(𝑑𝜆
𝑑𝜏

)

−1

= [(−3𝑑
3
𝜔
2
+ 𝑑
5
) cos𝜔𝜏 − 2𝑑

1
𝜔 sin𝜔𝜏 + 𝑑

3
]

× [−3𝑑
3
𝜔
2
− 2𝑑
5
𝜔
2 cos𝜔𝜏 + 2𝑑

6
𝜔 sin𝜔𝜏]

+ [(−3𝜔
2
− 𝑑
5
) sin𝜔𝜏 + 2𝑑

1
𝜔 cos𝜔𝜏 + 2𝑑

2
𝜔]

× [−𝑑
2
𝜔
3
+ 𝑑
4
𝜔 + 2𝑑

6
𝜔 cos𝜔𝜏 + 2𝑑

5
𝜔
2 sin𝜔𝜏] .

(34)

Note that

Sign{Re (𝑑𝜆
𝑑𝜏

)








𝜏=𝜏0

} = Sign{Re (𝑑𝜆
𝑑𝜏

)

−1






𝜏=𝜏0

} . (35)

Now, we can use the following lemma to get our result.

Lemma 1 (see [32]). Consider the exponential polynomial

𝑃 (𝜆, 𝑒
−𝜆𝜏1

, 𝑒
−𝜆𝜏2

, . . . , 𝑒
−𝜆𝜏𝑚

)

= 𝜆
𝑛
+ 𝑝
(0)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(0)

𝑛−1
𝜆 + 𝑝
(0)

𝑛

+ [𝑝
(1)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(1)

𝑛−1
𝜆 + 𝑝
(1)

𝑛
] 𝑒
−𝜆𝜏1

+ ⋅ ⋅ ⋅ + [𝑝
(𝑚)

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
(𝑚)

𝑛−1
𝜆 + 𝑝
(𝑚)

𝑛
] 𝑒
−𝜆𝜏𝑚

,

(36)

where 𝜏
𝑖
≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝

(𝑖)

𝑗
(𝑖 = 0, 1, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half plane can change only if a zero appears on or crosses the
imaginary axis.

Theorem 2. Suppose that (H1), (H2), and (H3) hold; then the
following results hold.

(i) Thepositive equilibrium𝐸
2
of system (7) (or the positive

equilibrium (𝑁
∗
, 𝑃
∗
) of system (4)) is asymptotically

stable for 𝜏 ∈ [0, 𝜏
0
).

(ii) The positive equilibrium 𝐸
2
of system (7) or system

(4) undergoes a Hopf bifurcation when 𝜏 = 𝜏
0
. That

is, system (7) has a branch of periodic of solutions
bifurcating from the positive equilibrium 𝐸

2
near 𝜏 =

𝜏
0
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, following the ideas of [33], we derive the
explicit formulae for determining the properties of the Hopf
bifurcation at critical value of 𝜏

0
by using the normal form

and the center manifold theory. Throughout this section, we
always assume that system (7) undergoes Hopf bifurcation at
the positive equilibrium 𝐸

2
for 𝜏 = 𝜏

0
, and then ±𝑖𝜔

0
is the

corresponding purely imaginary roots of the characteristic
equation at the positive equilibrium 𝐸

2
.

Let 𝑥
1
= 𝑁 − 𝑁

∗
, 𝑥
2
= 𝑢 − 𝑢

∗
, 𝑥
3
= 𝑃 − 𝑃

∗
, 𝑥
𝑖
(𝑡) =

𝑥
𝑖
(𝜏𝑡), 𝜏 = 𝜏

0
+ 𝜇, dropping the bars for simplification

of notations; then system (7) is transformed into functional
differential equations in 𝐶 = 𝐶([−1, 0], 𝑅

3
) as

𝑥


(𝑡) = 𝐿
𝜇
(𝑥
𝑡
) + 𝑓 (𝜇, 𝑥

𝑡
) , (37)
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where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡))
𝑇
∈ 𝑅
3, 𝐿
𝜇
: 𝐶 → 𝑅, 𝑓 :

𝑅 × 𝐶 → 𝑅
3, and

𝐿
𝜇
(𝜙) = (𝜏

0
+ 𝜇)[

[

0 0 0

𝛼 −𝛼 0

0 𝑎
21
𝑃
∗

0

]

]

[

[

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

]

]

+ (𝜏
0
+ 𝜇)[

[

−𝑎
11
𝑁
∗

0 −𝑎
12
𝑁
∗

0 0 0

0 0 −𝑎
22
𝑃
∗

]

]

[

[

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

]

]

,

(38)

𝑓 (𝜇, 𝜙) = (𝜏
0
+ 𝜇)[

[

−𝑎
11
𝜙
1
(0) 𝜙
1
(−1) − 𝑎

12
𝜙
1
(0) 𝜙
3
(−1)

0

𝑎
21
𝜙
2
(0) 𝜙
3
(0) − 𝑎

22
𝜙
3
(0) 𝜙
3
(−1)

]

]

,

(39)

where 𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙
2
(𝜃), 𝜙
3
(𝜃))
𝑇

∈ 𝐶. By the Riesz
representation theorem, there exists a function 𝜂(𝜃, 𝜇) of
bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶. (40)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏
0
+ 𝜇)[

[

0 0 0

𝛼 −𝛼 0

0 𝑎
21
𝑃
∗

0

]

]

𝛿 (𝜃)

− (𝜏
0
+ 𝜇)

[

[

−𝑎
11
𝑁
∗

0 −𝑎
12
𝑁
∗

0 0 0

0 0 −𝑎
22
𝑃
∗

]

]

𝛿 (𝜃 + 1) ,

(41)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ 𝐶
1
([−1, 0], 𝑅

3
),

define

𝐴 (𝜇) 𝜙 =

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1
𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(42)

Then system (37) is equivalent to

𝑥


(𝑡) = 𝐴 (𝜇) 𝑥
𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (43)

where 𝑥
𝑡
= 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−1, 0]. For 𝜓 ∈ 𝐶

1
([0, 1], (𝑅

3
)
∗
),

define

𝐴
∗
𝜓 (𝑠) =

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1
𝑑𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(44)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩

= 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(45)

where 𝜂(𝜃) = 𝜂(𝜃, 0).Then𝐴(0) and𝐴∗ are adjoint operators.
By the discussion in Section 2, we know ±𝑖𝜔

0
𝜏
0
are eigenval-

ues of 𝐴(0). Thus, they are also eigenvalues of 𝐴∗. We need
to compute the eigenvector of 𝐴(0) and 𝐴∗ corresponding to
𝑖𝜔
0
𝜏
0
and −𝑖𝜔

0
𝜏
0
, respectively.

Suppose that 𝑞(𝜃) = (1, 𝑞
1
, 𝑞
2
)
𝑇
𝑒
𝑖𝜃𝜔0𝜏0 is the eigenvalues

of𝐴(0) corresponding to 𝑖𝜔
0
𝜏
0
: then𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝜏
0
𝑞(𝜃). It

follows from the definition of 𝐴(0) and 𝜂(𝜃, 𝜇) that

𝜏
0
[

[

0 0 0

𝛼 −𝛼 0

0 𝑎
21
𝑃
∗

0

]

]

𝑞 (0)

+ 𝜏
0
[

[

−𝑎
11
𝑁
∗

0 −𝑎
12
𝑁
∗

0 0 0

0 0 −𝑎
22
𝑃
∗

]

]

𝑞 (−1) = 𝑖𝜔
0
𝜏
0
𝑞 (0) ,

(46)

because 𝑞(−1) = 𝑞(0)𝑒
−𝑖𝜔0𝜏0 ; then we get

[

[

𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
−𝑖𝜔0𝜏0

0 𝑎
12
𝑁
∗
𝑒
−𝑖𝜔0𝜏0

−𝛼 𝑖𝜔
0
+ 𝛼 0

0 −𝑎
21
𝑃
∗

𝑖𝜔
0
+ 𝑎
22
𝑃
∗
𝑒
−𝑖𝜔0𝜏0

]

]

[

[

1

𝑞
1

𝑞
2

]

]

= [

[

0

0

0

]

]

,

(47)

where

𝑞
1
=

𝛼𝑖𝜔
0
+ 𝛼 (𝑎

12
+ 𝑎
11
)𝑁
∗
𝑒
−𝑖𝜔0𝜏0

𝑖𝜔
0
𝑎
12
𝑁
∗exp−𝑖𝜔0𝜏0

,

𝑞
2
= −

𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
−𝑖𝜔0𝜏0

𝑎
12
𝑁
∗exp−𝑖𝜔0𝜏0

.

(48)

Similarly, let 𝑞∗(𝜃) = 𝐷(1, 𝑞
∗

1
, 𝑞
∗

2
)𝑒
𝑖𝜃𝜔0𝜏0 be the eigenvalues

of𝐴∗ corresponding to −𝑖𝜔
0
𝜏
0
; according to the definition of

𝐴
∗ we get

𝜏
0
[

[

0 𝛼 0

0 −𝛼 𝑎
21
𝑃
∗

0 0 0

]

]

𝑞
∗

(0)

+ 𝜏
0
[

[

−𝑎
11
𝑁
∗

0 0

0 0 0

−𝑎
12
𝑁
∗

0 −𝑎
22
𝑃
∗

]

]

𝑞
∗

(−1) = −𝑖𝜔
0
𝜏
0
𝑞
∗

(0) ,

(49)
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where 𝑞∗(−1) = 𝑞
∗
(0)𝑒
−𝑖𝜔0𝜏0 , from which we obtain

[

[

−𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
−𝑖𝜔0𝜏0

−𝛼 0

0 −𝑖𝜔
0
+ 𝛼 −𝑎

21
𝑃
∗

𝑎
12
𝑁
∗
𝑒
𝑖𝜔0𝜏0

0 −𝑖𝜔
0
+ 𝑎
22
𝑃
∗
𝑒
−𝑖𝜔0𝜏0

]

]

× [

[

1

𝑞
∗

1

𝑞
∗

2

]

]

= [

[

0

0

0

]

]

,

𝑞
∗

1
=

−𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
𝑖𝜔0𝜏0

𝛼

,

𝑞
∗

2
= −

−𝑖𝜔
0
+ 𝑎
22
𝑃
∗
𝑒
𝑖𝜔0𝜏0

𝑎
12
𝑁
∗
𝑒
𝑖𝜔0𝜏0

.

(50)

By (45) we get

⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩ = 𝐷 (1, 𝑞
∗

1
, 𝑞
∗

2
) (1, 𝑞

1
, 𝑞
2
)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝑞
∗

1
, 𝑞
∗

2
) 𝑒
−𝑖𝜔0𝜏0(𝜉−𝜃)

× 𝑑𝜂 (𝜃) (1, 𝑞
1
, 𝑞
2
)
𝑇

𝑒
𝑖𝜔0𝜏0𝜉

𝑑𝜉

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2

− ∫

0

−1

(1, 𝑞
∗

1
, 𝑞
∗

2
) 𝜃𝑒
𝑖𝜔0𝜏0𝜃

𝑑𝜂 (𝜃)

×(1, 𝑞
1
, 𝑞
2
)
𝑇

}

= 𝐷{1 + 𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2

+ 𝜏 ( − 𝑎
11
𝑁
∗
− 𝑎
12
𝑁
∗
𝑞
2

−𝑎
22
𝑃
∗
𝑞
2
𝑞
∗

2
) 𝑒
−𝑖𝜔0𝜏0

} ,

(51)

then we choose

𝐷 = 1 × (1 + 𝑞
1
𝑞
∗

1
+ 𝑞
2
𝑞
∗

2

+𝜏 (−𝑎
11
𝑁
∗
− 𝑎
12
𝑁
∗
𝑞
2
− 𝑎
22
𝑃
∗
𝑞
2
𝑞
∗

2
) 𝑒
−𝑖𝜔0𝜏0

)

−1

(52)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
Next, we will use the ideas in [33] to compute the

coordinates describing center manifold 𝐶
0
at 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑥
𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑥

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(53)

On the center manifold 𝐶
0
, we have

𝑊(𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) = 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

(54)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞∗(𝑠) and 𝑞(𝜃). Note that𝑊 is real if 𝑥
𝑡
is real.

We consider only real solutions. For the solution 𝑥
𝑡
∈ 𝐶
0
of

(43), since 𝜇 = 0, we have

𝑧


(𝑡) = 𝑖𝜔
0
𝜏
0
𝑧 + 𝑞
∗

(0) 𝑓 (0,𝑊 (𝑧, 𝑧, 0)) + 2Re {𝑧𝑞 (𝜃)}

= 𝑖𝜔
0
𝜏
0
𝑧 + 𝑞
∗

(0) 𝑓
0
(𝑧, 𝑧)

= 𝑖𝜔
0
𝜏
0
𝑧 (𝑡) + 𝑔 (𝑧, 𝑧, ) ,

(55)

where

𝑔 (𝑧, 𝑧, ) = 𝑞
∗

(0) 𝑓
0
(𝑧, 𝑧) = 𝑔

20

𝑧
2

2

+ 𝑔
11
𝑧𝑧

+ 𝑔
02

𝑧
2

2

+ 𝑔
21

𝑧
2
𝑧

2

+ ⋅ ⋅ ⋅ .

(56)

From (53) and (54), we have

𝑥
𝑡
= (𝑥
1𝑡
(𝜃) , 𝑥

2𝑡
(𝜃) , 𝑥

3𝑡
(𝜃)) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02

𝑧
2

2

+ (1, 𝑞
1
, 𝑞
2
)
𝑇

𝑒
𝑖𝜃𝜔0𝜏0

𝑧 + (1, 𝑞
1
, 𝑞
2
)
𝑇

𝑒
𝑖𝜃𝜔0𝜏0

𝑧 + ⋅ ⋅ ⋅ ,

(57)

then we can obtain

𝑥
1𝑡
(0) = 𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2

+ 𝑧 + 𝑧 + 𝑂 (|(𝑧, 𝑧)|
3
) ,

𝑥
2𝑡
(0) = 𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧

+𝑊
(2)

02
(0)

𝑧
2

2

+ 𝑞
1
𝑧 + 𝑞
1
𝑧 + 𝑂 (|(𝑧, 𝑧)|

3
) ,

𝑥
3𝑡
(0) = 𝑊

(3)

20
(0)

𝑧
2

2

+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2

+ 𝑞
2
𝑧 + 𝑞
2
𝑧 + 𝑂 (|(𝑧, 𝑧)|

3
) ,

𝑥
1𝑡
(−1) = 𝑊

(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧

+𝑊
(1)

02
(−1)

𝑧
2

2

+ 𝑧𝑒
−𝑖𝜔0𝜏0

+ 𝑧𝑒
𝑖𝜔0𝜏0

+ 𝑂 (|(𝑧, 𝑧)|
3
) ,
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𝑥
3𝑡
(−1) = 𝑊

(3)

20
(−1)

𝑧
2

2

+𝑊
(3)

11
(−1) 𝑧𝑧

+𝑊
(3)

02
(−1)

𝑧
2

2

+ 𝑧𝑞
2
𝑒
−𝑖𝜔0𝜏0

+ 𝑧𝑞
2
𝑒
𝑖𝜔0𝜏0

+ 𝑂 (|(𝑧, 𝑧)|
3
) .

(58)

From the definition of 𝑓(𝜇, 𝑥
𝑡
), we have

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧)

= 𝜏
0
𝐷(1, 𝑞

∗

1
, 𝑞
∗

2
)

× [

[

−𝑎
11
𝑥
1𝑡
(0) 𝑥
1𝑡
(−1) − 𝑎

12
𝑥
1𝑡
(0) 𝑥
3𝑡
(−1)

0

𝑎
21
𝑥
3𝑡
(0) 𝑥
2𝑡
(0) − 𝑎

22
𝑥
3𝑡
(0) 𝑥
3𝑡
(−1)

]

]

= 𝜏
0
𝐷{𝑧
2
[−𝑎
11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

+ 𝑎
21
𝑞
1
𝑞
2
𝑞
∗

2
− 𝑎
22
𝑞
2

2
𝑞
∗

2
𝑒
−𝑖𝜔0𝜏0

]

+ 2𝑧𝑧 [−𝑎
11
Re {𝑒𝑖𝜔0𝜏0} − 𝑎

12
Re {𝑞
2
𝑒
−𝑖𝜔0𝜏0

}

+𝑎
21
𝑞
∗

2
Re {𝑞
1
𝑞
2
} + 𝑎
22
𝑞
2

2
𝑞
∗

2
Re {𝑒𝑖𝜔0𝜏0}]

+ 𝑧
2
[− 𝑎
11
𝑒
𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
𝑖𝜔0𝜏0

+ 𝑎
21
𝑞
1
𝑞
2
𝑞
∗

2
− 𝑎
22
𝑞
2

2
𝑞
∗

2
𝑒
𝑖𝜔0𝜏0

]

+

1

2

𝑧
2
𝑧 [−𝑎
11
(𝑊
(1)

20
(0) 𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(1)

11
(0) 𝑒
−𝑖𝜔0𝜏0

+2𝑊
(1)

11
(−1) + 𝑊

(1)

20
(−1))

− 𝑎
12
(𝑊
(1)

20
(0) 𝑞
2
𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(1)

11
(0) 𝑞
2
𝑒
−𝑖𝜔0𝜏0

+2𝑊
(3)

11
(−1) + 𝑊

(3)

20
(−1))

+ 𝑎
21
𝑞
∗

2
(𝑊
(2)

20
(0) 𝑞
2
+ 2𝑊

(2)

11
(0) 𝑞
2

+ 2𝑊
(3)

11
(0) 𝑞
1

+𝑊
(3)

20
(0) 𝑞
1
)

− 𝑎
22
𝑞
∗

2
(𝑊
(3)

20
(0) 𝑞
2
𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(3)

11
(0) 𝑞
2
𝑒
−𝑖𝜔0𝜏0

+ 2𝑊
(3)

11
(−1) 𝑞

2

+𝑊
(3)

20
(−1) 𝑞

2
)] + ⋅ ⋅ ⋅ } .

(59)

Comparing the coefficients with (56), we obtain

𝑔
20

= 2𝜏
0
𝐷[−𝑎

11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

+𝑎
21
𝑞
1
𝑞
2
𝑞
∗

2
− 𝑎
22
𝑞
2

2
𝑞
∗

2
𝑒
−𝑖𝜔0𝜏0

] ,

𝑔
11

= 2𝜏
0
𝐷[−𝑎

11
Re {𝑒𝑖𝜔0𝜏0} − 𝑎

12
Re {𝑞
2
𝑒
−𝑖𝜔0𝜏0

}

+𝑎
21
𝑞
∗

2
Re {𝑞
1
𝑞
2
} − 𝑎
22
𝑞
2
𝑞
2
𝑞
∗

2
Re {𝑒𝑖𝜔0𝜏0}] ,

𝑔
02

= 2𝜏
0
𝐷[ − 𝑎

11
𝑒
𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
𝑖𝜔0𝜏0

+𝑎
21
𝑞
1
𝑞
2
𝑞
∗

2
− 𝑎
22
𝑞
2

2
𝑞
∗

2
𝑒
𝑖𝜔0𝜏0

] ,

𝑔
21

= 𝜏
0
𝐷[−𝑎

11
(𝑊
(1)

20
(0) 𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(1)

11
(0) 𝑒
−𝑖𝜔0𝜏0

+2𝑊
(1)

11
(−1) + 𝑊

(3)

20
(−1))

− 𝑎
12
(𝑊
(1)

20
(0) 𝑞
2
𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(1)

11
(0) 𝑞
2
𝑒
−𝑖𝜔0𝜏0

+2𝑊
(3)

11
(−1) + 𝑊

(3)

20
(−1))

+ 𝑎
21
𝑞
∗

2
(𝑊
(2)

20
(0) 𝑞
2
+ 2𝑊

(2)

11
(0) 𝑞
2

+2𝑊
(3)

11
(0) 𝑞
1
+𝑊
(3)

20
(0))

− 𝑎
22
𝑞
2
(𝑊
(3)

20
(0) 𝑞
∗

2
𝑒
𝑖𝜔0𝜏0

+ 2𝑊
(3)

11
(0) 𝑞
2
𝑒
−𝑖𝜔0𝜏0

+2𝑊
(3)

11
(−1) 𝑞

2
+𝑊
(3)

20
(−1) 𝑞

2
)] .

(60)

In order to determine 𝑔
21
we need to compute𝑊

20
(𝜃) and

𝑊
11
(𝜃). From (43) and (53), we have

�̇� = �̇�
𝑡
− �̇�𝑞 −

̇
𝑧𝑞

= {

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴 (0)𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} + 𝑓

0
, 𝜃 = 0,

=̇ 𝐴 (0)𝑊 − 𝐻 (𝑧, 𝑧, 𝜃) ,

(61)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(62)

Note that on the center manifold 𝐶
0
near to the origin,

�̇� = 𝑊
𝑧
�̇� + 𝑊

𝑧

̇
𝑧, (63)

thus we obtain
(𝐴 (0) − 2𝑖𝜔

0
𝜏
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴 (0)𝑊
11
(𝜃) = −𝐻

11
(𝜃) .

(64)

By (62) we know that for 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗
(0) 𝑓
0
𝑞 (𝜃) − 𝑞

∗

0
𝑓
0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧)𝑞 (𝜃).

(65)
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Comparing the coefficients with (62), we get that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(66)

From (64), (66), and the definition of 𝐴, we have

�̇�
20
(𝜃) = 2𝑖𝜔

0
𝜏
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (67)

Noting 𝑞(𝜃) = 𝑞(0)𝑒
𝑖𝜔0𝜏0𝜃, hence

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0
𝜏
0

𝑞 (0) 𝑒
𝑖𝜔0𝜏0𝜃

+

𝑖𝑔
02

3𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜏0𝜃

+ 𝐸
1
𝑒
2𝑖𝜔0𝜏0𝜃

,

(68)

where 𝐸
1

= (𝐸
(1)

1
, 𝐸
(2)

1
, 𝐸
(3)

1
)
𝑇

∈ 𝑅
3 is a constant vector.

Similarly, we have

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0
𝜏
0

𝑞 (0) 𝑒
𝑖𝜔0𝜏0𝜃

+

𝑖𝑔
11

𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔0𝜏0𝜃

+ 𝐸
2
,

(69)

where 𝐸
2
= (𝐸
(1)

2
, 𝐸
(2)

2
, 𝐸
(3)

2
)
𝑇
∈ 𝑅
3 is a constant vector. In the

following, we will find out 𝐸
1
and 𝐸

2
. From the definition of

𝐴 and (64), we can obtain

∫

0

−1

𝑑𝜂 (𝜃)𝑊
20
(𝜃) = 2𝑖𝜔

0
𝜏
0
𝑊
20
(𝜃) − 𝐻

20
(0) , (70)

∫

0

−1

𝑑𝜂 (𝜃)𝑊
11
(𝜃) = −𝐻

11
(𝜃) , (71)

where 𝜂(𝜃) = 𝜂(𝜃, 0). From (61) and (62) we have

𝐻(𝑧, 𝑧, 0) = −2Re {𝑞∗ (0) 𝑓
0
𝑞 (0)} + 𝑓

0

= − 𝑞
∗

(0) 𝑓
0
𝑞 (0) − 𝑞

∗

(0) 𝑓
0
𝑞 (0) + 𝑓

0

= −𝑔 (𝑧, 𝑧) 𝑞 (0) − 𝑔 (𝑧, 𝑧) 𝑞 (0) + 𝑓
0
.

(72)

That is,

𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02

𝑧
2

2

+ ⋅ ⋅ ⋅

= − 𝑞 (0) (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ ⋅ ⋅ ⋅ )

− 𝑞 (0) (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ ⋅ ⋅ ⋅ ) + 𝑓
0
.

(73)

By (39) and (53) we have

𝑓
0
= 𝜏
0
[

[

−𝑎
11
𝑥
1𝑡
(0) 𝑥
1𝑡
(−1) − 𝑎

12
𝑥
1𝑡
(0) 𝑥
3𝑡
(−1)

0

𝑎
21
𝑥
2𝑡
(0) 𝑥
3𝑡
(0) − 𝑎

22
𝑥
3𝑡
(0) 𝑥
3𝑡
(−1)

]

]

,

𝑥
𝑡
(𝜃) = 𝑊 (𝑡, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑡, 𝜃) + 𝑧 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 + 𝑧 (𝑡) 𝑞 (𝜃)

+ 𝑧 (𝑡) 𝑞 (𝜃) + ⋅ ⋅ ⋅ .

(74)

Thus,

𝐻
20
(0) = −𝑔

20
𝑞 (0) − 𝑔

02
𝑞 (0) + 2𝜏

0

× [

[

−𝑎
11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

0

𝑎
21
𝑞
1
𝑞
2
− 𝑎
22
𝑞
2

2
𝑒
−𝑖𝜔0𝜏0

]

]

,

(75)

𝐻
11
(0) = −𝑔

11
𝑞 (0) − 𝑔

11
𝑞 (0) + 2𝜏

0

×
[
[

[

−𝑎
11
Re {𝑒𝑖𝜔0𝜏0} − 𝑎

12
Re {𝑞
2
𝑒
−𝑖𝜔0𝜏0

}

0

𝑎
21
Re {𝑞
1
𝑞
2
} − 𝑎
22
𝑞
2

2
Re {𝑒𝑖𝜔0𝜏0}

]
]

]

.

(76)

Since 𝑖𝜔
0
𝜏
0
is the eigenvalues of 𝐴(0) and 𝑞(0) is the

corresponding eigenvector, we obtain

(𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
𝑖𝜔0𝜏0𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
−𝑖𝜔0𝜏0𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0.

(77)

Thus, substituting (68) and (75) into (70), we have

(2𝑖𝜔
0
𝜏
0
𝐼 − ∫

0

−1

𝑒
2𝑖𝜔0𝜏0𝜃

𝑑𝜂 (𝜃))𝐸
1

= 2𝜏
0
[

[

−𝑎
11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

0

𝑎
21
𝑞
1
𝑞
2
− 𝑎
22
𝑞
2

2
𝑒
−𝑖𝜔0𝜏0

]

]

,

(78)

or

[

[

2𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
−2𝑖𝜔0𝜏0

0 𝑎
12
𝑁
∗
𝑒
−2𝑖𝜔0𝜏0

−𝛼 2𝑖𝜔
0
+ 𝛼 0

0 −𝑎
21
𝑃
∗

2𝑖𝜔
0
+ 𝑎
22
𝑃
∗
𝑒
−2𝑖𝜔0𝜏0

]

]

𝐸
1

= 2[

[

−𝑎
11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

0

𝑎
21
𝑞
1
𝑞
2
− 𝑎
22
𝑞
2

2
𝑒
−𝑖𝜔0𝜏0

]

]

.

(79)

From which we can get

𝐸
1

=2[

[

2𝑖𝜔
0
+ 𝑎
11
𝑁
∗
𝑒
−2𝑖𝜔0𝜏0

0 𝑎
12
𝑁
∗
𝑒
−2𝑖𝜔0𝜏0

−𝛼 2𝑖𝜔
0
+ 𝛼 0

0 −𝑎
21
𝑃
∗

2𝑖𝜔
0
+ 𝑎
22
𝑃
∗
𝑒
−2𝑖𝜔0𝜏0

]

]

−1

× [

[

−𝑎
11
𝑒
−𝑖𝜔0𝜏0

− 𝑎
12
𝑞
2
𝑒
−𝑖𝜔0𝜏0

0

𝑎
21
𝑞
1
𝑞
2
− 𝑎
22
𝑞
2

2
𝑒
−𝑖𝜔0𝜏0

]

]

.

(80)
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Figure 1: The stability of unique positive equilibrium 𝐸
2
. (a), (c) The equilibrium 𝐸

2
is stable for 𝜏 = 1.1. (b), (d) The equilibrium 𝐸

2
is

unstable and a stable periodic solution appears for 𝜏 = 1.4.

Similarly, substituting (69) and (76) into (71), we can get

[

[

𝑎
11
𝑁
∗

0 𝑎
12
𝑁
∗

−𝛼 𝛼 0

0 −𝑎
21
𝑃
∗

𝑎
22
𝑃
∗

]

]

𝐸
2

= 2
[
[

[

−𝑎
11
Re {𝑒𝑖𝜔0𝜏0} − 𝑎

12
Re {𝑞
2
𝑒
−𝑖𝜔0𝜏0

}

0

𝑎
21
Re {𝑞
1
𝑞
2
} − 𝑎
22
𝑞
2

2
Re {𝑒𝑖𝜔0𝜏0}

]
]

]

,

(81)

or

𝐸
2
= 2[

[

𝑎
11
𝑁
∗

0 𝑎
12
𝑁
∗

−𝛼 𝛼 0

0 −𝑎
21
𝑃
∗

𝑎
22
𝑃
∗

]

]

−1

×
[
[

[

−𝑎
11
Re {𝑒𝑖𝜔0𝜏0} − 𝑎

12
Re {𝑞
2
𝑒
−𝑖𝜔0𝜏0

}

0

𝑎
21
Re {𝑞
1
𝑞
2
} − 𝑎
22
𝑞
2

2
Re {𝑒𝑖𝜔0𝜏0}

]
]

]

.

(82)

Thus, we can determine 𝑊
20
(𝜃) and 𝑊

11
(𝜃) from (68)

and (69). Furthermore, 𝑔
21

can be expressed by the param-
eters and delay. Thus, we can compute the following
values:

𝑐
1
(0) =

𝑖

2𝜔
0
𝜏
0

(𝑔
20
𝑔
11
− 2





𝑔
11






2

−





𝑔
02






2

3

) +

𝑔
21

2

,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆 (𝜏
0
)}

,

𝛽
2
= 2Re {𝑐

1
(0)} ,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆


(𝜏
0
)}

𝜔
0
𝜏
0

,

(83)

which determine the qualities of bifurcating periodic solution
in the centermanifold at critical value 𝜏

0
; that is,𝜇

2
determine

the direction of the Hopf bifurcation: if 𝜇
2
> 0 ( 𝜇

2
< 0),
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0.5

1

1.5

2

2.5
𝜏 = 1.8

𝑁

𝑃

(d)

Figure 2: Bifurcation of model (84) with bifurcation parameter 𝜏.

then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solution exists for 𝜏 > 𝜏

0
(𝜏 < 𝜏

0
);

𝛽
2
determines the stability of the bifurcating periodic solu-

tion: the bifurcating periodic solution is stable (unstable) if
𝛽
2
< 0 (𝛽

2
> 0); and 𝑇

2
determines the period of the bifur-

cating periodic solution: the period increases (decreases) if
𝑇
2
> 0 (< 0).

4. Numerical Investigations and Discussion

In this paper, we propose a two-dimensional predatory-prey
model with discrete and distributed delay. Then, by intro-
ducing a new variable, the original system is transformed
into an equivalent three-dimensional system. In Section 2, we
analyze the existence and local stability of the equilibria of the
three-dimensional system. The condition for the existence of
a Hopf bifurcation is also obtained. In Section 3, by the use
of normal form theory and central manifold argument, we
establish the formulae for the direction and the stability of
the Hopf bifurcation.

In order to confirm our main results obtained in this
work, we consider the following special system:

𝑁


(𝑡) = 𝑁 (𝑡) [1 − 0.5𝑁 (𝑡 − 𝜏) − 2𝑃 (𝑡 − 𝜏)] ,

𝑃


(𝑡) = 𝑃 (𝑡) [−1 + 0.8𝑢 (𝑡) − 0.5𝑃 (𝑡 − 𝜏)] ,

𝑢


(𝑡) = 2𝑁 (𝑡) − 2𝑢 (𝑡) .

(84)

By simple calculation, it is easy to see that model
(84) exists a unique positive equilibrium 𝐸

2
and 𝐸

2
=

(50/37, 6/37, 50/37). Note that the parameter set provided
in model (84) satisfies the conditions of Theorem 2. When
𝜏 = 1.1, the positive equilibrium 𝐸

2
is asymptotically

stable, as shown in Figures 1(a) and 1(c). It follows from
the discussion in Section 2 that 𝜔

0
≈ 0.7246, 𝜏

0
≈ 1.1746,

and 𝜆

(𝜏
0
) = 0.09345 − 0.07497𝑖. Thus, 𝐸

2
is stable when

0 ≤ 𝜏 < 𝜏
0
, as indicated in Figures 1(a) and 1(c).

When 𝜏 passes through the critical value 𝜏
0
, 𝐸
2
loses its

stability and a Hopf bifurcation occurs, that is, a family of
periodic solutions bifurcate from 𝐸

2
, as shown in Figures 1(b)

and 1(d). Since 𝜇
2
> 0 and 𝛽

2
< 0, the Hopf bifurcation



Abstract and Applied Analysis 11

is supercritical and the direction of the bifurcation is 𝜏 > 𝜏
0

and these bifurcating periodic solutions from 𝐸
2
are stable;

please see Figures 1(b) and 1(d) and Figure 2(a) for 𝜏 = 1.5.
Note that the model (84) may have very complex dynamics
if we choose the time delay 𝜏 as a bifurcation parameter. It
follows from Figure 2 that the period of periodic solution is
doubled as 𝜏 increase, and around 𝜏 = 1.6 (Figure 2(b)). If
the time delay 𝜏 is increasing further, a periodic solution with
4-time period appears around 𝜏 = 1.75 (Figure 2(c)). Finally,
the chaotic solution exists once the time delay reaches around
𝜏 = 1.8 (Figure 2(d)).

Both our theoretical and numerical results show that
the positive equilibrium is asymptotically stable if 𝜏 < 𝜏

0
,

which indicates that the dynamical behavior is simple for
the considered system. However, if 𝜏 > 𝜏

0
, bifurcation and

chaos may occur, which means that the considered system
can take on very complex dynamics, and this may explain
some complex phenomenon in the natural world.
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[28] C. Çelik, “Hopf bifurcation of a ratio-dependent predator-prey
systemwith time delay,”Chaos, Solitons and Fractals, vol. 42, no.
3, pp. 1474–1484, 2009.
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