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Received 2 April 2013; Revised 4 June 2013; Accepted 8 June 2013

Academic Editor: Aref Jeribi
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We present a theorem which gives sufficient conditions for existence of at least one solution for some nonlinear functional integral
equations in the space of continuous functions on the interval [0, 𝑎]. To do this, we will use Darbo’s fixed-point theorem associated
with the measure of noncompactness. We give also an example satisfying the conditions of our main theorem but not satisfying the
conditions described by Maleknejad et al. (2009).

1. Introduction

As it is known, nonlinear integral equations constitute an
important branch of nonlinear analysis. Particularly integral
equations are often used in the characterization of several
problems of engineering,mechanics, physics, economics, and
so on. Some authors have given some results for solvability of
some functional integral equations such as Mureşan in [1],
Banaś and Sadarangani in [2], and Djebali and Hammache
in [3]. The following equation has been considered in [4]:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
1

0

𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, (1)

for 𝑡 ∈ [0, 1]. Maleknejad et al. in [5] studied the existence of
solutions of the following equation:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝑡

0

𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] (2)

under the following conditions.
(K1) 𝑓 : [0, 1]×R → R is continuous and there exist non-

negative constants 𝜇 and 𝑘 such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 ≤ 𝜇

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦1) − 𝑓 (𝑡, 𝑦2)
󵄨󵄨󵄨󵄨 ≤ 𝑘

󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨

(3)

for all 𝑦
1
, 𝑦
2
∈ R and 𝑡 ∈ [0, 1].

(K2) 𝑢 : 𝐼×𝐼×R → R is continuous and satisfies the sub-
linearity condition, so there exist constants 𝛼 and 𝛽

such that
|𝑢 (𝑡, 𝑠, 𝑥)| ≤ 𝛼 + 𝛽 |𝑥| (4)

for all 𝑡, 𝑠 ∈ [0, 1] and 𝑥 ∈ R.
(K3) (𝛼󸀠 − 𝛽󸀠)2 > 2(𝛼

󸀠
+ 𝛽
󸀠
) − 1 for 𝛼󸀠 = 𝑘𝛼 and 𝛽󸀠 = 𝜇𝛽.

(K4) 𝑘𝑘󸀠 < 1 for 𝑘󸀠 = sup{|𝑢(𝑡, 𝑠, 𝑥(𝑡))| : 𝑡, 𝑠 ∈ [0, 1], 𝑥 ∈

𝐵𝐶([0, 1])}.
In this paper, we consider the following nonlinear func-

tional integral equation:
𝑥 (𝑡) = 𝑔 (𝑡, 𝑥 (𝛽 (𝑡)))

+ 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝑎]

(5)
which is more general than the equation given in [5].

In Section 2, we present some definitions and preliminary
results about the concept of measure of noncompactness. In
Section 3, we give our main results concerning the existence
of solutions of the integral equation (5) by applying Darbo’s
fixed-point theorem associated with the measure of noncom-
pactness defined by Banaś and Goebel [6] and, finally, we
establish an example to show that these results are applicable.
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2. Definitions and Auxiliary Facts

In this section, we give some definitions and results which
will be needed next section. Let (𝐸, ‖ ⋅ ‖) be an infinite Banach
space with zero element 𝜃. We write 𝐵(𝑥, 𝑟) to denote the
closed ball centered at𝑥with radius 𝑟 and, especially, wewrite
𝐵
𝑟
in case of 𝑥 = 𝜃. We write𝑋, Conv 𝑋 to denote the closure

𝑋 and closed convex hull of 𝑋, respectively. Moreover, let
M
𝐸
indicate the family of all nonempty bounded subsets of 𝐸

and N
𝐸
indicate the subfamily of all relatively compact sets.

Finally, the standard algebraic operations on sets are denoted
by 𝜆𝑋 and𝑋 + 𝑌, respectively [2].

We use the following definition of the measure of non-
compactness, given in [6].

Definition 1. A mapping 𝜇 : M
𝐸
→ R
+
is said to be a mea-

sure of noncompactness in 𝐸 if it satisfies the following con-
ditions.

(1) The family ker𝜇 = {𝑋 ∈ M
𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N
𝐸
.

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).

(3) 𝜇(𝑋) = 𝜇(𝑋) = 𝜇(Conv 𝑋).
(4) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+ (1−𝜆)𝜇(𝑌) for 𝜆 ∈ [0, 1].
(5) If (𝑋

𝑛
) is a sequence of closed sets fromM

𝐸
such that

𝑋
𝑛+1

⊂ 𝑋
𝑛
(𝑛 = 1, 2, . . .) and if lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0,

then the intersection set ∩∞
𝑛=1

𝑋
𝑛
is nonempty.

Theorem 2 (see [6]). Let 𝐶 be a nonempty, closed, bounded,
and convex subset of the Banach space 𝐸 and let 𝐹 : 𝐶 → 𝐶

be a continuous mapping. Assume that there exists a constant
𝑘 ∈ [0, 1) such that

𝜇 (𝐹𝑋) ≤ 𝑘𝜇 (𝑋) (6)

for any nonempty subset 𝑋 of 𝐶. Then, 𝐹 has a fixed point in
the set 𝐶.

As it is known, the family of all real-valued and contin-
uous functions defined on the interval [0, 𝑎] forms a Banach
space with the standard norm

‖𝑥‖ = max {|𝑥 (𝑡)| : 𝑡 ∈ [0, 𝑎]} . (7)

Let 𝑋 be a fixed subset of M
𝐶[0,𝑎]

. For 𝜀 > 0 and 𝑥 ∈ 𝑋,
we denote by 𝜔(𝑥, 𝜀) the modulus continuity of 𝑥 defined by

𝜔 (𝑥, 𝜀)

= sup {󵄨󵄨󵄨󵄨𝑥 (𝑡1) − 𝑥 (𝑡2)
󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ [0, 𝑎] ,

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 ≤ 𝜀} .

(8)

Furthermore, let 𝜔(𝑋, 𝜀) and 𝜔
0
(𝑋) be defined by

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) .
(9)

The authors have shown in [6] that the previous function 𝜔
0

is a measure of noncompactness in the space 𝐶[0, 𝑎].

3. The Main Result

First of all, we write 𝐼 to denote the interval [0, 𝑎] throughout
this section. We study the functional integral equation (5)
under the following conditions.

(a) 𝛼, 𝛽 : 𝐼 → 𝐼, 𝜑 : 𝐼 → R
+
and 𝛾 : R

+
→ 𝐼 are con-

tinuous.

Remark 3. Note that assumption (a) implies that there exists
positive constant 𝐶 such that

𝜑 (𝑡) ≤ 𝐶 (10)

for all 𝑡 ∈ 𝐼.

(b) Functions 𝑓, 𝑔 : 𝐼 ×R → R are continuous and there
exist positive constants 𝑘 and 𝑙 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1) − 𝑓 (𝑡, 𝑥2)
󵄨󵄨󵄨󵄨 ≤ 𝑙

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥1) − 𝑔 (𝑡, 𝑥2)
󵄨󵄨󵄨󵄨 ≤ 𝑘

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨

(11)

for all 𝑡 ∈ 𝐼 and 𝑥
1
, 𝑥
2
∈ R.

Remark 4. Note that assumption (b) implies that there exist
positive constants𝑀 and𝑁 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)
󵄨󵄨󵄨󵄨 ≤ 𝑁,

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 ≤ 𝑀

(12)

for all 𝑡 ∈ 𝐼.

(c) 𝑢 : 𝐼 × [0, 𝐶] × R → R is continuous and there exist
positive constants𝑚, 𝑛, and 𝑝 such that

|𝑢 (𝑡, 𝑠, 𝑥)| ≤ 𝑚 + 𝑛|𝑥|
𝑝 (13)

for all 𝑡 ∈ 𝐼, 𝑠 ∈ [0, 𝐶] and 𝑥 ∈ R.
(d) The inequality

𝑀+ 𝐶 (𝑚 + 𝑛) (𝑙 + 𝑁) + 𝑘 < 1 (14)

holds.

Theorem 5. Under assumptions (a)–(d), there exists at least
one 𝑟
0
∈ (0, 1) such that (5) has at least one solution 𝑥 = 𝑥(𝑡)

which belongs to 𝐵
𝑟0
⊂ 𝐶[0, 𝑎].

Proof. We define the continuous function ℎ : [0, 1] → R

such that

ℎ (𝑟) = (𝑘 − 1) 𝑟 +𝑀

+ 𝐶 (𝑙𝑟𝑚 + 𝑛𝑙𝑟
𝑝+1

+ 𝑁𝑚 +𝑁𝑛𝑟
𝑝
) ,

(15)

where 𝑝 is the constant given in assumption (c). Then ℎ(0) >
0 and ℎ(1) < 0 by assumption (d). The continuity of ℎ
guarantees that there exists the number 𝑟

0
such that 𝑟

0
∈ (0, 1)

and ℎ(𝑟
0
) = 0. Now, we will prove that (5) has at least one

solution 𝑥 = 𝑥(𝑡) which belongs to 𝐵
𝑟0
⊂ 𝐶[0, 𝑎]. Note that
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we will use Theorem 2 as our main tool. We define operator
𝐹 by

(𝐹𝑥) (𝑡) = 𝑔 (𝑡, 𝑥 (𝛽 (𝑡)))

+ 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠,

(16)

for any 𝑥 ∈ 𝐶[0, 𝑎]. Using the conditions of Theorem 5, we
infer that 𝐹𝑥 is continuous on 𝐼. For any 𝑥 ∈ 𝐵

𝑟0
,

|(𝐹𝑥) (𝑡)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑔 (𝑡, 𝑥 (𝛽 (𝑡))) + 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫

𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥 (𝛽 (𝑡))) − 𝑔 (𝑡, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)

󵄨󵄨󵄨󵄨

+ {
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) − 𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨}

× ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

≤ 𝑘 ‖𝑥‖ +𝑀 + 𝐶 (𝑙 ‖𝑥‖ + 𝑁) (𝑚 + 𝑛‖𝑥‖
𝑝
)

≤ 𝑘𝑟
0
+𝑀 + 𝐶 (𝑙𝑟

0
+ 𝑁) (𝑚 + 𝑛(𝑟

0
)
𝑝

)

= ℎ (𝑟
0
) + 𝑟
0

= 𝑟
0
.

(17)

This result shows that 𝐹𝑥 ∈ 𝐵
𝑟0
. Now we will prove that

operator 𝐹 : 𝐵
𝑟0

→ 𝐵
𝑟0
is continuous. To do this, consider

𝜀 > 0 and any 𝑥, 𝑦 ∈ 𝐵
𝑟0
such that ‖𝑥 − 𝑦‖ ≤ 𝜀. Then, taking

into account the equality

(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

= 𝑔 (𝑡, 𝑥 (𝛽 (𝑡))) − 𝑔 (𝑡, 𝑦 (𝛽 (𝑡)))

+ 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

− 𝑓 (𝑡, 𝑦 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑦 (𝛾 (𝑠))) 𝑑𝑠

+ 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑦 (𝛾 (𝑠))) 𝑑𝑠

− 𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) ∫
𝜑(𝑡)

0

𝑢 (𝑡, 𝑠, 𝑦 (𝛾 (𝑠))) 𝑑𝑠,

(18)

we have by (18) that the inequality
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑘
󵄨󵄨󵄨󵄨𝑥 (𝛽 (𝑡)) − 𝑦 (𝛽 (𝑡))

󵄨󵄨󵄨󵄨

+ {
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) − 𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨}

× ∫
𝜑(𝑡)

0

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥 (𝛾 (𝑠))) − 𝑢 (𝑡, 𝑠, 𝑦 (𝛾 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝛼 (𝑡))) − 𝑓 (𝑡, 𝑦 (𝛼 (𝑡)))

󵄨󵄨󵄨󵄨

× ∫
𝜑(𝑡)

0

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑦 (𝛾 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝐶 (𝑙𝑟
0
+ 𝑁)𝜔

𝑢3
(𝐼, 𝜀)

+ 𝐶𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 (𝑚 + 𝑛
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

)

≤ 𝑘𝜀 + 𝐶 (𝑙𝑟
0
+ 𝑁)𝜔

𝑢3
(𝐼, 𝜀) + 𝐶𝑙𝜀 (𝑚 + 𝑛(𝑟

0
)
𝑝

)

(19)

holds, where

𝜔
𝑢3
(𝐼, 𝜀)

= sup {󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥) − 𝑢 (𝑡, 𝑠, 𝑦)
󵄨󵄨󵄨󵄨 : 𝑡 ∈ 𝐼,

𝑠 ∈ [0, 𝐶] , 𝑥, 𝑦 ∈ [−𝑟
0
, 𝑟
0
] ,

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ≤ 𝜀} .

(20)

On the other hand, since function 𝑢 = 𝑢(𝑡, 𝑠, 𝑥) is uniformly
continuous on 𝐼×[0, 𝐶]×[−𝑟

0
, 𝑟
0
], we infer that𝜔

𝑢3
(𝐼, 𝜀) → 0

as 𝜀 → 0. Hence, the previous estimate (19) proves that oper-
ator𝐹 is continuous on ball𝐵

𝑟0
. Now,wewill show that opera-

tor 𝐹 satisfies (6) with respect to measure of noncompactness
𝜔
0
given by (9). To do this, we choose a fixed arbitrary 𝜀 > 0.

Let us take 𝑥 ∈ 𝑋 and 𝑡
1
, 𝑡
2
∈ 𝐼 with |𝑡

1
− 𝑡
2
| ≤ 𝜀, for any

nonempty subset𝑋 of 𝐵
𝑟0
. Since

(𝐹𝑥) (𝑡
1
) − (𝐹𝑥) (𝑡

2
)

= 𝑔 (𝑡
1
, 𝑥 (𝛽 (𝑡

1
)))

+ 𝑓 (𝑡
1
, 𝑥 (𝛼 (𝑡

1
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

− 𝑔 (𝑡
2
, 𝑥 (𝛽 (𝑡

2
)))

− 𝑓 (𝑡
2
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡2)

0

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠,

(21)

we get

󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡1) − (𝐹𝑥) (𝑡2)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 𝑥 (𝛽 (𝑡1))) − 𝑔 (𝑡2, 𝑥 (𝛽 (𝑡1)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑔 (𝑡2, 𝑥 (𝛽 (𝑡1))) − 𝑔 (𝑡2, 𝑥 (𝛽 (𝑡2)))

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡
1
, 𝑥 (𝛼 (𝑡

1
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

− 𝑓 (𝑡
1
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡
1
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

− 𝑓 (𝑡
2
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨



4 Abstract and Applied Analysis

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡
2
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡1)

0

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

− 𝑓 (𝑡
2
, 𝑥 (𝛼 (𝑡

2
))) ∫
𝜑(𝑡2)

0

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜔
𝑔
(𝐼, 𝜀) + 𝑘

󵄨󵄨󵄨󵄨𝑥 (𝛽 (𝑡1)) − 𝑥 (𝛽 (𝑡2))
󵄨󵄨󵄨󵄨

+ 𝐴
󵄨󵄨󵄨󵄨𝑥 (𝛼 (𝑡1)) − 𝑥 (𝛼 (𝑡2))

󵄨󵄨󵄨󵄨 + 𝐶 (𝑚 + 𝑛(𝑟
0
)
𝑝

) 𝜔
𝑓
(𝐼, 𝜀)

+ {
󵄨󵄨󵄨󵄨𝑓 (𝑡2, 𝑥 (𝛼 (𝑡2))) − 𝑓 (𝑡2, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡2, 0)

󵄨󵄨󵄨󵄨}

× (∫
𝜑(𝑡2)

0

󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝛾 (𝑠))) − 𝑢 (𝑡2, 𝑠, 𝑥 (𝛾 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝜑(𝑡1)

𝜑(𝑡2)
𝑢 (𝑡
2
, 𝑠, 𝑥 (𝛾 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

≤ 𝜔
𝑔
(𝐼, 𝜀) + 𝑘𝜔 (𝑥, 𝜔 (𝛽, 𝜀)) + 𝐴𝜔 (𝑥, 𝜔 (𝛼, 𝜀))

+ 𝐶 (𝑚 + 𝑛(𝑟
0
)
𝑝

) 𝜔
𝑓
(𝐼, 𝜀)

+ (𝑙𝑟
0
+ 𝑁) [𝐶𝜔

𝑢1
(𝐼, 𝜀) + (𝑚 + 𝑛(𝑟

0
)
𝑝

) 𝜔 (𝜑, 𝜀)]

(22)

from (21), where

𝐴 = 𝐶𝑙 (𝑚 + 𝑛(𝑟
0
)
𝑝

) ,

𝜔
𝑓𝑖
(𝐼, 𝜀) = sup {󵄨󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥) − 𝑓𝑖 (𝑡

󸀠
, 𝑥)

󵄨󵄨󵄨󵄨󵄨
: 𝑡, 𝑡
󸀠
∈ 𝐼,

𝑥 ∈ [−𝑟
0
, 𝑟
0
] ,

󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡
󸀠󵄨󵄨󵄨󵄨󵄨
≤ 𝜀} ,

(23)

for 𝑖 = 1, 2 such that 𝑓
1
= 𝑓 and 𝑓

2
= 𝑔. Also,

𝜔
𝑢1
(𝐼, 𝜀)

= sup {󵄨󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑥, 𝑦) − 𝑢 (𝑡
󸀠
, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
: 𝑡, 𝑡
󸀠
∈ 𝐼,

𝑥 ∈ [0, 𝐶] , 𝑦 ∈ [−𝑟
0
, 𝑟
0
] ,

󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡
󸀠󵄨󵄨󵄨󵄨󵄨
≤ 𝜀} ,

𝜔 (𝛼
𝑗
, 𝜀)

= sup {󵄨󵄨󵄨󵄨󵄨𝛼𝑗 (𝑡) − 𝛼𝑗 (𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨
: 𝑡, 𝑡
󸀠
∈ 𝐼,

󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡
󸀠󵄨󵄨󵄨󵄨󵄨
≤ 𝜀} ,

(24)

for 𝑗 = 1, 2, 3 such that 𝛼
1
= 𝛼, 𝛼

2
= 𝛽 and 𝛼

3
= 𝜑. Thus, by

using the previous estimate (22), we can write

𝜔 (𝐹𝑋, 𝜀)

≤ 𝜔
𝑔
(𝐼, 𝜀) + 𝑘𝜔 (𝑋, 𝜔 (𝛽, 𝜀))

+ 𝐴𝜔 (𝑋, 𝜔 (𝛼, 𝜀)) + 𝐶 (𝑚 + 𝑛(𝑟
0
)
𝑝

) 𝜔
𝑓
(𝐼, 𝜀)

+ (𝑙𝑟
0
+ 𝑁) [𝐶𝜔

𝑢1
(𝐼, 𝜀) + (𝑚 + 𝑛(𝑟

0
)
𝑝

) 𝜔 (𝜑, 𝜀)] .

(25)

We have that 𝜔(𝛽, 𝜀) → 0, 𝜔(𝛼, 𝜀) → 0, and 𝜔(𝜑, 𝜀) → 0 as
𝜀 → 0 since functions 𝛽, 𝛼, and 𝜑 are uniformly continuous
on 𝐼. Similarly, we get 𝜔

𝑔
(𝐼, 𝜀) → 0, 𝜔

𝑓
(𝐼, 𝜀) → 0, and

𝜔
𝑢1
(𝐼, 𝜀) → 0 as 𝜀 → 0 since functions 𝑔, 𝑓, and 𝑢 are uni-

formly continuous on 𝐼×[−𝑟
0
, 𝑟
0
], 𝐼×[−𝑟

0
, 𝑟
0
], and 𝐼×[0, 𝐶]×

[−𝑟
0
, 𝑟
0
], respectively. Hence, we obtain that

𝜔
0
(𝐹𝑋) ≤ (𝑘 + 𝐴)𝜔

0
(𝑋) . (26)

Thus, since 𝐴 < 𝐶𝑙(𝑚 + 𝑛) from (23) and 𝑘 + 𝐴 < 1 from
condition (14), we derive that operator 𝐹 is a contraction
on ball 𝐵

𝑟0
with respect to measure of noncompactness 𝜔

0
.

Therefore, fromTheorem 2we get that 𝐹 has at least one fixed
point in 𝐵

𝑟0
. Consequently, nonlinear functional integral

equation (5) has at least one continuous solution in 𝐵
𝑟0

⊂

𝐶[0, 𝑎]. This completes the proof.

Example 6. Consider the followingnonlinear functional inte-
gral equation in 𝐶[0, 1]:

𝑥 (𝑡) =
𝑥 (𝑡) + ln (𝑡 + 1)

6 + 𝑡2

+
3𝑥 (𝑡
2
) + 𝑡
3

18
∫

√𝑡

0

𝑠 cos (𝑡𝑥 (𝑠)) + 𝑥3 (𝑠)
exp (𝑡) + 𝑠2𝑡3

𝑑𝑠.

(27)

Put

𝛼 (𝑡) = 𝑡
2
, 𝛽 (𝑡) = 𝑡,

𝛾 (𝑠) = 𝑠, 𝜑 (𝑡) = √𝑡,

𝑔 (𝑡, 𝑥) =
𝑥 + ln (𝑡 + 1)

6 + 𝑡2
, 𝑓 (𝑡, 𝑥) =

3𝑥 + 𝑡
3

18
,

𝑢 (𝑡, 𝑠, 𝑥) =
𝑠 cos (𝑡𝑥) + 𝑥3

exp (𝑡) + 𝑠2𝑡3
,

𝐶 = 𝑚 = 𝑛 = 1, 𝑘 = 𝑙 = 𝑀 =
1

6
,

𝑁 =
1

18
, 𝑝 = 3.

(28)

It is easy to prove that the assumptions of Theorem 5 hold.
Therefore, Theorem 5 guarantees that (27) has at least one
solution 𝑥 = 𝑥(𝑡) ∈ 𝐵

𝑟0
⊂ 𝐶[0, 1]. Since there exist no con-

stants 𝛼 and 𝛽 such that

|𝑢 (𝑡, 𝑠, 𝑥)| ≤ 𝛼 + 𝛽 |𝑥| , (29)

for all 𝑡, 𝑠 ∈ [0, 1] and 𝑥 ∈ R, the results presented in [5] are
inapplicable to integral equation (27) with

𝑔 (𝑡, 𝑥) = 0, 𝛾 (𝑠) = 𝑠,

𝜑 (𝑡) = 𝑡, 𝑓 (𝑡, 𝑥) =
3𝑥 + 𝑡

3

18
,

𝑢 (𝑡, 𝑠, 𝑥) =
𝑠 cos (𝑡𝑥) + 𝑥3

exp (𝑡) + 𝑠2𝑡3
.

(30)
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