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In the present paper we introduced the ideal convergence of generalized difference sequence spaces combining de La Vallée-Poussin
mean and Musielak-Orlicz function over n-normed spaces. We also study some topological properties and inclusion relation

between these spaces.

1. Introduction

Throughout the paper w, €., ¢, ¢, and £, denote the classes
of all, bounded, convergent, null, and p-a{;solutely summable
sequences of complex numbers. The sets of natural numbers
and real numbers will be denoted by N, R, respectively. Many
authors studied various sequence spaces using normed or
seminormed linear spaces. In this paper, using de La Vallée-
Poussin mean and the notion of ideal, we aimed to introduce
some new sequence spaces with respect to generalized differ-
ence operator A}, and Musielak-Orlicz function in #n-normed
linear spaces. By an ideal we mean a family I c 2¥ of subsets
of a nonempty set Y satistying (i) ¢ € I; (ii) A, B € I imply
AUB € I; (ili) A € I, B ¢ Aimply B € I, while an admissible
ideal I of Y further satisfies {x} € I for each x € Y. The notion
of ideal convergence was introduced first by Kostyrko et al.
[1] as a generalization of statistical convergence. The concept
of 2-normed spaces was initially introduced by Géhler [2] in
the 1960s, while that of #n-normed spaces can be found in [3],
and this concept has been studied by many authors; see for
instance [4-7]. The notion of ideal convergence in 2-normed
space was initially introduced by Giirdal [8]. Later on, it was
extended to n-normed spaces by Giirdal and Sahiner [9].
Given I c 2" is a nontrivial ideal in N, the sequence (x,,),,cx

ina normed space (X; ||-||) is said to be I-convergent to x € X,
if for each & > 0,

A(e)={neN:|x,—x|>¢l el 1

A sequence (x;) in a normed space (X, || - ||) is said to be I-
bounded if there exists L > 0 such that

{keN:|x|>L}el )

A sequence (x;) in a normed space (X, | - ||) is said to be I-
Cauchy if for each € > 0, there exists a positive integer m =
m(e) such that

{keN:|x;—x,| >¢ €l (3)

An Orlicz function is a function M : [0,00) — [0, 00) which
is continuous, nondecreasing, and convex with M(0) = 0,
M(x) > 0 for x > 0and M(x) — o00,as x — oo.If
convexity of M is replaced by M(x + y) < M(x) + M(y),
then it is called a modulus function, introduced by Nakano
[10]. Ruckle [11] and Maddox [12] used the idea of a modulus
function to construct some spaces of complex sequences.
An Orlicz function M is said to satisfy A ,-condition for all
values of x > 0, if there exists a constant k > 0, such that



M(2x) < kM(x). The A ,-condition is equivalent to M(Ix) <
kIM(x) for all values of x and for I > 1. Lindenstrauss and
Tzafriri [13] used the idea of an Orlicz function to define the
following sequence spaces:

€M:{xew:§M(|x(k)|><oo} (4)
k=1 P

which is a Banach space with the Luxemburg norm defined
by

||x||:inf{p>0:§M<M)Sl}. (5)

k=1 P

The space £, is closely related to the space €,, which is an

Orlicz sequence space with M(x) = x? for 1 < p < co.

Recently different classes of sequences have been intro-
duced using Orlicz functions. See [7, 9, 14-16].

A sequence M = (M,;) of Orlicz functions M, for
all k € N is called a Musielak-Orlicz function, for a
given Musielak-Orlicz function M. Kizmaz [17] defined the
difference sequence spaces €., (A), c(A), and ¢;(A) as follows:
Z(A) = {x = (x}) : (Axy) € Z}, for Z = €, ¢, and ¢, where
Ax = (x; — x3,,), for all k € N. The above spaces are Banach
spaces, normed by |x| = |x;| + sup;|Ax,|. The notion of
difference sequence spaces was generalized by Et and Colak
(18] as follows: Z(A®) = {x = (x;) : (A’xy) € Z}, for
Z =20, cand ¢, wheres € N, (A*x;) = (A" 'x, — A" 'x,))
and so that A°x; = Y (~1)"C; xy,,. Tripathy and Esi [19]
introduced the following new type of difference sequence
spaces.

Z(A,,) ={x = (x) : (A,x0) € Z}, Z = €, ¢, and ¢,
where A, x;. = (X — Xp,,), for all k € N. Tripathy et al. [20]
generalized the above notions and unified them as follows.
Let m, s be nonnegative integers, then for Z a given sequence
space we have

Z(A,) = {x = (x) : (A%,x¢) € Z}, (6)
where
Asmxk = Z (_1)nci1xk+mn' (7)
n=0

Also let m, s be nonnegative integers, then for Z a given
sequence space we have

z(A) = fr=(): (A0x) ez, @
where
A(:n)xk = Zs: (_l)nci’xk_mw (9)
n=0

where x; = 0, for k < 0

2. Definitions and Preliminaries

Let n € N and X be a linear space over the field K of
dimension d, where d > n > 2 and K is the field of real
or complex numbers. A real valued function [, ...,]| on X"
satisfies the following four conditions:
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@) llxys %55 ... x,ll = 0 if and only if x, x,,..., x,, are
linearly dependent in X;

(2) llx;5 %55 - . ., x, || is invariant under permutation;

(3) lloexys x55 ..o X, = lexlllxy, x5, . . ., x|l for any & € K;

@ lx + x\xp..x,l < %, %55, +
lx', %5 ..., x,l; is called an m-norm on X and
the pair (X;|-,..., ) is called an n-normed space

over the field K. For example, we may take X = R"
being equipped with the n-norm ||x, x,,...,x,lz =
the volume of the n-dimensional parallelepiped
spanned by the vectors x;, x,,...,x, which may be
given explicitly by the formula

,xn”E = |det (x,»j)'

X1 X127 X 10
Xo1 Xap Xy (10)

Iy ..

1]
o
on
)

Xn1 Xm2 ©" X

where x; = (x;;, %;5,...,X;,) foreachi € N.

Let (X, |- ..,]) be an n-normed space of dimension d >

n > 2 and {a;,a,,as,...,a,} a linearly independent set in X.
Then, the function ||-,..., [, on X" defined by

1> %5 %)l = max 1> %55 - Xt i) a1)

defines an (n — 1)-norm on X with respect to a,,a,,4;,...,4,

and this is known as the derived (n — 1)-norm. The standard
(n)-norm on X, a real inner product space of dimension d >
n, is as follows:

1 %o %
(xp0) (x%5) - (Xp5%,) 2
_ abs <x2>x1> (xz,x2> <x2’xn> (12)
() (%) o ()

where (,-) denotes the inner product on X. If we take X =
R”, then

, anS. (13)

For n = 1, this n-norm is the usual norm [|x, || = /{xy, x1).

10 230 or % = 00 2o

Definition 1. A sequence (x;) in an n-normed space is said to
be convergent to x € X if,

kli—{%o“(zlazz’ s Zp 15 X T x)“n =0,
(14)

Vz,25,...,2,.1 € X.

Definition 2. A sequence (x;) in an n-normed space is called
Cauchy (with respect to n-norm) if,

:0’

lim ”( - )
oJm 21202 21 X~ X))

(15)

Vz1,29...,2, € X.
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If every Cauchy sequence in X converges to an x € X, then
X is said to be complete (with respect to the n-norm). A
complete n-normed space is called n-Banach space.

Definition 3. A sequence (x;) in an n-normed space
(X II-5 ..., -I) is said to be I-convergent to x,, € X with respect
to n-norm, if for each ¢ > 0, the set

f{k e N:|xg = %021, 2502 20| 2 &
(16)
for every z,,2,,...,2,_,} € L.
Definition 4. A sequence (x;) in an n-normed space
(X, [I+...,-]) is said to be I-Cauchy if for each ¢ > 0, there
exists a positive integer m = m(e) such that the set
{keN:|xg = x,.21,200- -5 20| 2 &
17)

for every z,,2,,...,2,;} € L.

Let x = (x;) be a sequence; then S(x) denotes the set of all
permutations of the elements of (x; ); thatis, S(x) = (x,,)) : 7
is a permutation of N.

Definition 5. A sequence space E is said to be symmetric if
S(x) c Eforall x € E.

Definition 6. A sequence space E is said to be normal (or
solid) if (o x;) € E, whenever (x;) € E and for all sequence
(o) of scalars with |a | < 1 forall k € N.

Definition 7. A sequence space E is said to be a sequence
algebraifx, y € Ethenx- y = (x; ) € E.

Lemma 8. Every n-normed space is an (n — r)-normed space
forallr = 1,2,3,...,n—1. In particular, every n-normed space
is a normed space.

Lemma 9. On a standard n-normed space X, the derived
(n—1)-norm||-,..., |, defined with respect to the orthogonal
set {ey, e,,...,e,} is equivalent to the standard (n — 1)-norm
I...,lls. To be precise, one has

”xl’xz"“’xn—l"oo <hoeestlls < \/ﬁ"xbxb-..,xn—l”oo:
a
forall x\,%,,...,x,_, € X, where ||x;,%,,...,%,_ll
maxlﬁign{”xla Xoys v s Xy 15 eillS}'
Let A = (Ay) be a nondecreasing sequence of positive

real numbers tending to infinity and let A, = 1 and A, <
A + 1. In summability theory, de La Vallée-Poussin mean was
first used to define the (V, A)-summability by Leindler [21].
Also the (V, A)-summable sequence spaces have been studied by
many authors including [22, 23]. The generalized de La Vallée-
Poussin’s mean of a sequence x = (x;.) is defined as follows:
t(x) = (1/A;) Zjdk Ile, where I, = [k — A + 1, k] fork e N.
We write

[ViAlp = {x € w: limy_, o (1/A)) X5, Ix;1 = O},

[V,A] = {x € w : limy_, o (1/A}) Zjdk lx; = Il = 0 for some
leC},

[V, Ao = {x € w : sup(1/24;) Zjelk Ile < oo}

For the sequence spaces that are strongly summable to zero,
strongly summable and strongly bounded by the de La Vallée-
Poussin’s method, respectively. In the special case where A, = k
for k € N the spaces [V, Ay, [V, Al, and [V, A], reduce to the
spaces vy, v, and v introduced by Maddox [24]. The following
new paranormed sequence space is defined in [22]:

VL p) = {x € w: Y72,((1/Ay) Yiel, |x;1)P* < co}. If
one takes p = p for all k € N; the space V(A, p) reduced
to normed space V,(A) defined by V,(A) = {x € o
Yoo ((1/A)) Ve, Ile)P < ©0o}. The details of the sequence
spaces mentioned above can be found in [23].

For any bounded sequence (p,) of positive numbers, one
has the following well-known inequality.

If0 < pp < suppr = G and D = max(1,297"), then
la, + b,|P" < D(la,|P" + |b,|P"), for all k and a, b, € C.

3. Main Results

In this section, we define some new ideal convergent
sequence spaces and investigate their linear topological struc-
tures. We find out some relations related to these sequence
spaces. Let I be an admissible ideal of N, # = (M j) be
a Musielak-Orlicz function, and (X, |-,...,-||) an n-normed
space. Further, let p = (p,) be any bounded sequence of
positive real numbers,

VAR YA

=4xcwn-X):

keN:Al

Ax; =1

1215 %95+ > %y

i

gl

J€L

> e €I, for some p >0,

l € X and each z,,2,,...,2,., € X ¢,

VLl pa )1

=4xcewn-X):

keN:A!



for some p > 0, and each z,,2,,...,2,_; € X} ,
VI AN se D ps A,
= {x cwmn-X):

S
ij

m

I

x supAy! Z [Mj (
k

Jj€Ik

215295+ rZpy

< 00,
for some p > 0, and each z,,2,,...,2,_; € X} ,
I
V[A)ﬂ) ”')-'-"”)p’ASm]OO

= {xew(n—X):ElK>0, s.t.

{keN:A;I

%ol

J€I

ZK}GI,

for some p > 0, and each z,,2,,...,2,_; € X} .

S
ij

m

2215225 - - .

I

> Zp-1

(19)

The above sequence spaces contain some unbounded se-
quences for s > 1. If M(x) = x,m = 1, A, = k
forall k € Nand p, = 1 forall k € N, then (k°) €
VIALM, |-l p, A, ] but (K°) ¢ €.

Let us consider a few special cases of the above sets.

(1) If n=2, m =1, and M (x) = M(x), then the above
classes of sequences are denoted by VA, M, |-,...,-|,
P N1 VIAL M, s | ps AT VIAL M, [ s py A,
and VA, M, [, I, p As]éo, respectively, which were
defined and studied by Savas [25].
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(2) If M (x) = M(x), then the above classes of sequences
are denoted by VA, M, |I-,....-I, p, A5, 1, VIA, M,
”'7 e ”a P; Asm](l)) V[A) M7 ”) e ”s P’ Asm]ooa and
VIAL M .l ps Asm]éo, respectively.

(3) If Mi.(x) = x, for all k € N, then the above classes
of sequences are denoted by V[, |-,...,[, p, A%, 1",
V[A) ”) e ”’ pa Asm]éa V[A) ”a e ") P) Asm]ooa and
VIA ..ol p, A% 1L, respectively.

4 If pp = 1, forall k e N, then we denote the
above classes of sequences by VA, [I....,-[, A%, 1%,
V[A) ") e ") Asm]é) V[A) ”) e ”) ASm]OO» and V[A)
Iy oosell, A% 1L, respectively.

(5) f My(x) = M(x),m = 1,and A} = kforallk € N,
then the above classes of sequences are denoted
bY V[M) ”')'--"”apa AS]I) V[Ma "'w”)'")P)As]é’
VIM, |yl p, A'lo, and VIM, [1... [, p, AL,
respectively, which were defined and studied by Savas
[7].

Theorem  10. The  spaces V[/\,/%,II-,...,-II,p,ASm]I,
VILA .ol pa A1, and VLA ..l pAS, 1L
are linear spaces.

Theorem  11. The  spaces VA M, |-.... |, p, ASm]I,
V[Aa %) ") e "» P) Asm]éx and V[A’ .%, "’ e ") P) Asm]loo
are paranormed spaces (not totally paranormed) with respect
to the paranorm g, defined by

ms
ga (x) = Z "xj, Zl,zz,...,zn_ln
j=1

N

j
2215225 - - -

> Zp-1

)

+inf{ppk/H : supMj(
J

<1, for some p >0,

and each z,,z,,...,2,; € X} ,

(20)

where H = max{1, sup, py}.

Proof. Clearly g,(-x) = ga(x) and g,(0) = 0. Let x = (x;)
and y = () € VLA |-, p, A%, ]g. Then, for p > 0

we set
A x.
- >s 1,

j
2215 %95 -

> Zp-1

A = {p : supMj(
i

for each z,,2,,...,2,_; € X},
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N

j
1215295+ 5%y

<1 Ifp, € Ajand p! € A,,byusing nondecreasing and convexity
- of the Orlicz function M; for all j € N that

A, = {p : supMj(
i

A%, (Mx = Ax;)
for each z,,2,,...,2,_, € X}. M. m—]], 3 Zsens
1><2 n-1 }’ ]< Mt_/\|Pt+|MPtI 21523 Zp-1
(21)
(5,0 - Ax;)
SM | |22 - 2
Letp, € Ay, p, € A, and p = p; + p,, then we have T = AL g+ M 7072 "

s t
A, (/\xj Ax]-)
15215225+ > Zn-1

A’ (x» +y-)
m\*i " Jj
A" = Ap, + M pf

|

3215295052

o |

s b AS X
A%, (x;) M- Alp ( el )
P m\ < M; 215295452
< M; > P PRI R 7 - _ > %15 4> > Lp—1
Pt P, J( I3 1% -1 ) A= Alp +Alpt Pt "
Al p}
A (y: + WA
- Mj< m(y]),zl,zz,...,zn_1 )Sl, AP =Alp + Mot
PLt P2 P2
A° (xt»—x-)
ga(x+y) ><< %lj,zl,zz,...,zn_1 >
t
R (24)
Bl P
= (22) [From the above inequality, it follows that

s t .t
&5, (V'] - Ax;)
—1)z])22)~~‘)zn71

. J/H
+mf{(Pl +p) i pr e ALp,s EAz} o
sup M;
j g |/\t_Mpt"' Mlpt

> <1, (25)

ms
<3 [xp ez oz
j=1

+ inf{(Pl)Pj/H “PLE A1} O ( ¥ - Ax)

and consequently

ms
S —Z“/\txt—)tx»z z z “
+Z'|yj,z1,z2,...,zn_1” T j P e n-l
= =

. pi/H
+ inf{(pz)Pf/H ip € A2} + 1nf{(|/\t —/\|pt +IMp )" i p e Anp € A4}
= ga (%) +9a (). R
< |A —A|Z‘i||xj,z1,zz,...,zn,l||
iz

Let A' — A where A',A € C, and let go(x' —x) — Oas . pH .
t — 00. Wehave to show that g,(A'x'~Ax) — Oast — oco. + |/\ —/\| ! inf{(pt)P’ tp € A3}
We set

ms
t t
A +|A|Z"A xj—/\xj,zl,zz,...,zn,lu
m* j j=1
212>

)<t

Aj = {pt : squj<
j .
+ |/\|P1/Hinf{(pt1)P1/H : pt1 € A4}

for each z,2,,...,2,_; € X} , o {'/\t ) )\' , ')\t ) A'pj/H} " (xt)

5 (23)
A, = {ptl : squj( 2 2y Ty ) <1, +max{|/\|,|/\|Pf/H} 9a (xt —x).
j g (26)
for each z,2,,...,2,_; € X}. Note that ga(x') < ga(x) + galx’ — x), for all t € N.
Hence, by our assumption, the right hand of (26) tends to



0ast — 00, and the result follows. This completes the proof
of the theorem. O

Theorem 12. Let M/ = (Mj), M= (MJ'.), and M = (M;')
be Musielak-Orlicz functions. Then, the following hold:

@ VI A eyl p NS S VIN, sl - .-l s
AS, 18, provided p = (py) be such that G, = inf py > 0,

(b) V[A’ ﬂ,) |I) e ”) P: Asm](I) n V[A') '%”1 "’ e "’ P)
ASm](I) < V[A) ﬂ, + ﬂ”) "3 e ") P; Asm](l)'

Proof. (a) Let ¢ > 0 be given. Choose ¢, > 0 such that

max{e’, 8?0} < ¢&. Using the continuity of the Orlicz function
M, choose 0 < § < 1such that 0 < ¢ < § implies that M(t) <

g, Let x = (x;) beany element in V[A, 4, ||-,..., ||, p, A':n]é,

I

s
mxj
—, 21,2

Aaz{keN:A;Z Mj( Zy

JjEI

28G}.

Then, by definition of ideal convergent, we have the set A5 €
I.1fn ¢ A then we have

(27)

A x; b
AkIZ[M}< L]’Zl’zb""zn—l )] <8¢
jel P1
r s x. 12i
p—1 M; ( L], ZI’ZZ" . "Zn—l ) < AkSG)
Viel, (28)
r A x. 17
SN (VT =
r S i R
— M;( ;’—],zl,zz,...,z,H ) < 4.
L 1 -

Using the continuity of the Orlicz function M; for all j and
the relation (28), we have
)] < €1» V] € Ik‘

! Am'xj
o
(29)

21,25 2
P1

Consequently, we get

N

N x;
! m”j
EM].[MJ.( ——32152Z %
jeI, P1

I

G G,
<)Lj max{sl,s1 }</\]-s

Abstract and Applied Analysis

1 ! Asmxj &
= A; ZMj[Mj( 21255 > 2y )]
jelk
<e
(30)
This shows that
A x; g
keN: ZM{M}( Lj,zl,zz,...,zn,1 )]
jel pl
(31)

Zs}gAtgeI.

This proves the assertion.

(b) Let x = (x;) be any element in VLAl
oA 1 AVIL A |-l p, A, 15 Then, by the following
inequality, the results follow:

N

pj
X
/\ZIZ[(M;-FM;,)( Lj,zl,zz,...,zn_l )]
jely 1
A x. p;
SDMlZ[M}< 2 2y 2 )]
jel P1
A x. p;
+D)LZIZ|iM]{'( .l A )] .
jel, P
(32)
O

Theorem 13. The inclusions Z[A, M, ||-,...,~||,A5r;1] c
ZIN, M-, . .5 -\, AS,] are strict for s,m > 1 in general where
Z=vLvl and V5.

Proof. We will give the proof for VA, 4, |I-,...,-I, A5} <
VIA, A, ||-,...,-||,Asm]é only. The others can be proved by
similar arguments. Let x = (x;) € VA, A4, ||-,..., '||,A5,;1]{).
Then let € > 0 be given; there exists p > 0 such that

} el

):
(33)

Since M for all j € N is nondecreasing and convex, it follows

that

-1
Ak ZMJ(
Aj;llxj+1 - N x

€Iy
J
2p

s—1
m

j
2215225 - - .

> Zp-1

| m

j€Ik

{keN:/\kIZM](

S
Amxj
_2p 3215255+ > %1

3215295+ > 2y

)

:AZIZM](

j€L
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s—1
BEel! A X
<AL Z’EMj 3215 Z55 > %y 1
J€lk
s—1
1 X
-1 m j
+ A ZEMJ( 1215295+ 5 Zpy >
jelk
s—1
1 -1 m xj+1
SE/\k ZMJ< P 3215 Z5 > 21 >
jelk
-1
1. Asm Xj
+5/\k ZM]( 2152952t |
jely
(34)
then we have
N X
ke N:A;lz M]-< L],zl,zz,...,zn_1 ) >e
j€lk
s—1
1 -1 m xj+1
§<|keN:5Ak ZIMJ< 1215255 +> %1 >
JElk
3
2 —
2}
-1
1. A x
u {k eN: EAkIZMJ( m—J,zl,zz,...,z,H >
j€lk

=

| M

} |

Let Mi(x) = M(x) = x forall x € [0,00[, kK € N and
A = kforall k € N. Consider a sequence x = (x;) = (k%).
Then, x € VI[A, A, ||-,...,-||,Asm]é but does not belong to
VIL A .ol A%, for s = m = 1. This shows that the
inclusion is strict. ]

(35)

Theorem 14. Let 0 < p, < gy for all k € N, then
V[A)ﬂ) ")a")P;ASm]oo < V[A)-ﬂ) ”))”)q)ASm]oo

Proof. Let x = (x;) € VA, A, I-,....Il, p, A°, 1o then there
exists some p > 0 such that

S
Amx]-
—,21, 25, .

pj
)] < 00. (36)

sip)\;l Z [Mj (

jel

> Zp-1

This implies that

o

for sufficiently large value of j. Since M; for all j € N is
nondecreasing, we get

A x.

m~]

V215295 > Zpy

) <1, (37)

A x; g
-1 J
Sup/\k Z[M]( L)ZI)ZZ)-") n—1 )]
k jel P
S X P (38)
SSupAZIZ[M]( L])ZI:ZZ)-..)ZVL71 )]
k j€L
< 0.

Thus, x € [A, M, |I-,.. ., |, g, A%, ] o- This completes the proof
of the theorem. O

Theorem 15. (i) If 0 < infp, < p. < 1, then V[A, M,
lseiosell o A Joo S VIAL A sl A, o

(i) If0 < pp < sup,px < 0o, then VIA, M, |-,...,-,
A oo SVIL A P Nyl A% o

Theorem 16. For any sequence of Orlicz functions M = (M;)
which satisfies A ,-condition, one has VA, |I-,..., Il p, A, 1" ¢
V[A’) %a ") e "» P, ASm]I

Theorem 17. Let 0 < p, < g, < 1 and (q,/p,) be bounded;
then

VM. g A5, ] S VMM po A )
(39)

Theorem 18. For any two sequences p = (p;) and q = (q) of
positive real numbers and for any two n-norms |-,...,-|l; and
I ....ll, on X, the following holds:

Z [l N5l o AN N Z [N A sl 0 A5, ] # 6
(40)

where Z =V, VI, VL and V.

Proof. Proof of the theorem is obvious, because the zero
element belongs to each of the sequence spaces involved in
the intersection. O

Theorem 19. The sequence spaces VA, M, |-, ..,|, p, ASm]I,
VILA .l p A1 VIA Al po A, and
VIL A ...l py A 1L are neither solid nor symmetric,

m-4oo
nor sequence algebras for s,m > 1 in general.

Proof. The proof is obtained by using the same techniques of
Et [26, Theorems 3.6, 3.8, and 3.9]. O



Remark 20. 1f we replace the difference operator A°, by A%,
then for each € > 0 we get the following sequence spaces:

EA R YN |

= {xew(n—X):

{ke N:A
X Z |:MJ<
jelk

:

€ I, for some p > 0,

A(S”zxj—l
— 2,2, ..

l € X and each z,,2,,...,2,_, € X} ,
I
VAol p A

= {xew(m—X):

keN:A;lz[Mj<
JEL

26}61,

for some p >0 and each z,2,,...,2,_; € X} ,

-

(s)
Afnxj

2152955 By

I

VLAl A

= {xew(n—X):
Ay, b
xsupAZIZ[M]( = J,zl,zz,...,zn,1
k j€k

for some p > 0 and each z,2,,...,2,_; € X} ,
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VLAl pa A

I
(oY)

= {xew(n—X):EIK>0, s.t.

{keN:Akl

P.
AB)x, !
j
XZI:MJ( 3215225005 Zp g
€l P

ZK}EI,

for some p >0 and each z,2,,...,2,_; € X} .

(41)
Note. I}[ is clear from definitions }chat VIAL A ... 50l
P,A(:n)]() < V[/Lﬂ’"’,",P,A(rsn)] < V[A)ﬂ)")’">
p’ A(S)]I .

Corollary 21. The sequence spaces Z[A, M, ||-...,-|, p A(;z],
where Z = VI, V], VI and V, are paranormed spaces (not
totally paranormed) with respect to the paranorm h, defined

by
)Sl,

hy (x)
AYx
for some p > 0, and each z,2,,...,2,_; € X]» ,

j
215295

> Zn-1

= inf {pp"/H : supMj<
j

(42)

where H = max{l,sup,pc} and Z = V', V], VL and V.
Also it is clear that the paranorm g, and h, are equivalent.
We state the following theorem in view of Lemma 9. Let X be a
standard n-normed space and {e,, e,, . .., e,} an orthogonal set

in X. Then, the following hold:
@ VAL A - oo P A(Sm)]I =VIL A .oy
p, A9
(b) V[Ax -ﬂ) ”) . ’.”OO’ P; A(:n)](I) = V[A, ﬂ) ||) . "”nfl;
s)11
p AW
(C) V[)\o %’ ”’ e “OO’ P’ A(:n)]oo = V[A) %) ||) e '”n_])
P Ao
D VIL Ll o A = VA A el
p AL,
where |-,..., |l is the derived (n — 1)-norm defined with

respect to the set {e,, e,,...,e,}and |-, ..., |l,_, is the standard
(n—1)-norm on X.
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Theorem 22. The spaces Z[A, M, ||"-~-,'||00,P,A(,2] and
ZIN M- -5l os P) are equivalent as topological spaces,
where Z = VL, V], V! and V.

Proof. Consider the mapping T ZIMNM s s loos P>
A(;?] — ZIA M, - .. o Pl defined by T'(x) = (A(fn)xk)
foreach x = (x;) € Z[A, M, |5 - - - > | oo P> A(rfq)]. Then, clearly
T is a linear homeomorphism and the proof follows. O
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