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A function space, 𝐿𝜃,∞)(Ω), 0 ≤ 𝜃 < ∞, is defined. It is proved that 𝐿
𝜃,∞)

(Ω) is a Banach space which is a generalization of
exponential class. An alternative definition of 𝐿𝜃,∞)(Ω) space is given. As an application, we obtain weak monotonicity property for
very weak solutions ofA-harmonic equation with variable coefficients under some suitable conditions related to 𝐿

𝜃,∞)
(Ω), which

provides a generalization of a known result due to Moscariello. A weighted space 𝐿
𝜃,∞)

𝑤
(Ω) is also defined, and the boundedness for

the Hardy-Littlewood maximal operator 𝑀𝑤 and a Calderón-Zygmund operator T with respect to 𝐿
𝜃,∞)

𝑤
(Ω) is obtained.

1. Introduction

For 1 < 𝑝 < ∞ and a bounded open subset Ω ⊂ 𝑅
𝑛, the

grand Lebesgue space 𝐿
𝑝)
(Ω) consists of all functions 𝑓(𝑥) ∈

⋂
0<𝜀≤𝑝−1

𝐿
𝑝−𝜀

(Ω) such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝑝),Ω

= sup
0<𝜀≤𝑝−1

(𝜀−∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝−𝜀
𝑑𝑥)

1/(𝑝−𝜀)

< ∞, (1)

where −∫
Ω

= (1/|Ω|)∫
Ω
stands for the integral mean over Ω.

The grand Sobolev space 𝑊
1,𝑝)

0
(Ω) consists of all functions

𝑢 ∈ ⋂
0<𝜀≤𝑝−1

𝑊
1,𝑝−𝜀

0
(Ω) such that

‖𝑢‖
𝑊
1,𝑝)

0

= sup
0<𝜀≤𝑝−1

(𝜀−∫
Ω

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨

𝑝−𝜀
𝑑𝑥)

1/(𝑝−𝜀)

< ∞. (2)

These two spaces, slightly larger than 𝐿
𝑝
(Ω) and 𝑊

1,𝑝

0
(Ω),

respectively, were introduced in the paper [1] by Iwaniec
and Sbordone in 1992 where they studied the integrability
of the Jacobian under minimal hypotheses. For 𝑝 = 𝑛 in
[2], imbedding theorems of Sobolev type were proved for
functions 𝑓 ∈ 𝑊

1,𝑛)

0
(Ω). The small Lebesgue space 𝐿

(𝑝
(Ω)

was found by Fiorenza [3] in 2000 as the associate space of the
grand Lebesgue space 𝐿

𝑝)
(Ω). Fiorenza and Karadzhov gave

in [4] the following equivalent, explicit expressions for the
norms of the small and grand Lebesgue spaces, which depend

only on the nondecreasing rearrangement (provided that the
underlying measure space has measure 1):

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿(𝑝

≈ ∫

1

0

(1 − ln 𝑡)
−1/𝑝

(∫

𝑡

0

[𝑓
∗
(𝑠)]

𝑝
𝑑𝑠)

1/𝑝
𝑑𝑡

𝑡
,

1 < 𝑝 < ∞,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿𝑝)

≈ sup
0<𝑡<1

(1 − ln 𝑡)
−1/𝑝

(∫

1

𝑡

[𝑓
∗
(𝑠)]

𝑝
𝑑𝑠)

1/𝑝

,

1 < 𝑝 < ∞.

(3)

In [5], Greco et al. gave two more general definitions than (1)
and (2) in order to derive existence and uniqueness results
for 𝑝-harmonic operators. For 1 < 𝑝 < ∞ and 0 ≤ 𝜃 < ∞,
the grand 𝐿

𝑝 space, denoted by 𝐿
𝜃,𝑝)

(Ω), consists of functions
𝑓 ∈ ⋂

0<𝜀≤𝑝−1
𝐿
𝑝−𝜀

(Ω) such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝜃,𝑝)

= sup
0<𝜀≤𝑝−1

𝜀
𝜃/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 𝑝−𝜀
< ∞, (4)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝑝−𝜀

= (−∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝−𝜀
𝑑𝑥)

1/(𝑝−𝜀)

. (5)
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The grand Sobolev space 𝑊
𝜃,𝑝)

(Ω) consists of all functions
𝑓 belonging to ⋂

0<𝜀≤𝑝−1
𝑊
1,𝑝−𝜀

(Ω) and such that ∇𝑓 ∈

𝐿
𝜃,𝑝)

(Ω). That is,

𝑊
𝜃,𝑝)

(Ω) = {𝑓 ∈ ⋂

0<𝜀≤𝑝−1

𝑊
1,𝑝−𝜀

(Ω) : ∇𝑓 ∈ 𝐿
𝜃,𝑝)

(Ω)} .

(6)

Grand and small Lebesgue spaces are important tools in
dealing with regularity properties for very weak solutions
of A-harmonic equation as well as weakly quasiregular
mappings; see [6, 7].

The aim of the present paper is to provide a generalization
𝐿
𝜃,∞)

(Ω), 0 ≤ 𝜃 < ∞, of exponential class EXP(Ω) and
prove that it is a Banach space. An alternative definition of
𝐿
𝜃,∞)

(Ω) is given in terms of weak Lebesgue spaces. As an
application, we obtain weak monotonicity property for very
weak solutions of A-harmonic equation with variable coef-
ficients under some suitable conditions related to 𝐿

𝜃,∞)
(Ω).

This paper also considers aweighted space𝐿𝜃,∞)
𝑤

(Ω) and some
boundedness result for classical operators with respect to this
space.

In the sequel, the letter𝐶 is used for various constants and
may change from one occurrence to another.

2. A Generalization of Exponential Class

Recall that EXP(Ω), the exponential class, consists of all
measurable functions 𝑓 such that

∫
Ω

𝑒
𝜆|𝑓|

𝑑𝑥 < ∞ (7)

for some 𝜆 > 0. It is a Banach space under the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 EXP = inf {𝜆 > 0 : ∫

Ω

𝑒
|𝑓|/𝜆

𝑑𝑥 ≤ 2} . (8)

In this section, we define a space 𝐿
𝜃,∞)

(Ω), 0 ≤ 𝜃 < ∞,
which is a generalization of EXP(Ω), and prove that it is a
Banach space.

Definition 1. For 𝜃 ≥ 0, the space 𝐿
𝜃,∞)

(Ω) is defined by

𝐿
𝜃,∞)

(Ω) = {𝑓 (𝑥) ∈ ⋂

1≤𝑝<∞

𝐿
𝑝
(Ω) :

sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

< ∞} .

(9)

It is not difficult to see that

𝐿
𝜃,∞)

(Ω) = {𝑔 (𝑥) ∈ ⋂

1≤𝑝<∞

𝐿
𝑝
(Ω) :

lim sup
𝑝→∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

< ∞} .

(9)󸀠

There are two special cases of 𝐿
𝜃,∞)

(Ω) that are worth
mentioning since they coincide with two known spaces.

Case 1 (𝜃 = 0). In this case,

𝐿
0,∞)

(Ω) = {𝑓 (𝑥) ∈ ⋂

1≤𝑝<∞

𝐿
𝑝
(Ω) :

sup
1≤𝑝<∞

(−∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

< ∞} .

(10)

From the fact (see [8, page 12])

𝐿
∞

(Ω) = {𝑓 ∈ ⋂

1≤𝑝<∞

𝐿
𝑝
(Ω) : lim

𝑝→∞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝑝

< ∞} , (11)

we get 𝐿0,∞)(Ω) = 𝐿
∞

(Ω).

Case 2 (𝜃 = 1). The following proposition shows that
𝐿
𝜃,∞

(Ω) can be regarded as a generalization of EXP(Ω).

Proposition 2. 𝐿
1,∞)

(Ω) = EXP(Ω).

Proof. In order to realize that a function in the 𝐿1,∞)(Ω) space
is in EXP(Ω), it is sufficient to read the last lines of [2]. The
vice versa is also true; see for example [9, Chap. VI, exercise
no. 17].

It is clear that for any 0 ≤ 𝜃 < 𝜃
󸀠
≤ ∞ and any 𝑞 < ∞, we

have the inclusions

𝐿
∞

(Ω) ⊂ 𝐿
𝜃,∞)

(Ω) ⊂ 𝐿
𝜃
󸀠
,∞)

(Ω) ⊂ 𝐿
𝑞
(Ω) . (12)

The following theorem shows that if 𝜃 > 0, then 𝐿
𝜃,∞)

(Ω)

is slightly larger than 𝐿
∞

(Ω).

Theorem 3. For 𝜃 > 0, the space 𝐿
∞

(Ω) is a proper subspace
of 𝐿𝜃,∞)(Ω).

Proof. In the proof ofTheorem 3 we always assume 𝜃 > 0. Let
𝑓(𝑥) ∈ 𝐿

∞
(Ω), then there exists a constant𝑀 < ∞, such that

|𝑓(𝑥)| ≤ 𝑀, a.e. Ω. Thus,

sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

≤ sup
1≤𝑝<∞

𝑀

𝑝𝜃
= 𝑀 < ∞, (13)

which implies that 𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(Ω).
The following example shows that 𝐿

∞
(Ω) ⊂ 𝐿

𝜃,∞)
(Ω)

is a proper subset. Since we have the inclusion (12), then
it is no loss of generality to assume that 𝜃 ≤ 1. Consider
the function 𝑓(𝑥) = (− ln𝑥)

𝜃 defined in the open interval
(0, 1). It is obvious that 𝑓(𝑥) ∉ 𝐿

∞
(0, 1). We now show that

𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(0, 1). In fact, for𝑚 a positive integer, integration
by parts yields

∫

1

0

(− ln𝑥)
𝑚
𝑑𝑥 = 𝑥(− ln𝑥)

𝑚󵄨󵄨󵄨󵄨

1

0
− ∫

1

0

𝑥𝑑(− ln𝑥)
𝑚

= − lim
𝑥→0+

𝑥(− ln𝑥)
𝑚

+ 𝑚∫

1

0

(− ln𝑥)
𝑚−1

𝑑𝑥.

(14)
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By L’Hospital’s Law, one has

lim
𝑥→0+

𝑥(− ln𝑥)
𝑚

= lim
𝑥→0+

(− ln𝑥)
𝑚

1/𝑥

= lim
𝑥→0+

𝑚(− ln𝑥)
𝑚−1

1/𝑥
= ⋅ ⋅ ⋅ = 𝑚! lim

𝑥→0+
𝑥 = 0.

(15)

This equality together with (14) yields

∫

1

0

(− ln𝑥)
𝑚
𝑑𝑥 = 𝑚∫

1

0

(− ln𝑥)
𝑚−1

𝑑𝑥. (16)

By induction,

∫

1

0

𝑓
𝑚

(𝑥) 𝑑𝑥 = 𝑚∫

1

0

(− ln𝑥)
𝑚−1

𝑑𝑥 = ⋅ ⋅ ⋅ = 𝑚!∫

1

0

𝑑𝑥 = 𝑚!.

(17)

Recall that the function

𝑝 󳨃󳨀→ (−∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

(18)

is nondecreasing; thus (17) yields

sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

1

0

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

= sup
1≤𝑝<∞

[
1

𝑝
(∫

1

0

(− ln𝑥)
𝑝𝜃

𝑑𝑥)

1/𝑝𝜃

]

𝜃

≤ sup
1≤𝑝<∞

[
1

𝑝
(∫

1

0

(− ln𝑥)
[𝑝𝜃]+1

𝑑𝑥)

1/([𝑝𝜃]+1)

]

𝜃

= sup
1≤𝑝<∞

[
([𝑝𝜃] + 1) !

1/([𝑝𝜃]+1)

𝑝
]

𝜃

≤ sup
1≤𝑝<∞

[
[𝑝𝜃] + 1

𝑝
]

𝜃

≤ 2,

(19)

where we have used the assumption 𝜃 ≤ 1 and [𝑝𝜃] is
the integer part of 𝑝𝜃. The proof of Theorem 3 has been
completed.

For functions 𝑓1(𝑥), 𝑓2(𝑥) ∈ 𝐿
𝜃,∞)

(Ω), and 𝛼 ∈ 𝑅, the
addition 𝑓1(𝑥) + 𝑓2(𝑥) and the multiplication 𝛼𝑓1(𝑥) are
defined as usual.

Theorem 4. 𝐿
𝜃,∞)

(Ω) is a linear space on 𝑅.

Proof. This theorem is easy to prove, so we omit the details.

For 𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(Ω), we define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝜃,∞),Ω

= sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

. (20)

We drop the subscript Ω from ‖ ⋅ ‖𝜃,∞),Ω when there is no
possibility of confusion.

Theorem 5. ‖ ⋅ ‖𝜃,∞) is a norm.

Proof. (1) It is obvious that ‖𝑓‖
𝜃,∞)

≥ 0 and ‖𝑓‖
𝜃,∞)

= 0 if
and only if 𝑓 = 0 a.e. Ω.

(2) For any𝑓1(𝑥), 𝑓2(𝑥) ∈ 𝐿
𝜃,∞)

(Ω),Minkowski’s inequal-
ity in 𝐿

𝑝
(Ω) yields

󵄩󵄩󵄩󵄩𝑓1 + 𝑓2
󵄩󵄩󵄩󵄩 𝜃,∞)

= sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓1 + 𝑓2
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

≤ sup
1≤𝑝<∞

1

𝑝𝜃
[(−∫

Ω

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

+(−∫
Ω

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

]

≤ sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓1
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

+ sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓2
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

=
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩 𝜃,∞)
+

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩 𝜃,∞)

.

(21)

(3) For all 𝜆 ∈ 𝑅 and all 𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(Ω), it is obvious
that ‖𝜆𝑓‖

𝜃,∞)
= |𝜆| ‖ 𝑓‖ 𝜃,∞).

Theorem 6. (𝐿
𝜃,∞)

(Ω), ‖ ⋅ ‖𝜃,∞)) is a Banach space.

Proof. Suppose that {𝑓𝑛}
∞

𝑛=1
⊂ 𝐿

𝜃,∞)
(Ω), and for any positive

integer 𝑝,

󵄩󵄩󵄩󵄩󵄩
𝑓𝑛+𝑝 − 𝑓𝑛

󵄩󵄩󵄩󵄩󵄩 𝜃,∞)
󳨀→ 0, 𝑛 󳨀→ ∞. (22)

Since Ω is 𝜎-finite, then Ω = ⋃
∞

𝑚=1
Ω𝑚 with |Ω𝑚| < ∞. It

is no loss of generality to assume that the Ω𝑚s are disjoint.
Equation (17) implies that for any positive integer 𝑝,

∫
Ω
𝑚

󵄨󵄨󵄨󵄨󵄨
𝑓𝑛+𝑝 (𝑥) − 𝑓𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 󳨀→ 0, 𝑛 󳨀→ ∞. (23)

Thus, by the completeness of 𝐿1(Ω𝑚), there exists 𝑓
(𝑚)

(𝑥) ∈

𝐿
1
(Ω𝑚), such that

𝑓𝑛 (𝑥) 󳨀→ 𝑓
(𝑚)

(𝑥) , 𝑛 󳨀→ ∞, in 𝐿
1
(Ω𝑚) . (24)

Hence for any positive integer 𝑚, there exists a subsequence
{𝑓
(𝑚)

𝑛
(𝑥)} of {𝑓𝑚−1

𝑛
(𝑥)}, {𝑓(0)

𝑛
(𝑥)} = {𝑓𝑛(𝑥)}, such that

𝑓
(𝑚)

𝑛
(𝑥) 󳨀→ 𝑓

(𝑚)
(𝑥) , 𝑛 󳨀→ ∞, a.e. 𝑥 ∈ Ω𝑚. (25)

If we let

𝑓 (𝑥) = 𝑓
(𝑚)

(𝑥) , 𝑥 ∈ Ω𝑚, 𝑚 = 1, 2, . . . , (26)

then

𝑓
(𝑛)

𝑛
(𝑥) 󳨀→ 𝑓 (𝑥) , 𝑛 󳨀→ ∞, a.e. 𝑥 ∈ Ω. (27)
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It is no loss of generality to assume that the subsequence
{𝑓
(𝑛)

𝑛
(𝑥)} of {𝑓𝑛(𝑥)} is itself; thus

𝑓𝑛 (𝑥) 󳨀→ 𝑓 (𝑥) , 𝑛 󳨀→ ∞, a.e. 𝑥 ∈ Ω. (28)

We now prove𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(Ω) and ‖𝑓𝑛 − 𝑓‖
𝜃,∞)

→ 0, (𝑛 →

∞). In fact, by (22), for any 𝜀 > 0, there exists𝑁 = 𝑁(𝜀), such
that if 𝑛 > 𝑁, then

sup
1≤𝑞<∞

1

𝑞𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨󵄨
𝑓𝑛+𝑝 (𝑥) − 𝑓𝑛 (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

< 𝜀. (29)

Let 𝑝 → ∞; one has

sup
1≤𝑞<∞

1

𝑞𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑞
𝑑𝑥)

1/𝑞

< 𝜀, 𝑛 > 𝑁. (30)

Hence 𝑓(𝑥) ∈ 𝐿
𝜃,∞)

(Ω), and ‖𝑓𝑛(𝑥) − 𝑓(𝑥)‖
𝜃,∞)

→ 0, 𝑛 →

∞. This completes the proof of Theorem 6.

Definition 7. The grand Sobolev space 𝑊
𝜃,∞)

(Ω) consists of
all functions 𝑓 belonging to⋂

1≤𝑝<∞
𝑊
1,∞)

(Ω) and such that
∇𝑓 ∈ 𝐿

𝜃,∞)
(Ω). That is,

𝑊
𝜃,∞)

(Ω) = {𝑓 ∈ ⋂

1≤𝑝<∞

𝑊
1,∞)

(Ω) : ∇𝑓 ∈ 𝐿
𝜃,∞)

(Ω)} .

(31)

This definition will be used in Section 4.

3. An Alternative Definition of 𝐿
𝜃,∞

(Ω)

In this section, we give an alternative definition of 𝐿𝜃,∞)(Ω)

in terms of weak Lebesgue spaces. Let us first recall the
definition of weak 𝐿

𝑝
(0 < 𝑝 < ∞) spaces or the

Marcinkiewicz spaces, 𝐿𝑝weak(Ω); see [10, Chapter 1, Section
2], [11, Chapter 2, Section 5], or [12, Chapter 2, Section 18].

Definition 8. Let 0 < 𝑝 < ∞. We say that 𝑓 ∈ 𝐿
𝑝

weak(Ω) if and
only if there exists a positive constant 𝑘 = 𝑘(𝑓) such that

𝑓∗ (𝑡) =
󵄨󵄨󵄨󵄨 {𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 > 𝑡}

󵄨󵄨󵄨󵄨 ≤
𝑘

𝑡𝑝
(32)

for every 𝑡 > 0, where |𝐸| is the 𝑛-dimensional Lebesgue
measure of 𝐸 ⊂ 𝑅

𝑛 and 𝑓∗(𝑡) = |{𝑥 ∈ Ω : |𝑓(𝑥)| > 𝑡}|

denotes the distribution function of 𝑓.

For 𝑝 > 1, we recall that if 𝑓 ∈ 𝐿
𝑝

weak(Ω), then 𝑓 ∈ 𝐿
𝑞
(Ω)

for every 1 ≤ 𝑞 < 𝑝, and 𝑓 ∈ 𝐿
𝑝

weak(Ω) if and only if for every
measurable set 𝐸 ⊂ Ω, the following inequality holds

∫
𝐸

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑐|𝐸|

(𝑝−1)/𝑝 (33)

for some constant 𝑐 > 0.
Equation (32) is equivalent to

𝑀𝑝 (𝑓) = [
1

|Ω|
sup
𝑡>0

𝑡
𝑝
𝑓∗ (𝑡)]

1/𝑝

< ∞. (34)

Recall also that

∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥 = 𝑠∫

∞

0

𝑡
𝑠−1

𝑓∗ (𝑡) 𝑑𝑡 < ∞. (35)

Definition 9. For 𝜃 ≥ 0, the weak space 𝐿
𝜃,∞

weak(Ω) is defined
by

𝐿
𝜃,∞

weak (Ω) = {𝑓 ∈ ⋂

1≤𝑝<∞

𝐿
𝑝

weak (Ω) : sup
1≤𝑝<∞

𝑀𝑝 (𝑓)

𝑝𝜃
< ∞} .

(36)

The following theorem shows that 𝐿𝜃,∞weak(Ω) = 𝐿
𝜃,∞)

(Ω);
thus, 𝐿𝜃,∞weak(Ω) can be regarded as an alternative definition of
the space 𝐿

𝜃,∞)
(Ω).

Theorem 10.

𝐿
𝜃,∞

weak (Ω) = 𝐿
𝜃,∞)

(Ω) . (37)

Proof. We divided the proof into two steps.

Step 1 (𝐿𝜃,∞weak(Ω) ⊂ 𝐿
𝜃,∞)

(Ω)). If 1 ≤ 𝑠 < 𝑝, for each 𝑎 > 0, one
can split the integral in the right-hand side of (35) to obtain

∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥 = 𝑠∫

𝑎

0

𝑡
𝑠−1

𝑓∗ (𝑡) 𝑑𝑡 + 𝑠∫

∞

𝑎

𝑡
𝑠−1

𝑓∗ (𝑡) 𝑑𝑥

≤ |Ω| 𝑎
𝑠
+

𝑠𝑎
𝑠−𝑝

𝑝 − 𝑠
|Ω|𝑀

𝑝

𝑝
(𝑓) .

(38)

The second integral has been estimated by the inequality
𝑓∗(𝑡) ≤ |Ω|𝑡

−𝑝
𝑀
𝑝

𝑝(𝑓), which is a direct consequence of
the definition of the constant 𝑀𝑝(𝑓) (see (34)). Setting 𝑎 =

𝑀𝑝(𝑓), we arrive at

−∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥 ≤ 𝑀

𝑠

𝑝
(𝑓) +

𝑠

𝑝 − 𝑠
𝑀
𝑠

𝑝
(𝑓) =

𝑝

𝑝 − 𝑠
𝑀𝑝 (𝑓) .

(39)

This implies that

1

𝑠𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥)

1/𝑠

≤
1

𝑠𝜃
(

𝑝

𝑝 − 𝑠
)

1/𝑠

𝑀𝑝 (𝑓) . (40)

Therefore

sup
1≤𝑠<∞

1

𝑠𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥)

1/𝑠

= max { sup
1≤𝑠<2

1

𝑠𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥)

1/𝑠

, sup
2≤𝑠<∞

1

𝑠𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥)

1/𝑠

}

≤ max {
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 2
, sup
2≤𝑠=𝑝−1<∞

1

𝑠𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑠
𝑑𝑥)

1/𝑠

}
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≤ max {
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 2
, sup
2≤𝑠<∞

1

𝑠𝜃
(𝑠 + 1)

1/𝑠
𝑀𝑠+1 (𝑓)}

≤ max {
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 2
, 4 sup
1≤𝑠<∞

𝑀𝑠 (𝑓)

𝑠𝜃
} < ∞,

(41)

here we have used (40) and the definition of 𝐿∞weak(Ω).

Step 2 (𝐿
𝜃,∞)

(Ω) ⊂ 𝐿
∞

weak(Ω)). Since for any 𝑡 > 0,

𝑡
𝑝
𝑓∗ (𝑡) = 𝑡

𝑝
∫
{𝑥∈Ω:|𝑓(𝑥)|>𝑡}

𝑑𝑥

≤ ∫
{𝑥∈Ω:|𝑓(𝑥)|>𝑡}

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥 ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥,

(42)

then

sup
𝑡>0

𝑡
𝑝
𝑓∗ (𝑡) ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥. (43)

This implies that

𝑀𝑝 (𝑓) = [
1

|Ω|
sup
𝑡>0

𝑡
𝑝
𝑓∗ (𝑡)]

1/𝑝

≤ (−∫
Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

. (44)

Thus

sup
1≤𝑝<∞

𝑀𝑝 (𝑓)

𝑝𝜃
≤ sup
1≤𝑝<∞

1

𝑝𝜃
(−∫

Ω

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

1/𝑝

< ∞. (45)

The proof of Theorem 10 has been completed.

4. An Application

In this section, we give an application of the space 𝐿
𝜃,∞)

(Ω)

to monotonicity property of very weak solutions of the A-
harmonic equation

divA (𝑥, ∇𝑢 (𝑥)) = 0, (46)

where A : Ω × 𝑅
𝑛

→ 𝑅
𝑛 is a mapping satisfying the

following assumptions:
(1) themapping 𝑥 󳨃→ A(𝑥, 𝜉) ismeasurable for all 𝜉 ∈ 𝑅

𝑛,
(2) the mapping 𝜉 󳨃→ A(𝑥, 𝜉) is continuous for a.e. 𝑥 ∈

𝑅
𝑛, for all 𝜉 ∈ 𝑅

𝑛, and a.e. 𝑥 ∈ 𝑅
𝑛,

(3)

⟨A (𝑥, 𝜉) , 𝜉⟩ ≥ 𝛾 (𝑥)
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝
, (47)

(4)
󵄨󵄨󵄨󵄨A (𝑥, 𝜉)

󵄨󵄨󵄨󵄨 ≤ 𝜏 (𝑥)
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝−1
, (48)

where 1 < 𝑝 < ∞, 0 < 𝛾(𝑥) ≤ 𝜏(𝑥) < ∞, a.e. Ω.
Conditions (1) and (2) insure that the composedmapping

𝑥 󳨃→ A(𝑥, 𝑔(𝑥)) is measurable whenever 𝑔 is measurable.
The degenerate ellipticity of the equation is described by
condition (3). Finally, condition (4) guarantees that for any
0 ≤ 𝜃 < ∞ and any 𝜀 > 0, A(𝑥, ∇𝑢) can be integrated
for 𝑢 ∈ 𝑊

𝜃,𝑝
(Ω) against functions in 𝑊

1,(𝑝−𝜀)/(1−𝑝𝜀)
(Ω) with

compact support.

Definition 11. A function 𝑢 ∈ 𝑊
1,𝑟

loc (Ω), max {1, 𝑝−1} < 𝑟 ≤ 𝑝,
is called a very weak solution of (46) if

∫
Ω

⟨A (𝑥, ∇𝑢 (𝑥)) , ∇𝜑 (𝑥)⟩ 𝑑𝑥 = 0 (49)

for all 𝜑 ∈ 𝑊
1,𝑟/(𝑟−𝑝+1)

0
(Ω).

A fruitful idea in dealing with the continuity properties
of Sobolev functions is the notion of monotonicity. In one
dimension a function 𝑢 : Ω → 𝑅 is monotone if it
satisfies both a maximum and minimum principle on every
subinterval. Equivalently, we have the oscillation bounds
osc𝐼𝑢 ≤ osc𝜕𝐼𝑢 for every interval 𝐼 ⊂ Ω. The definition
of monotonicity in higher dimensions closely follows this
observation.

A continuous function 𝑢 : Ω → 𝑅
𝑛 defined in a domain

Ω ⊂ 𝑅
𝑛 is monotone if

osc𝐵𝑢 ≤ osc𝜕𝐵𝑢 (50)

for every ball 𝐵 ⊂ 𝑅
𝑛. This definition in fact goes back to

Lebesgue [13] in 1973 where he first showed the relevance
of the notion of monotonicity in the study of elliptic PDEs
in the plane. In order to handle very weak solutions of A-
harmonic equation, we need to extend this concept, dropping
the assumption of continuity.The following definition can be
found in [14]; see also [6, 7].

Definition 12. A real-valued function 𝑢 ∈ 𝑊
1,1

loc (Ω) is said to
be weakly monotone if for every ball 𝐵 ⊂ Ω and all constants
𝑚 ≤ 𝑀 such that

|𝑀 − 𝑢| − |𝑢 − 𝑚| + 2𝑢 − 𝑚 − 𝑀 ∈ 𝑊
1,1

0
(𝐵) , (51)

we have

𝑚 ≤ 𝑢 (𝑥) ≤ 𝑀 (52)

for almost every 𝑥 ∈ 𝐵.

For continuous functions (51) holds if and only if 𝑚 ≤

𝑢(𝑥) ≤ 𝑀 on 𝜕𝐵. Then (52) says we want the same condition
in 𝐵, that is, the maximum and minimum principles.

Manfredi’s paper [14] should be mentioned as the begin-
ning of the systematic study of weakly monotone functions.
Koskela et al. obtained in [15] thatA-harmonic functions are
weakly monotone. In [16], the first author obtained a result
which states that very weak solutions 𝑢 ∈ 𝑊

1,𝑝−𝜀

loc (Ω) of the
A-harmonic equation are weakly monotone provided that 𝜀
is small enough. The objective of this section is to extend the
operatorA to spaces slightly larger than 𝐿

𝑝
(Ω).

Theorem 13. Let 𝛾(𝑥) > 0, a.e. Ω, 𝜏(𝑥) ∈ 𝐿
𝜃
1
,∞)

(Ω). If
𝑢 ∈ 𝑊

𝜃
2
,𝑝)

(Ω) is a very weak solution to (46), then it is weakly
monotone in Ω provided that 𝜃1 + 𝜃2 < 1.

Proof. For any ball 𝐵 ⊂ Ω and 0 < 𝜀 < 1, let

𝜓 = (𝑢 − 𝑀)
+
− (𝑚 − 𝑢)

+
∈ 𝑊

1,𝑝−𝜀

0
(𝐵) . (53)
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It is obvious that

∇𝜓 = {
0, for 𝑚 ≤ 𝑢 (𝑥) ≤ 𝑀,

∇𝑢, otherwise, say, on a set 𝐸 ⊂ 𝐵.
(54)

Consider the Hodge decomposition (see [6]),

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

−𝑝𝜀
∇𝜓 = ∇𝜑 + ℎ. (55)

The following estimate holds

‖ℎ‖ (𝑝−𝜀)/(1−𝑝𝜀) ≤ 𝐶𝜀
󵄩󵄩󵄩󵄩∇𝜓

󵄩󵄩󵄩󵄩

1−𝑝𝜀

𝑝−𝜀
. (56)

Definition 11 with 𝜑 acting as a test function yields

∫
𝐸

⟨A (𝑥, ∇𝑢) , |∇𝑢|
−𝑝𝜀

∇𝑢⟩ 𝑑𝑥 = ∫
𝐸

⟨A (𝑥, ∇𝑢) , ℎ⟩ 𝑑𝑥.

(57)

Hölder’s inequality together with the conditions (3) and (4)
and equations (56) and (57) yields

∫
𝐸

𝛾 (𝑥) |∇𝑢|
𝑝(1−𝜀)

𝑑𝑥

≤ ∫
𝐸

⟨A (𝑥, ∇𝑢) , |∇𝑢|
−𝑝𝜀

∇𝑢⟩ 𝑑𝑥

= ∫
𝐸

⟨A (𝑥, ∇𝑢) , ℎ⟩ 𝑑𝑥

≤ ∫
𝐸

𝜏 (𝑥) |∇𝑢|
𝑝−1

|ℎ| 𝑑𝑥

≤ ‖𝜏‖ (𝑝−𝜀)/(𝑝−1)𝜀‖∇𝑢‖
𝑝−1

𝑝−𝜀
‖ℎ‖ (𝑝−𝜀)/(1−𝑝𝜀)

≤ 𝐶𝜀‖𝜏‖ (𝑝−𝜀)/(𝑝−1)𝜀‖∇𝑢‖
𝑝(1−𝜀)

𝑝−𝜀

= 𝐶 |𝐸| 𝜀 ⋅ 𝜀
−𝜃
2
(1−𝜀)

[
𝑝 − 𝜀

(𝑝 − 1)𝜀
]

𝜃
1

[
(𝑝 − 1) 𝜀

𝑝 − 𝜀
]

𝜃
1

× (−∫
𝐸

|𝜏|
(𝑝−𝜀)/(𝑝−1)𝜀

𝑑𝑥)

(𝑝−1)𝜀/(𝑝−𝜀)

× 𝜀
𝜃
2
(1−𝜀)

(−∫
𝐸

|∇𝑢|
𝑝−𝜀

)

𝑝(1−𝜀)/(𝑝−𝜀)

.

(58)

The condition 𝜏 ∈ 𝐿
𝜃
1
,∞)

(Ω) implies that

lim
𝜀→0+

[
(𝑝 − 1) 𝜀

𝑝 − 𝜀
]

𝜃
1

(−∫
𝐸

|𝜏|
(𝑝−𝜀)/(𝑝−1)𝜀

𝑑𝑥)

(𝑝−1)𝜀/(𝑝−𝜀)

≤ ‖𝜏‖ 𝜃
1
,∞) < ∞.

(59)

Since 𝑢 ∈ 𝑊
𝜃
2
,𝑝)

(Ω), then

lim
𝜀→0+

𝜀
𝜃
2
(1−𝜀)

(−∫
𝐸

|∇𝑢|
𝑝−𝜀

)

𝑝(1−𝜀)/(𝑝−𝜀)

≤ ‖∇𝑢‖
𝑝

𝜃
2
,𝑝)

< ∞.

(60)

By 𝜃1 + 𝜃2 < 1, we have

lim
𝜀→0+

𝜀 ⋅ 𝜀
−𝜃
2
(1−𝜀)

[
𝑝 − 𝜀

(𝑝 − 1) 𝜀
]

𝜃
1

= (
𝑝

𝑝 − 1
)

𝜃
1

lim
𝜀→0+

𝜀
1−𝜃
2
(1−𝜀)−𝜃

1 = 0.

(61)

Combining (58)–(61) and taking into account the assumption
𝛾(𝑥) > 0, a.e. Ω, we arrive at ∇𝑢 = 0, a.e. 𝐸. This implies that
(𝑢 − 𝑀)

+
− (𝑚 − 𝑢)

+ vanishes a.e. in 𝐵, and thus (𝑢 − 𝑀)
+
−

(𝑚−𝑢)
+must be the zero function in 𝐵, completing the proof

of Theorem 13.

Remark 14. We remark that the result inTheorem 13 is a gen-
eralization of a result due to Moscariello; see [17, Corollary
4.1].

5. A Weighted Version

A weight is a locally integrable function on 𝑅
𝑛 which takes

values in (0,∞) almost everywhere. For a weight 𝑤 and a
measurable set 𝐸, we define 𝑤(𝐸) = ∫

𝐸
𝑤(𝑥)𝑑𝑥 and the

Lebesgue measure of 𝐸 by |𝐸|. The weighted Lebesgue spaces
with respect to the measure 𝑤(𝑥)𝑑𝑥 are denoted by 𝐿

𝑝

𝑤
with

0 < 𝑝 < ∞. Given a weight 𝑤, we say that 𝑤 satisfies the
doubling condition if there exists a constant 𝐶 > 0 such that
for any cube 𝑄, we have 𝑤(2𝑄) ≤ 𝐶𝑤(𝑄), where 2𝑄 denotes
the cube with the same center as 𝑄 whose side length is 2
times that of 𝑄. When 𝑤 satisfies this condition, we denote
𝑤 ∈ Δ2, for short.

A weight function𝑤 is in theMuckenhoupt class𝐴𝑝 with
1 < 𝑝 < ∞ if there exists 𝐶 > 1 such that for any cube 𝑄

(−∫
𝑄

𝑤 (𝑥) 𝑑𝑥)(−∫
𝑄

𝑤(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶, (62)

where 1/𝑝 + 1/𝑝
󸀠
= 1. We define 𝐴∞ = ⋃

1<𝑝<∞
𝐴𝑝.

Let 𝑤 be a weight. The Hardy-Littlewood maximal oper-
ator with respect to the measure 𝑤(𝑥)𝑑𝑥 is defined by

𝑀𝑤𝑓 (𝑥) = sup
𝑄∋𝑥

1

𝑤 (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥. (63)

We say that 𝑇 is a Calderón-Zygmund operator if there exists
a function 𝐾 which satisfies the following conditions:

𝑇𝑓 (𝑥) = p.v. ∫
𝑅𝑛

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦,

|𝐾 (𝑥)| ≤
𝐶𝐾

|𝑥|
𝑛
, |∇𝐾 (𝑥)| ≤

𝐶𝐾

|𝑥|
𝑛+1

, 𝑥 ̸= 0.

(64)

For 𝑤 a weight and 0 ≤ 𝜃 < ∞, we define the space
𝐿
𝜃,∞)

𝑤
(Ω) as follows:

𝐿
𝜃,∞)

𝑤
(Ω) = {𝑓 (𝑥) ∈ ⋂

1<𝑝<∞

𝐿
𝑝

𝑤
(Ω) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)
< ∞} ,

(65)
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where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)
= sup
1<𝑝<∞

1

𝑝𝜃
(

1

𝑤 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

.

(66)

The following lemma comes from [18].

Lemma 15. If 1 < 𝑝 < ∞ and 𝑤 ∈ Δ2, then the operator 𝑀𝑤

is bounded on 𝐿
𝑝

𝑤
(Ω).

Theorem 16. Theoperator𝑀𝑤 is bounded on 𝐿
𝜃,∞)

𝑤
(Ω) for 0 ≤

𝜃 < ∞ and 𝑤 ∈ Δ2.

Proof. By Lemma 15, since for 1 < 𝑝 < ∞ and 𝑤 ∈ Δ2, the
operator 𝑀𝑤 is bounded on 𝐿

𝑝

𝑤
(Ω), then

(∫
Ω

󵄨󵄨󵄨󵄨𝑀𝑤𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶(∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

.

(67)

This implies that

󵄩󵄩󵄩󵄩𝑀𝑤𝑓
󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)

= sup
1<𝑝<∞

1

𝑝𝜃
(

1

𝑤 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑀𝑤𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶 sup
1<𝑝<∞

1

𝑝𝜃
(

1

𝑤 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)
,

(68)

completing the proof of Theorem 16.

The following lemma can be found in [19].

Lemma 17. If 𝑤 ∈ 𝐴∞, then there exists 𝑞 ∈ (1,∞) such that
𝑤 ∈ 𝐴𝑞.

The following lemma can be found in [20, 21].

Lemma 18. If 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝, then a Calderón-
Zygmund operator 𝑇 is bounded on 𝐿

𝑝

𝑤
(Ω).

Theorem 19. A Calderón-Zygmund operator 𝑇 is bounded on
𝐿
𝜃,∞)

𝑤
(Ω) for 0 ≤ 𝜃 < ∞ and 𝑤 ∈ 𝐴∞.

Proof. By 𝑤 ∈ 𝐴∞ and Lemma 17, one has 𝑤 ∈ 𝐴𝑞 for some
𝑞 ∈ (1,∞). For 1 < 𝑝 < 𝑞 < ∞, Hölder’s inequality yields

∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥 = ∫

Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤(𝑥)

𝑝/𝑞
𝑤(𝑥)

(𝑞−𝑝)/𝑝
𝑑𝑥

≤ (∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑞
𝑤 (𝑥) 𝑑𝑥)

𝑝/𝑞

(∫
Ω

𝑤 (𝑥) 𝑑𝑥)

(𝑞−𝑝)/𝑞

.

(69)

Thus,

1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑝
𝑤(𝑥)𝑑𝑥)

1/𝑝

≤
1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑞
𝑤(𝑥)𝑑𝑥)

𝑝/𝑞

× (
1

𝑤(Ω)
∫
Ω

𝑤(𝑥)𝑑𝑥)

(𝑞−𝑝)/𝑞

=
1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑞
𝑤(𝑥)𝑑𝑥)

𝑝/𝑞

.

(70)

Lemma 18 yields

󵄩󵄩󵄩󵄩𝑇𝑓
󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)

= max { sup
1<𝑝<𝑞

1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑝
𝑤(𝑥)𝑑𝑥)

1/𝑝

,

sup
𝑞≤𝑝<∞

1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑝
𝑤(𝑥)𝑑𝑥)

1/𝑝

}

= max { sup
1<𝑝<𝑞

1

𝑝𝜃
(

1

𝑤 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑞
𝑤 (𝑥) 𝑑𝑥)

𝑝/𝑞

,

sup
𝑞≤𝑝<∞

1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

|𝑇𝑓(𝑥)|
𝑝
𝑤(𝑥)𝑑𝑥)

1/𝑝

}

≤ max { sup
1<𝑝<𝑞

(
𝑞

𝑝
)

𝜃

, 1}

× sup
𝑞≤𝑝<∞

1

𝑝𝜃
(

1

𝑤 (Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶𝑞
𝜃 sup
𝑞≤𝑝<∞

1

𝑝𝜃
(

1

𝑤(Ω)
∫
Ω

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝑤 (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶𝑞
𝜃󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 𝐿
𝜃,∞)

𝑤 (Ω)
,

(71)

as desired.
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