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This paper addresses discrete subspace multiwindow Gabor analysis. Such a scenario can model many practical signals and
has potential applications in signal processing. In this paper, using a suitable Zak transform matrix we characterize discrete
subspace mixed multi-window Gabor frames (Riesz bases and orthonormal bases) and their duals with Gabor structure. From this
characterization, we can easily obtain frames by designing Zak transform matrices. In particular, for usual multi-window Gabor
frames (i.e., all windows have the same time-frequency shifts), we characterize the uniqueness of Gabor dual of type I (type II) and
also give a class of examples of Gabor frames and an explicit expression of their Gabor duals of type I (type II).

1. Introduction

Let H be a separable Hilbert space. An at most countable
sequence {ℎ

𝑖
}
𝑖∈I in H is called a frame for H if there exist

0 < 𝐴 ≤ 𝐵 < ∞ such that

𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2
≤ ∑
𝑖∈I

󵄨󵄨󵄨󵄨⟨𝑓, ℎ𝑖⟩
󵄨󵄨󵄨󵄨
2
≤ 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2 for 𝑓 ∈ H, (1)

where 𝐴 and 𝐵 are called frame bounds. The sequence
{ℎ
𝑖
}
𝑖∈I is called a Bessel sequence inH if the right-hand side

inequality in (1) holds. In this case 𝐵 is called a Bessel bound.
A frame for H is said to be a Riesz basis if it ceases to be a
frame forH whenever an arbitrary element is removed. And
in this case, the frame bounds are also called Riesz bounds.
The fundamentals of frames can be found in [1–4].We denote
byZ the set of integers, byN the set of positive integers, by {e

𝑖
}

the vector in Euclidean spaces with the 𝑖th component being
1 and others being zero, and by N

𝛾
the set {0, 1, . . . , 𝛾 − 1} for

𝛾 ∈ N. This paper addresses Gabor systems 𝐺(g,N,M) of the
form
𝐺 (g,N,M) = {𝐸

𝑚/𝑀
𝑇
𝑛𝑁𝑙

𝑔
𝑙
: 1 ≤ 𝑙 ≤ 𝐿,𝑚 ∈ N

𝑀
, 𝑛 ∈ Z} ,

(2)
where 𝐿 is a fixed positive integer, g = (𝑔

1
, 𝑔
2
, . . . , 𝑔

𝐿
) with

each 𝑔
𝑙
∈ 𝑙
2
(Z), N = (𝑁

1
, 𝑁
2
, . . . , 𝑁

𝐿
) with each𝑁

𝑙
∈ N, and

M = (𝑀
1
,𝑀
2
, . . . ,𝑀

𝐿
) with each 𝑀

𝑙
∈ N. Throughout this

paper, we work under the following assumptions.

Assumption 1. 𝐿 is a positive integer.

Assumption 2. 𝑀
1
= 𝑀

2
= ⋅ ⋅ ⋅ = 𝑀

𝐿
= 𝑀, and 𝑁

𝑙
/𝑀 =

𝑝
𝑙
/𝑞
𝑙
with 𝑝

𝑙
and 𝑞

𝑙
being relatively prime positive integers

for 1 ≤ 𝑙 ≤ 𝐿.

We always denote by𝑁 the least common multiple of𝑁
𝑙

with 1 ≤ 𝑙 ≤ 𝐿, by 𝜆
𝑙
the positive integer satisfying 𝑁 =

𝜆
𝑙
𝑁
𝑙
for each 1 ≤ 𝑙 ≤ 𝐿, by 𝑝 and 𝑞 two relatively prime

positive integers satisfying𝑁/𝑀 = 𝑝/𝑞, and by𝑄 the number
𝑄 = 𝑞∑

𝐿

𝑙=1
𝜆
𝑙
. Obviously, they are all uniquely determined by

Assumptions 1 and 2.

Remark 3. Wedo not lose generality bymaking Assumptions
1 and 2. Let us check a general Gabor system of the form

𝐺 (g,N,M) = {𝐸
𝑚𝑙/𝑀𝑙

𝑇
𝑛𝑁𝑙

𝑔
𝑙
: 1 ≤ 𝑙 ≤ 𝐿,𝑚

𝑙
∈ N

𝑀𝑙
, 𝑛 ∈ Z}

(3)

with g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) satisfying 𝑔

𝑙
∈ 𝑙
2
(Z), N = (𝑁

1
, 𝑁
2
,

. . . , 𝑁
𝐿
), and M = (𝑀

1
,𝑀
2
, . . . ,𝑀

𝐿
) (𝑀

1
,𝑀
2
, . . . ,𝑀

𝐿
are

not necessarily all the same). Suppose 𝑀 is the greatest
common divisor of 𝑀

1
,𝑀
2
, . . . ,𝑀

𝐿
, and 𝑀

𝑙
= 𝛼

𝑙
𝑀 with

𝛼
𝑙
∈ N for 1 ≤ 𝑙 ≤ 𝐿. Define 𝑔

(𝛽𝑙)

𝑙
(⋅) = 𝑒

2𝜋𝑖(𝛽𝑙/𝑀𝑙)⋅𝑔
𝑙
(⋅) for

1 ≤ 𝑙 ≤ 𝐿 and 𝛽
𝑙
∈ N

𝛼𝑙
. Then, by a simple computation,

𝐺(g,N,M) is a frame for a closed subspaceM of 𝑙2(Z) if and
only if the Gabor system

{𝐸
𝑚/𝑀

𝑇
𝑛𝑁𝑙

𝑔
(𝛽𝑙)

𝑙
: 1 ≤ 𝑙 ≤ 𝐿, 𝛽

𝑙
∈ N

𝛼𝑙
, 𝑚 ∈ N

𝑀
, 𝑛 ∈ Z}

(4)
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is a frame forM. Therefore, the study of (3) is reduced to the
study of (4).

We denote by M(g,N,M) the closed linear span of
𝐺(g,N,M). A Gabor system 𝐺(g,N,M) of the form (2) is
called a mixed multi-window Gabor system if 𝐿 > 1

since 𝑁
1
, 𝑁
2
, . . . and 𝑁

𝐿
are not necessarily all the same.

(In particular, this system is the usual multi-window Gabor
system when 𝑁

1
= 𝑁

2
= ⋅ ⋅ ⋅ = 𝑁

𝐿
). It is called a sub-

space mixed multi-window Gabor frame if it is a frame for
M(g,N,M) and 𝐿 > 1. Similarly, a Gabor system 𝐺(g,N,M)

is called a single-window Gabor system if 𝐿 = 1 and called
a single-window subspace Gabor frame if it is a frame for
M(g,N,M) and 𝐿 = 1.

For a Bessel sequence 𝐺(g,N,M) in 𝑙
2
(Z) of the form (2),

we define the associated synthesis operator Tg : 𝑙
2
(N
𝑀

×

Z,C𝐿) → 𝑙
2
(Z) by

Tg𝑐 =
𝐿

∑
𝑙=1

∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑙,𝑚,𝑛

𝐸
𝑚/𝑀

𝑇
𝑛𝑁𝑙

𝑔
𝑙 (5)

for 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝐿
) ∈ 𝑙

2
(N
𝑀
× Z,C𝐿). Then it is a bounded

operator, and its adjoint operator T∗g (so-called analysis
operator) is given by

T
∗

g 𝑓 = (𝑐
1
(𝑓) , 𝑐

2
(𝑓) , . . . , 𝑐

𝐿
(𝑓)) for 𝑓 ∈ 𝑙

2
(Z) ,

(6)

where 𝑐
𝑙
(𝑓) = {⟨𝑓, 𝐸

𝑚/𝑀
𝑇
𝑛𝑁𝑙

𝑔
𝑙
⟩}
𝑚∈N𝑀,𝑛∈Z

for each 1 ≤ 𝑙 ≤

𝐿. For a Bessel sequence 𝐺(h,N,M) in 𝑙
2
(Z) with h = (ℎ

1
, ℎ
2
,

. . . , ℎ
𝐿
), we associate it withTh similarly.WriteSh,g = TgT

∗

h ;
that is,

Sh,g𝑓 =

𝐿

∑
𝑙=1

∑
𝑚∈N𝑀

∑
𝑛∈Z

⟨𝑓, 𝐸
𝑚/𝑀

𝑇
𝑛𝑁𝑙

ℎ
𝑙
⟩𝐸
𝑚/𝑀

𝑇
𝑛𝑁𝑙

𝑔
𝑙

(7)

for 𝑓 ∈ 𝑙
2
(Z). Let 𝐺(g,N,M) be a frame forM(g,N,M) and

let 𝐺(h,N,M) be a Bessel sequence in 𝑙
2
(Z). 𝐺(h,N,M) is

called an oblique Gabor dual for 𝐺(g,N,M) if

Sh,g𝑓 = 𝑓 for 𝑓 ∈ M (g, 𝑁,𝑀) . (8)

Here it is not required that each ℎ
𝑙
belongs toM(g,N,M). In

particular, an oblique Gabor dual 𝐺(h,N,M) for 𝐺(g,N,M)

is said to be a Gabor dual of type 𝐼 for 𝐺(g,N,M) if ℎ
𝑙
∈

M(g,N,M) for each 1 ≤ 𝑙 ≤ 𝐿 and is said to be a Gabor dual
of type II for 𝐺(g,N,M) if range(T∗h ) ⊂ range(T∗g ). These
notions of duals are a generalization of the ones in [5, 6].They
are borrowed from [7, 8] which dealt with Gabor frames in
𝐿
2
(R). For a Gabor dual of type II, it is not required to be in

M(g,N,M), but a containment relation between the ranges
of analysis operators is required. Observe that the canonical

daul 𝐺(S−1g,gg,N,M) for 𝐺(g,N,M) belongs to any one of the
three Gabor duals.

In the past more than twenty years, the theory of frames
has been growing rapidly. Gabor frames are a class of
important frames among all kinds of frames. For continuous
Gabor frames, single-window Gabor frames for 𝐿2(R) have
been studied extensively [2, 3, 9, 10]; multi-window Gabor
frames for 𝐿2(R)were firstly studied by Zibulski and Zeevi in
[11], and then by others in [12–17]; single-window subspace
(of 𝐿2(R)) Gabor frames were studied in [7, 8, 18–23]. In
digital signal processing, one usually encounters discrete
signals instead of continuous ones. One can obtain discrete
Gabor frames for 𝑙2(Z) via Gabor frames for 𝐿2(R) through
sampling under certain additional assumptions [24–26],
though these assumptions are artificial and too technical. So it
should be more reasonable to consider Gabor frames in 𝑙2(Z)
without referring to frames in 𝐿

2
(R). Intuitively, the general

theory of discrete Gabor analysis is similar to the continuous
case. Sometimes major differences occur. In 1989, Heil in [27]
showed that while Gabor frames in the continuous case are
bases only if they are generated by functions that are not
smooth or have poor decay, it is possible in the discrete case
to construct Gabor frames that are bases and are generated
by sequences with good decay. The sampled Gaussian gives
an example of such a signal. Also due to its good potential
for digital signal processing, since then, Gabor analysis on
𝑙
2
(Z) has attractedmany researchers (see [2, 3, 24–34] and the

references therein). In [6, 35], single-window Gabor frames
on discrete periodic subsets of Z were investigated. It is
well known that a single-window Gabor expansion is not
enough to analyze the dynamic time-frequency contents of
signals that contain a wide range of spatial and frequency
components. A multi-window Gabor expansion is capable of
extracting local frequencies in an adaptive manner, in which
widewindows are responsible for slow-changing components
and narrow windows are designed to extract transient and
rapid-changing components of a signal. See [15] and the
references therein for details. In addition, Example 38 and the
arguments before it in the last section show that, for Gabor
duals, multi-window Gabor frames behave differently from
single-window ones. Motivated by the above works, we in
this paper study subspace Gabor frame of the form (2) under
Assumptions 1 and 2.

The rest of this paper is organized as follows. Section 2
is an auxiliary one to following sections. In this section, we
introduce the notion of Zak transformmatrix associated with
a Gabor system of the form (2) and investigate its proper-
ties. In terms of Zak transform matrices, we in Section 3
characterize subspace multi-window Gabor frames (Riesz
bases, orthonormal bases) and in Section 4 Gabor duals of
type I (type II) for subspace multi-window Gabor frames.
Section 5 focuses on subspace multi-window Gabor frames
with all the windows having the same time-frequency shifts.
We characterize the uniqueness of Gabor duals of type I
(type II) and obtain a class of examples of subspace multi-
window Gabor frames (Riesz bases, orthonormal bases) and
their Gabor duals of type I (type II) (see Theorems 36 and
37).
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2. Zak Transforms and
Zak Transform Matrices

This section focuses on some properties of Zak transforms
and Zak transform matrices, which is an auxiliary one to
following sections.We start with some notations and notions.
For 𝑠, 𝑡 ∈ N, we denote by M

𝑠,𝑡
the set of 𝑠 × 𝑡 complex

matrices. Given 𝛾 ∈ N, two subsets 𝑆
1
and 𝑆

2
of Z are said to

be 𝛾Z congruent if there exists a sequence of subsets {𝑆
1,𝑘
}
𝑘∈Z

of 𝑆
1
such that⋃

𝑘∈Z 𝑆
1,𝑘

= 𝑆
1
, 𝑆
1,𝑘1

∩ 𝑆
1,𝑘2

= 0 for 𝑘
1

̸= 𝑘
2
inZ

and that 𝑆
2
= ⋃

𝑘∈Z(𝑆1,𝑘 + 𝛾𝑘), (𝑆
1,𝑘1

+ 𝛾𝑘
1
) ∩ (𝑆

1,𝑘2
+ 𝛾𝑘

2
) = 0

for 𝑘
1

̸= 𝑘
2
in Z. If 𝑆

1
or 𝑆

2
is a finite set in addition, only

finitely many 𝑆
1,𝑘

in the above are nonempty, while the others
are empty. For two vectors 𝑥 and 𝑦 in a Hilbert spaceH, we
always write their inner product as ⟨𝑥, 𝑦⟩ instead of ⟨𝑥, 𝑦⟩H
when it causes no confusions. Let 𝐸 be a finite set in Z and
let Γ ∈ N. We denote by 𝐿2(𝐸 × [0, 1),CΓ) the Hilbert space
of vector-valued functions 𝑓 satisfying 𝑓(𝑗, ⋅) ∈ 𝐿

2
([0, 1),CΓ)

for each 𝑗 ∈ 𝐸 endowed with the inner product

⟨𝑓, 𝑓⟩ = ∑
𝑗∈𝐸

∫
1

0

⟨𝑓 (𝑗, V) , 𝑓 (𝑗, V)⟩ 𝑑V (9)

for 𝑓, 𝑓 ∈ 𝐿
2
(𝐸 × [0, 1),CΓ), where ⟨𝑓(𝑗, V), 𝑓(𝑗, V)⟩ denotes

their inner product in CΓ; by 𝑙2(𝐸 × Z,CΓ) the Hilbert space
of sequences 𝑐 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

Γ
) satisfying 𝑐

𝛾
∈ 𝑙
2
(𝐸 × Z)

endowed with the inner product

⟨𝑐, 𝑐⟩ =

Γ

∑
𝛾=1

⟨𝑐
𝛾
, 𝑐
𝛾
⟩ (10)

for 𝑐, 𝑐 ∈ 𝑙
2
(𝐸 × Z,CΓ), where ⟨𝑐

𝛾
, 𝑐
𝛾
⟩ denotes their inner

product in 𝑙
2
(𝐸×Z) and by 𝑙

0
(𝐸×Z,CΓ) the set of sequences

𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

Γ
) with each 𝑐

𝛾
being a finitely supported

sequence defined on 𝐸 × Z. For simplicity, we write 𝐿2(𝐸 ×

[0, 1)) for 𝐿2(𝐸 × [0, 1),CΓ), 𝑙2(𝐸 × Z) for 𝑙2(𝐸 × Z,CΓ), and
𝑙
0
(𝐸 × Z) for 𝑙

0
(𝐸 × Z,CΓ) when Γ = 1.

For 𝑓 ∈ 𝑙
2
(Z), define the discrete Zak transformZ

𝑞𝑁
𝑓 of

𝑓 by

(Z
𝑞𝑁

𝑓) (𝑗, V) := ∑
ℓ∈Z

𝑓 (𝑗 + ℓ𝑞𝑁) 𝑒
2𝜋𝑖ℓV

(11)

for 𝑗 ∈ Z and a.e. V ∈ R. It is easy to check that Z
𝑞𝑁

has
quasi-periodicity:

(Z
𝑞𝑁

𝑓) (𝑗 + 𝑘𝑞𝑁, V + ℓ) = 𝑒
−2𝜋𝑖𝑘V

(Z
𝑞𝑁

𝑓) (𝑗, V) (12)

for 𝑘, ℓ, 𝑗 ∈ Z and a.e. V ∈ R.

Definition 4. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
)with each 𝑔

𝑙
∈ 𝑙
2
(Z), we

associate it with a matrix-valued functionΨg(𝑗, V) : Z×R →

M
𝑄,𝑝

by

Ψg (𝑗, V) =
(
(

(

𝐺
1
(𝑗, V)

𝐺
2
(𝑗, V)

...
𝐺
𝐿
(𝑗, V)

)
)

)

, (13)

where𝑄 := 𝑞∑
𝐿

𝑙=1
𝜆
𝑙
and𝐺

𝑙
(𝑗, V) is a blockmatrix of the form

𝐺
𝑙
(𝑗, V) =

(
(

(

G
𝑙
(𝑗, V)

G
𝑙
(𝑗 − 𝑁

𝑙
, V)

...
G
𝑙
(𝑗 − (𝜆

𝑙
− 1)𝑁

𝑙
, V)

)
)

)

(14)

withG
𝑙
(𝑗, V) : Z ×R → M

𝑞,𝑝
for 1 ≤ 𝑙 ≤ 𝐿 and

G
𝑙
(𝑗, V)

𝑟,𝑘
= Z

𝑞𝑁
𝑔
𝑙
(𝑗 − 𝑟𝑁 + 𝑘𝑀, V) (15)

for 𝑟 ∈ N
𝑞
, 𝑘 ∈ N

𝑝
.

By the quasi-periodicity of Z
𝑞𝑁
, an arbitrary 𝑓 ∈ 𝑙

2
(Z)

is uniquely determined by the values of (Z
𝑞𝑁

𝑓)(⋅, ⋅) on 𝑆 ×

[0, 1) with 𝑆 being a set 𝑞𝑁Z congruent to N
𝑞𝑁
. So an

arbitrary function 𝐹 ∈ 𝐿
2
(𝑆 × [0, 1)) determines a unique

𝑓 ∈ 𝑙
2
(Z) by

(Z
𝑞𝑁

𝑓) (𝑗, V) = 𝐹 (𝑗, V) for (𝑗, V) ∈ 𝑆 × [0, 1) . (16)

Let us make another assumption that 𝑁
1
= 𝑁

2
= ⋅ ⋅ ⋅ = 𝑁

𝐿

in Definition 4. Then Ψg(𝑗, V) is an 𝐿𝑞 × 𝑝-matrix-valued
function of the form

Ψg (𝑗, V) =
(
(

(

G
1
(𝑗, V)

G
2
(𝑗, V)

...
G
𝐿
(𝑗, V)

)
)

)

,

G
𝑙
(𝑗, V)

𝑟,𝑘
= Z

𝑞𝑁
𝑔
𝑙
(𝑗 − 𝑟𝑁 + 𝑘𝑀, V)

(17)

for 1 ≤ 𝑙 ≤ 𝐿, 𝑟 ∈ N
𝑞
, and 𝑘 ∈ N

𝑝
. Also observe that

N
𝑀/𝑞

− 𝑁N
𝑞
+ 𝑀N

𝑝
is 𝑞𝑁Z congruent to N

𝑞𝑁
. We have if

𝑁
1
= 𝑁

2
= ⋅ ⋅ ⋅ = 𝑁

𝐿
, then an arbitrary function 𝑀(𝑗, V) :

N
𝑀/𝑞

× [0, 1) → M
𝐿𝑞,𝑝

with all entries in 𝐿
2
(N
𝑀/𝑞

× [0, 1))

determines a unique g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z)

by

Ψg (𝑗, V) = 𝑀(𝑗, V) for 𝑗 ∈ N
𝑀/𝑞

, a.e. V ∈ [0, 1) .

(18)

But if𝑁
𝑙
, 1 ≤ 𝑙 ≤ 𝐿, are not all the same, a function𝑀(𝑗, V) :

N
𝑀/𝑞

× [0, 1) → M
𝑄,𝑝

with all entries in 𝐿
2
(N
𝑀/𝑞

× [0, 1))

does not necessarily determine a g.We show it by an example.
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In this case, there exists 1 ≤ 𝑙 ≤ 𝐿 such that 𝜆
𝑙
> 1. We may

as well assume that 𝜆
1
> 1. Choose

𝑀(𝑗, V) =
(
(

(

𝑀
1
(𝑗, V)

𝑀
2
(𝑗, V)

...
𝑀
𝐿
(𝑗, V)

)
)

)

,

𝑀
𝑙
(𝑗, V) =

(
(

(

𝑀
𝑙,0
(𝑗, V)

𝑀
𝑙,1
(𝑗, V)

...
𝑀
𝑙,𝜆𝑙−1

(𝑗, V)

)
)

)

(19)

for 1 ≤ 𝑙 ≤ 𝐿 and (𝑗, V) ∈ N
𝑀/𝑞

× [0, 1) such that every entry
of𝑀(𝑗, V) belongs to 𝐿2(N

𝑀/𝑞
× [0, 1)) and that

𝑀
1,0

(𝑗, V) ̸= 0, 𝑀
1,1

(𝑗, V) = 0

for (𝑗, V) ∈ N
𝑀/𝑞

× [0, 1) .
(20)

Suppose there exists g such that Ψg(𝑗, V) = 𝑀(𝑗, V) for 𝑗 ∈

N
𝑀/𝑞

and a.e. V ∈ [0, 1). Then

G
1
(𝑗, V) = 𝑀

1,0
(𝑗, V) , (21)

G
1
(𝑗 − 𝑁

1
, V) = 𝑀

1,1
(𝑗, V) (22)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1), where

G
1
(𝑗, V)

𝑟,𝑘
= Z

𝑞𝑁
𝑔
1
(𝑗 − 𝑟𝑁 + 𝑘𝑀, V) ,

G
1
(𝑗 − 𝑁

1
, V)
𝑟,𝑘

= Z
𝑞𝑁

𝑔
1
(𝑗 − 𝑁

1
− 𝑟𝑁 + 𝑘𝑀, V)

(23)

for (𝑟, 𝑘) ∈ N
𝑞
× N

𝑝
. Since the sets N

𝑀/𝑞
− 𝑁N

𝑞
+ 𝑀N

𝑝
and

N
𝑀/𝑞

−𝑁N
𝑞
+𝑀N

𝑝
−𝑁

1
are both 𝑞𝑁Z congruent toN

𝑞𝑁
, we

haveZ
𝑞𝑁

𝑔
1
(𝑗
0
, V) ̸= 0 for some 𝑗

0
∈ Z and V ∈ 𝐸 ⊂ [0, 1)with

|𝐸| > 0 by (20), (21), and the quasi-periodicity ofZ
𝑞𝑁
, while

Z
𝑞𝑁

𝑔
1
(𝑗, V) = 0 for 𝑗 ∈ Z and a.e. V ∈ [0, 1) by (20), (22),

and the quasi-periodicity of Z
𝑞𝑁
. This is a contradiction.

Therefore, we must be careful when we define g by a function
𝑀(𝑗, V) : N

𝑀/𝑞
× [0, 1) → M

𝑄,𝑝
if 𝑁

𝑙
, 1 ≤ 𝑙 ≤ 𝐿, are not all

the same.

Definition 5. Define Z
𝑞𝑁

: 𝑙
2
(Z) → 𝐿

2
(N
𝑀
× [0, 1),C𝑝) by

Z
𝑞𝑁

𝑓 (𝑗, V) =
(
(

(

Z
𝑞𝑁

𝑓 (𝑗, V)

Z
𝑞𝑁

𝑓 (𝑗 +𝑀, V)

...
Z
𝑞𝑁

𝑓 (𝑗 + (𝑝 − 1)𝑀, V)

)
)

)

for (𝑗, V) ∈ N
𝑀
× [0, 1) .

(24)

By the quasi-periodicity of Z
𝑞𝑁

and [35, Theorem 2.1],
we have the following lemmas.

Lemma 6. Z
𝑞𝑁

is a unitary operator from 𝑙
2
(Z) onto 𝐿2(N

𝑀
×

[0, 1),C𝑝), and Z
𝑞𝑁

is a unitary operator from 𝑙
2
(Z) onto

𝐿
2
(𝐸 × [0, 1)) for an arbitrary subset 𝐸 of Z which is 𝑞𝑁Z

congruent to N
𝑞𝑁
.

Definition 7. Define the Fourier transformF : 𝑙
2
(N
𝑀
×Z) →

𝐿
2
(N
𝑀
× [0, 1)) by

F𝑐 (𝑗, V) =
1

√𝑀
∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑚,𝑛

𝑒
2𝜋𝑖(𝑚/𝑀)𝑗

𝑒
2𝜋𝑖𝑛V

(25)

for 𝑐 ∈ 𝑙
2
(N
𝑀
× Z), 𝑗 ∈ N

𝑀
, and a.e. V ∈ [0, 1).

Definition 8. Define J : 𝑙
2
(N
𝑀

× Z,C𝐿) → 𝐿
2
(N
𝑀

× [0, 1),

C𝑄) by

J𝑐 (𝑗, V) = C (𝑗, V) (26)

for 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝐿
) ∈ 𝑙

2
(N
𝑀

× Z,C𝐿), 𝑗 ∈ N
𝑀
, and a.e.

V ∈ R, where

C (𝑗, V) =
(
(

(

C
1
(𝑗, V)

C
2
(𝑗, V)

...
C
𝐿
(𝑗, V)

)
)

)

,

C
𝑙
(𝑗, V) =

(
(
(

(

C
(0)

𝑙
(𝑗, V)

C
(1)

𝑙
(𝑗, V)

...

C
(𝜆𝑙−1)

𝑙
(𝑗, V)

)
)
)

)

,

C
(𝜏𝑙)

𝑙
(𝑗, V) =

(
(
(
(
(
(

(

∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑙,𝑚,𝑛𝑞𝜆𝑙+𝜏𝑙

𝑒
2𝜋𝑖(𝑚/𝑀)𝑗

𝑒
2𝜋𝑖𝑛V

∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑙,𝑚,(𝑛𝑞+1)𝜆𝑙+𝜏𝑙

𝑒
2𝜋𝑖(𝑚/𝑀)𝑗

𝑒
2𝜋𝑖𝑛V

...

∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑙,𝑚,(𝑛𝑞+𝑞−1)𝜆𝑙+𝜏𝑙

𝑒
2𝜋𝑖(𝑚/𝑀)𝑗

𝑒
2𝜋𝑖𝑛V

)
)
)
)
)
)

)
(27)

for 1 ≤ 𝑙 ≤ 𝐿 and 𝜏
𝑙
∈ N

𝜆𝑙
.

Similarly, for an arbitrary𝑑 ∈ 𝑙
2
(N
𝑀
×Z,C𝐿), we associate

it withD(𝑗, V).

Lemma 9. (i) F is a unitary operator from 𝑙
2
(N
𝑀

× Z) onto
𝐿
2
(N
𝑀
× [0, 1));

(ii) (1/√𝑀)J is a unitary operator from 𝑙
2
(N
𝑀

× Z,C𝐿)

onto 𝐿2(N
𝑀
× [0, 1),C𝑄).
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Proof. Since {(1/√𝑀)𝑒
2𝜋𝑖(𝑚/𝑀)𝑗

𝑒
2𝜋𝑖𝑛V

: 𝑚 ∈ N
𝑀
, 𝑛 ∈ Z} is an

orthonormal basis for 𝐿2(N
𝑀

× [0, 1)), we have (i). (ii) is an
immediate consequence of (i).

Lemma 10. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with 𝑔

𝑙
∈ 𝑙
2
(Z) for 1 ≤

𝑙 ≤ 𝐿, one has

(i) Z
𝑞𝑁

(𝐸
𝑚/𝑀

𝑇
𝑛𝑞𝑁+𝜏𝑙𝑁𝑙+𝑟𝑁

𝑔
𝑙
)(𝑗, V) = 𝑒

2𝜋𝑖(𝑚/𝑀)𝑗
𝑒
2𝜋𝑖𝑛V

Z
𝑞𝑁

𝑔
𝑙
(𝑗 − 𝜏

𝑙
𝑁
𝑙
− 𝑟𝑁, V) for 𝑟 ∈ N

𝑞
;

(ii)

Z
𝑞𝑁

𝑓 (𝑗, V) = Ψ∗g (𝑗, V)J𝑐 (𝑗, V) (28)

for 𝑓 = Tg𝑐 with 𝑐 ∈ 𝑙
0
(N
𝑀
× Z,C𝐿), whereTg𝑐 is as

in (5).

Proof. (i) can be obtained by a direct computation. Applying
(i), we have

Z
𝑞𝑁

𝑓 (𝑗, V)

= Z
𝑞𝑁

(

𝐿

∑
𝑙=1

∑
𝜏𝑙∈N𝜆𝑙

∑
𝑟∈N𝑞

∑
𝑚∈N𝑀

∑
𝑛∈Z

𝑐
𝑙,𝑚,(𝑛𝑞+𝑟)𝜆𝑙+𝜏𝑙

×𝐸
𝑚/𝑀

𝑇
𝑛𝑞𝑁+𝜏𝑙𝑁𝑙+𝑟𝑁

𝑔
𝑙
)

=

𝐿

∑
𝑙=1

∑
𝜏𝑙∈N𝜆𝑙

∑
𝑟∈N𝑞

C
(𝜏𝑙)

𝑙
(𝑗, V)

𝑟
Z
𝑞𝑁

𝑔
𝑙
(𝑗 − 𝜏

𝑙
𝑁
𝑙
− 𝑟𝑁, V)

(29)

for (𝑗, V) ∈ Z ×R. This implies (ii).

Remark 11. When 𝐺(g,N,M) in Lemma 10 is a Bessel
sequence in 𝑙2(Z), by the same procedure as the above we can
prove (28) holds for 𝑓 = Tg𝑐 with 𝑐 ∈ 𝑙

2
(N
𝑀
× Z,C𝐿).

Lemma 12. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with 𝑔

𝑙
∈ 𝑙
2
(Z) for 1 ≤

𝑙 ≤ 𝐿, one has

Ψg (𝑗 +
𝑀

𝑞
𝑛, V) = 𝑒

−2𝜋𝑖𝑚𝑛VC
𝑛 (V) Ψg (𝑗, V)D𝑛 (V) (30)

for 𝑗 ∈ Z, 𝑛 = 𝑘
𝑛
𝑞+ (𝑚

𝑛
𝑞− 𝑟

𝑛
)𝑝 with (𝑘

𝑛
, 𝑟
𝑛
, 𝑚
𝑛
) ∈ N

𝑝
×N
𝑞
×

Z, and a.e. V ∈ R, where D
𝑛
(V) = (

0 𝑒
−2𝜋𝑖V
𝐼𝑘𝑛

𝐼𝑝−𝑘𝑛
0

), C
𝑛
(V) =

diag(C
1,𝑛
(V),C

2,𝑛
(V), . . . ,C

𝐿,𝑛
(V)), and C

𝑙,𝑛
(V) denotes the

block matrix (with 𝜆
𝑙
blocks) of the form diag(𝐶

𝑛
(V),

𝐶
𝑛
(V), . . . , 𝐶

𝑛
(V)) with 𝐶

𝑛
(V) = (

0 𝐼𝑞−𝑟𝑛

𝑒
2𝜋𝑖V
𝐼𝑟𝑛

0
).

Proof. By [6, Lemma 5], we have

G
𝑙
(𝑗 +

𝑀

𝑞
𝑛, V) = 𝑒

−2𝜋𝑖𝑚𝑛V𝐶
𝑛 (V)G𝑙 (𝑗, V)D𝑛 (V) (31)

for 1 ≤ 𝑙 ≤ 𝐿, 𝑗 ∈ Z, 𝑛 = 𝑘
𝑛
𝑞 + (𝑚

𝑛
𝑞 − 𝑟

𝑛
)𝑝 with (𝑘

𝑛
, 𝑟
𝑛
, 𝑚
𝑛
) ∈

N
𝑝
× N

𝑞
× Z, and a.e. V ∈ R. This leads to the lemma.

3. Frame Characterization

This section is devoted to characterization of subspace Gabor
frames 𝐺(g,N,M) of the form (2).

Theorem 13. For any g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈

𝑙
2
(Z), the following are equivalent.

(i) 𝐺(g,N,M) is a Bessel sequence in 𝑙
2
(Z) with Bessel

bound 𝐵.
(ii) Ψg(𝑗, V)Ψ

∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼 for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈

[0, 1).
(iii) Ψg(𝑗, V)Ψ

∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼 for 𝑗 ∈ Z and a.e. V ∈ R.

Proof. By Lemma 12, conditions (ii) and (iii) are equivalent.
So, to finish the proof, we only need to prove that (i) holds if
and only if

Ψg (𝑗, V) Ψ
∗

g (𝑗, V) ≤
𝐵

𝑀
𝐼 for 𝑗 ∈ N

𝑀
, a.e. V ∈ [0, 1) ,

(32)

since 𝐺(g,N,M) is a Bessel sequence with Bessel bound 𝐵 if
and only if

󵄩󵄩󵄩󵄩󵄩
Tg𝑐

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐵‖𝑐‖
2 (33)

for 𝑐 ∈ 𝑙
0
(N
𝑀
× Z,C𝐿), which can be rewritten as

∑
𝑗∈N𝑀

∫
1

0

󵄩󵄩󵄩󵄩󵄩
Ψ∗g (𝑗, V)J𝑐(𝑗, V)

󵄩󵄩󵄩󵄩󵄩

2

𝑑V

≤
𝐵

𝑀
∑
𝑗∈N𝑀

∫
1

0

󵄩󵄩󵄩󵄩J𝑐(𝑗, V)
󵄩󵄩󵄩󵄩
2
𝑑V

(34)

by Lemmas 6–10.
Next we prove the equivalence between (32) and (34) to

finish the proof. It is obvious that (32) implies (34). Now we
turn to the converse implication. Suppose (34) holds. Since
every entry in Ψg(𝑗, ⋅) belongs to 𝐿

2
([0, 1)) and thus belongs

to 𝐿
1
([0, 1)) for 𝑗 ∈ N

𝑀
, almost every point in (0, 1) is a

Lebesgue point for every entry in Ψ
∗

g (𝑗, V) and 𝑗 ∈ N
𝑀
. Let

V
0
be such a point and 𝑗

0
∈ N

𝑀
. Fix 𝑥 ∈ C𝑄 and 𝜖 > 0 with

(V
0
− 𝜖, V

0
+ 𝜖) ⊂ (0, 1). Define 𝑐 ∈ 𝑙

2
(N
𝑀
× Z,C𝐿) by

J𝑐 (𝑗, V) =
1

√2𝜖
𝜒
{𝑗0}×(V0−𝜖,V0+𝜖)

(𝑗, V) 𝑥 (35)

for 𝑗 ∈ N
𝑀
, V ∈ [0, 1). By Lemma 9 and the density of 𝑙

0
(N
𝑀
×

Z,C𝐿) in 𝑙
2
(N
𝑀
× Z,C𝐿), (34) holds for 𝑐 ∈ 𝑙

2
(N
𝑀
× Z,C𝐿).

Substituting (35) into (34), we obtain that

1

2𝜖
∫
(V0−𝜖,V0+𝜖)

󵄩󵄩󵄩󵄩󵄩
Ψ
∗

g (𝑗
0
, V) 𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑑V ≤
𝐵

𝑀
‖𝑥‖
2
. (36)

Letting 𝜖 → 0 leads to

󵄩󵄩󵄩󵄩󵄩
Ψ
∗

g (𝑗
0
, V
0
) 𝑥

󵄩󵄩󵄩󵄩󵄩

2

≤
𝐵

𝑀
‖𝑥‖
2
; (37)
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that is,

⟨Ψg (𝑗0, V0) Ψ
∗

g (𝑗
0
, V
0
) 𝑥, 𝑥⟩ ≤

B
𝑀

‖𝑥‖
2
. (38)

This gives (32) by the arbitrariness of 𝑗
0
, V
0
, and 𝑥. The proof

is completed.

Lemma 14 ([1,TheoremA.6.5]). Let𝑈
1
,𝑈
2
,𝑈
3
be self-adjoint

operators on a Hilbert space H. If 𝑈
1
≤ 𝑈

2
, and 𝑈

3
≥ 0, and

𝑈
3
commutes with 𝑈

1
and 𝑈

2
, then 𝑈

1
𝑈
3
≤ 𝑈

2
𝑈
3
.

Remark 15. The inequality Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼 in
Theorem 13 can be replaced by any one of the following
inequalities:

(i) (Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
2
≤ (𝐵/𝑀)Ψg(𝑗, V)Ψ

∗

g (𝑗, V);

(ii) Ψ∗g (𝑗, V)Ψg(𝑗, V) ≤ (𝐵/𝑀)𝐼;

(iii) (Ψ∗g (𝑗, V)Ψg(𝑗, V))
2
≤ (𝐵/𝑀)Ψ

∗

g (𝑗, V)Ψg(𝑗, V).

Indeed, we have (i) by Lemma 14 if Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤

(𝐵/𝑀)𝐼. From (i), we have

⟨Ψ
∗

g (𝑗, V) Ψg (𝑗, V) Ψ
∗

g (𝑗, V) 𝑥, Ψ
∗

g (𝑗, V) 𝑥⟩

≤
𝐵

𝑀
⟨Ψ
∗

g (𝑗, V) 𝑥, Ψ
∗

g (𝑗, V) 𝑥⟩

(39)

for 𝑥 ∈ C𝑄, and thus Ψ
∗

g (𝑗, V)Ψg(𝑗, V) ≤ (𝐵/𝑀)𝐼 on
range(Ψ∗g (𝑗, V)). This implies (ii) due to the fact that C𝑝 =

range(Ψ∗g (𝑗, V)) ⊕ ker(Ψg(𝑗, V)). It is obvious that (ii) implies
(iii) by Lemma 14. By the same procedure as in “(i) ⇒ (ii)”,
we can prove that (iii) implies Ψg(𝑗, V)Ψ

∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼.

Remark 16. Condition (iii) in Theorem 13 is equivalent to
‖Ψg(𝑗, V)‖ ≤ √𝐵/𝑀 for a.e. (𝑗, V) ∈ Z × R when Ψg(𝑗, V)

is understood as an operator from C𝑝 into C𝑄. However,
such norm is equivalent to the one obtained by taking the
maximum of the absolute values of all entries of a matrix.
So 𝐺(g,N,M) is a Bessel sequence if and only if Z

𝑞𝑁
𝑔
𝑙
∈

𝐿
∞
(Z ×R) for 1 ≤ 𝑙 ≤ 𝐿 byTheorem 13.

Lemma 17. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z), let

𝐺(g,N,M) be a Bessel sequence in 𝑙
2
(Z). For 𝑓 ∈ 𝑙

2
(Z), write

𝑑
(𝑓)

= T∗g 𝑓. Then

J𝑑
(𝑓)

(𝑗, V) = 𝑀Ψg (𝑗, V)Z𝑞𝑁𝑓 (𝑗, V) (40)

for (𝑗, V) ∈ N
𝑀
×Rwhen either𝐺(g,N,M) is a Bessel sequence

or 𝑓 ∈ 𝑙
0
(Z).

Proof. By Lemmas 6 and 10, we have

𝑑
(𝑓)

𝑙,𝑚,(𝑛𝑞+𝑟)𝜆𝑙+𝜏𝑙

= ∑
𝑘∈N𝑝

∑
𝑗∈N𝑀

∫
1

0

Z
𝑞𝑁

𝑓 (𝑗 + 𝑘𝑀, V)

×Z
𝑞𝑁

𝑔
𝑙
(𝑗 − 𝜏

𝑙
𝑁
𝑙
− 𝑟𝑁 + 𝑘𝑀, V)

× 𝑒
−2𝜋𝑖𝑛V

𝑑V𝑒
−2𝜋𝑖(𝑚/𝑀)𝑗

= ∑
𝑗∈N𝑀

∫
1

0

(G
𝑙
(𝑗 − 𝜏

𝑙
𝑁
𝑙
, V)Z

𝑞𝑁
𝑓 (𝑗, V))

𝑟

× 𝑒
−2𝜋𝑖𝑛V

𝑑V𝑒
−2𝜋𝑖(𝑚/𝑀)𝑗

(41)

for each 𝑟 ∈ N
𝑞
, 𝜏
𝑙
∈ N

𝜆𝑙
, and 1 ≤ 𝑙 ≤ 𝐿. When either

𝐺(g,N,M) is a Bessel sequence or 𝑓 ∈ 𝑙
0
(Z), the integrand in

(41) belongs to 𝐿2([0, 1)) as a function about V by Remark 16.
It follows that

D
(𝜏𝑙) (𝑗, V) = 𝑀G

𝑙
(𝑗 − 𝜏

𝑙
𝑁
𝑙
, V)Z

𝑞𝑁
𝑓 (𝑗, V) (42)

for (𝑗, V) ∈ N
𝑀
×R. The lemma therefore follows.

Theorem 18. Let 𝐺(g,N,M) and 𝐺(h,N,M) be both Bessel
sequences in 𝑙

2
(Z). Then

Z
𝑞𝑁
Sh,g𝑓 (𝑗, V) = 𝑀Ψ∗g (𝑗, V) Ψh (𝑗, V)Z𝑞𝑁𝑓 (𝑗, V) (43)

for 𝑗 ∈ N
𝑀
and a.e. V ∈ [0, 1).

Proof. Write 𝑑 = T∗h𝑓. Then

Z
𝑞𝑁
Sh,g𝑓 (𝑗, V) = Ψ∗g (𝑗, V)J𝑑 (𝑗, V) (44)

by Remark 11. Applying Lemma 17 to h, we have

J𝑑 (𝑗, V) = 𝑀Ψ∗h (𝑗, V)Z𝑞𝑁𝑓 (𝑗, V) , (45)

and thus (43) holds by (44).

Theorem 19. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

the following are equivalent:

(i) 𝐺(g,N,M) is a frame for M(g,N,M) with frame
bounds 𝐴 and 𝐵;

(ii) (𝐴/𝑀)Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤ (Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
2
≤ (𝐵/

𝑀)Ψg(𝑗, V)Ψ
∗

g (𝑗, V) for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1);

(iii) (𝐴/𝑀)Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤ (Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
2
≤ (𝐵/

𝑀)Ψg(𝑗, V)Ψ
∗

g (𝑗, V) for 𝑗 ∈ Z and a.e. V ∈ R.

Proof. ByTheorem 13 and Remark 15, we may as well assume
that 𝐺(g,N,M) is a Bessel sequence, and we need to treat the
“lower frame bound” part under this assumption. By a similar
argument to beginning proof of Theorem 13, we only need to
prove that

⟨Sg,g𝑓, 𝑓⟩ ≥ 𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2 for 𝑓 ∈ M (g,N,M) (46)
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if and only if

(Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
2

≥
𝐴

𝑀
Ψg (𝑗, V) Ψ

∗

g (𝑗, V) for 𝑗 ∈ N
𝑀
, V ∈ [0, 1) .

(47)

Since the linear span of 𝐺(g,N,M) is dense in M(g,N,M),
(46) holds if and only if

⟨Sg,g𝑓, 𝑓⟩ ≥ 𝐴
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2 (48)

for 𝑓 = Tg𝑐with 𝑐 ∈ 𝑙
2
(N
𝑀

× Z,C𝐿) by [1, Lemma 5.1.7]. By
Lemma 10,Theorem 18, and Remark 11, (48) can be rewritten
as

𝑀⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

J𝑐 (𝑗, V) ,J𝑐 (𝑗, V)⟩

≥ 𝐴⟨Ψg (𝑗, V) Ψ
∗

g (𝑗, V)J𝑐 (𝑗, V) ,J𝑐 (𝑗, V)⟩ ,

(49)

equivalently,

𝑀⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

J𝑐 (𝑗, V),J𝑐 (𝑗, V)⟩

≥ 𝐴⟨Ψg (𝑗, V) Ψ
∗

g (𝑗, V)J𝑐 (𝑗, V),J𝑐 (𝑗, V)⟩

(50)

for 𝑗 ∈ N
𝑀
, V ∈ [0, 1), and 𝑐 ∈ 𝑙

2
(N
𝑀

× Z,C𝐿). By the same
procedure as in Theorem 13, we can prove the equivalence
between (47) and (50). The proof is completed.

Remark 20. By an argument similar to Remark 15,
(Ψg(𝑗, V)Ψ

∗

g (𝑗, V))
2 and Ψg(𝑗, V)Ψ

∗

g (𝑗, V) in Theorem 19 can
be replaced by (Ψ

∗

g (𝑗, V)Ψg(𝑗, V))
2 and Ψ

∗

g (𝑗, V)Ψg(𝑗, V), re-
spectively.

Definition 21. Given g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
)with each 𝑔

𝑙
∈ 𝑙
2
(Z),

let 𝐺(g,N,M) be a Bessel sequence in 𝑙
2
(Z). We say that

𝐺(g,N,M) has Riesz property if, for 𝑐 ∈ 𝑙
2
(N
𝑀

× Z,C𝐿), we
must have 𝑐 = 0 wheneverTg𝑐 = 0.

By an easy application of the spectral theorem of self-
adjoint matrices, we have the following lemma (see also [36,
page 978]).

Lemma22. Given ameasurable set𝐸 inRwith |𝐸| > 0, letA :

𝐸 → M
𝑠,𝑡
be a matrix-valued measurable function. Define by

P(V) the orthogonal projection of C𝑡 onto ker(A(V)). Then

P (V) = lim
𝑛→∞

exp (−𝑛A∗ (V)A (V)) (51)

for V ∈ 𝐸, and thusP(V) is measurable.

Theorem 23. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

the following are equivalent:

(i) 𝐺(g,N,M) has Riesz property;
(ii) rank(Ψg(𝑗, V)) = 𝑄 for 𝑗 ∈ N

𝑀/𝑞
and a.e. V ∈ [0, 1);

(iii) rank(Ψg(𝑗, V)) = 𝑄 for 𝑗 ∈ Z and a.e. V ∈ R.

Proof. By Lemma 12, (ii) and (iii) are equivalent. So we only
need to prove that 𝑐 = 0 is a unique solution to

Tg𝑐 = 0 (52)

in 𝑙
2
(N
𝑀
× Z,C𝐿) if and only if

rank (Ψg (𝑗, V)) = 𝑄 for 𝑗 ∈ N
𝑀
, V ∈ [0, 1) . (53)

By Remark 11, (52) can be rewritten as

Ψ∗g (𝑗, V)J𝑐 (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, V ∈ [0, 1) . (54)

So 𝑐 = 0 is a unique solution to (52) in 𝑙
2
(N
𝑀
× Z,C𝐿) if and

only if 𝑑(𝑗, V) = 0 is a unique solution to

Ψ∗g (𝑗, V)𝑑 (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) (55)

in 𝐿
2
(N
𝑀

× [0, 1),C𝑄) by Lemma 9. It is obvious that (53)
implies that 𝑑(𝑗, V) = 0 is a unique solution to (55) in 𝐿2(N

𝑀
×

[0, 1),C𝑄). Next we prove the converse implication. Suppose
there exist 𝑗

0
∈ N

𝑀
and 𝐸 ⊂ [0, 1) with |𝐸| > 0 such that

rank(Ψg(𝑗0, V)) < 𝑄 on 𝐸. Let P(𝑗
0
, V) be the orthogonal

projection ofC𝑄 onto ker(Ψ∗g (𝑗0, V)).Then there exist 𝑖
0
∈ N

𝑄

and 𝐸
󸀠
⊂ 𝐸 with |𝐸

󸀠
| > 0 such thatP(𝑗

0
, V)e

𝑖0
̸= 0 for V ∈ 𝐸

󸀠.
Define 𝑑(𝑗, V) ∈ 𝐿

2
(N
𝑀
× [0, 1),C𝑄) by

𝑑 (𝑗, V) = {
P (𝑗, V) e

𝑖0
, if 𝑗 = 𝑗

0
, V ∈ 𝐸

󸀠
,

0, otherwise
(56)

for 𝑗 ∈ N
𝑀

and V ∈ [0, 1). Then 𝑑(𝑗, V) is well defined, and
‖𝑑(𝑗, V)‖ ≤ 1 by Lemma 22. It follows that 𝑑(𝑗, V) is a nonzero
solution to (55) in 𝐿2(N

𝑀
×[0, 1),C𝑄).This is a contradiction.

The proof is completed.

Since a Riesz basis is exactly a frame having Riesz
property, and an orthonormal basis is exactly a Riesz basis
with Riesz bound 1, we have the following theorem by
Theorems 19 and 23.

Theorem 24. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

the following are equivalent:

(i) 𝐺(g,N,M) is a Riesz basis for 𝐺(g,N,M) with Riesz
bounds 𝐴 and 𝐵 (an orthonormal basis);

(ii) (𝐴/𝑀)𝐼 ≤ Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼(Ψg(𝑗, V)Ψ
∗

g (𝑗,

V) = (1/𝑀)𝐼) for 𝑗 ∈ N
𝑀/𝑞

a.e. V ∈ [0, 1);

(iii) (𝐴/𝑀)𝐼 ≤ Ψg(𝑗, V)Ψ
∗

g (𝑗, V) ≤ (𝐵/𝑀)𝐼(Ψg(𝑗, V)Ψ
∗

g (𝑗,

V) = (1/𝑀)𝐼) for 𝑗 ∈ Z and a.e. V ∈ R.

Next we turn to examples ofTheorems 19 and 24. Suppose

N = (6, 4) , M = (2, 2) . (57)
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Then𝑁/𝑀 = 6with 𝑝 = 6, 𝑞 = 1, and𝑄 = 5. For g = (𝑔
1
, 𝑔
2
)

with 𝑔
1
, 𝑔
2
∈ 𝑙
2
(Z), we associate it withΨg as in Definition 4.

Then

Ψg (𝑗, V) = (

𝐺
1
(𝑗, V)

𝐺
2
(𝑗, V)

) with

𝐺
1
(𝑗, V)= (

G
1
(𝑗, V)

G
1
(𝑗 − 6, V)

) , 𝐺
2
(𝑗, V)= (

G
2
(𝑗, V)

G
2
(𝑗 − 4, V)

G
2
(𝑗 − 8, V)

) ,

(58)

where

G
𝑙
(𝑗, V) = (Z

12
𝑔
𝑙
(𝑗 + 2𝑘, V))

0,𝑘
∈ M

1,6

with 𝑗 ∈ N
2
, 𝑘 ∈ N

6

(59)

for 𝑙 = 1, 2. By the quasi-periodicity of Zak transform, we
have

G
1
(𝑗 − 6, V)

= (𝑒
2𝜋𝑖V

Z
12
𝑔
1
(𝑗 + 6, V) , 𝑒

2𝜋𝑖V
Z
12
𝑔
1
(𝑗 + 8, V) ,

𝑒
2𝜋𝑖V

Z
12
𝑔
1
(𝑗 + 10, V) ,Z

12
𝑔
1
(𝑗, V) ,

Z
12
𝑔
1
(𝑗 + 2, V) ,Z

12
𝑔
1
(𝑗 + 4, V)) ,

G
2
(𝑗 − 4, V)

= (𝑒
2𝜋𝑖V

Z
12
𝑔
2
(𝑗 + 8, V) , 𝑒

2𝜋𝑖V
Z
12
𝑔
2
(𝑗 + 10, V) ,

Z
12
𝑔
2
(𝑗, V) ,Z

12
𝑔
2
(𝑗 + 2, V) ,

Z
12
𝑔
2
(𝑗 + 4, V) ,Z

12
𝑔
2
(𝑗 + 6, V)) ,

G
2
(𝑗 − 8, V)

= (𝑒
2𝜋𝑖V

Z
12
𝑔
2
(𝑗 + 4, V) , 𝑒

2𝜋𝑖V
Z
12
𝑔
2
(𝑗 + 6, V) ,

𝑒
2𝜋𝑖V

Z
12
𝑔
2
(𝑗 + 8, V) ,Z

12
𝑔
2
(𝑗 + 10, V) ,

Z
12
𝑔
2
(𝑗, V) ,Z

12
𝑔
2
(𝑗 + 2, V)) .

(60)

Thus for each 𝑗 ∈ N
2
and a.e. V ∈ [0, 1), G

1
(𝑗 − 6, V),

and G
2
(𝑗 − 4, V), G

2
(𝑗 − 8, V) are uniquely determined by

G
1
(𝑗, V) and G

2
(𝑗, V), respectively. Observe that N

2
+ 2N

6
is

12Z congruent toN
12
. It follows that g is uniquely determined

by the values of Ψg(𝑗, V) for 𝑗 ∈ N
2
and a.e. V ∈ [0, 1).

Therefore, an arbitrary matrix 5 × 6matrix-valued function
K(𝑗, V) for 𝑗 ∈ N

2
and a.e. V ∈ [0, 1) with all entries being in

𝐿
2
(N
2
× [0, 1)) determines a unique g by

Ψg (𝑗, V) = K (𝑗, V) for 𝑗 ∈ N
2
, a.e. V ∈ [0, 1) . (61)

Let

K (𝑗, V)

=

(
(
(
(
(
(
(
(

(

𝑎(𝑗, V) 𝜆 (𝑗, V) 𝑎 (𝑗, V) 𝜆
2
(𝑗, V) 𝑎 (𝑗, V) 0 0 0

0 0 0 𝑎 (𝑗, V) 𝜆 (𝑗, V) 𝑎 (𝑗, V) 𝜆
2
(𝑗, V) 𝑎 (𝑗, V)

−𝜆 (𝑗, V) 𝑎 (𝑗, V) 𝑎 (𝑗, V) 0 0 0 0

0 0 𝜆 (𝑗, V) 𝑎 (𝑗, V) 𝑎 (𝑗, V) 0 0

0 0 0 0 −𝜆 (𝑗, V) 𝑎 (𝑗, V) 𝑎 (𝑗, V)

)
)
)
)
)
)
)
)

)

(62)

for 𝑗 ∈ N
2
and a.e. V ∈ [0, 1). Define g = (𝑔

1
, 𝑔
2
) by

Ψg (𝑗, V) = K (𝑗, V) for 𝑗 ∈ N
2
, a.e. V ∈ [0, 1] . (63)

Then we obtain the following example.

Example 25. Let N and M be defined as in (57) and define
g = (𝑔

1
, 𝑔
2
) by (63), where 𝜆(𝑗, ⋅), 𝑎(𝑗, ⋅) are continuous on

[0, 1] for 𝑗 ∈ {0, 1}. Assume that
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨 < 1,

󵄨󵄨󵄨󵄨𝑎 (𝑗, V)
󵄨󵄨󵄨󵄨
2
(1 − 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
4
− 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
6
−
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
8
)

< 1 −
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
3
,

󵄨󵄨󵄨󵄨𝑎 (𝑗, V)
󵄨󵄨󵄨󵄨
2
(1 + 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
+ 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
5
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
7
)

< 1 +
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
3

(64)

for (𝑗, V) ∈ {0, 1} × [0, 1] satisfying 𝑎(𝑗, V) ̸= 0. Then

supp (𝑔
1
) ⊂ N

6
+ 12Z, supp (𝑔

2
) ⊂ N

4
+ 12Z,

(65)

and 𝐺(g,N,M) is a frame forM(g,N,M).
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Proof. Equation (65) is an immediate consequence of (63).
Next we prove that 𝐺(g,N,M) is a frame forM(g,N,M). By
a simple computation, we have

⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

𝑥, 𝑥⟩

=
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
5

∑
𝑙=1

𝛼
𝑙
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥𝑙
󵄨󵄨󵄨󵄨
2
+ 𝛽 (𝑗, V) ,

⟨Ψg (𝑗, V) Ψ
∗

g (𝑗, V) 𝑥, 𝑥⟩

=
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
5

∑
𝑙=1

𝛼̃
𝑙
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥𝑙
󵄨󵄨󵄨󵄨
2
+ 𝛽 (𝑗, V)

(66)

for (𝑗, V) ∈ {0, 1} × [0, 1] and 𝑥 ∈ C5, where

𝛼
1
(𝑗, V) =

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3

+ (1 +
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝛼
2
(𝑗, V) = 1 + (1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
)
2

×
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝛼
4
(𝑗, V) = 1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
+ (1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝛼
4
(𝑗, V) = 1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
+ (1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝛼
3
(𝑗, V) = 𝛼

5
(𝑗, V) = (1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝛽 (𝑗, V) = 2Re ([𝜆(𝑗, V)3

× (2 + 2
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
)

× 𝑎(𝑗, V)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
] 𝑥
1
𝑥
4
)

+ 2Re ([(2 + 2
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
)

× 𝑎(𝑗, V)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
] 𝑥
2
𝑥
4
)

− 2Re (𝜆(𝑗, V)3󵄨󵄨󵄨󵄨𝑎 (𝑗, V)
󵄨󵄨󵄨󵄨
2
𝑥
1
𝑥
2
) ,

𝛼̃
1
(𝑗, V) = 𝛼̃

2
(𝑗, V) = 1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
,

𝛼̃
3
(𝑗, V) = 𝛼̃

4
(𝑗, V) = 𝛼̃

5
(𝑗, V) = 1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
2
,

𝛽 (𝑗, V) = −2Re (𝜆(𝑗, V)3𝑎(𝑗, V)2𝑥
1
𝑥
4
)

+ 2Re (𝑎(𝑗, V)2𝑥
2
𝑥
4
) .

(67)

It is easy to check that

󵄨󵄨󵄨󵄨𝛽 (𝑗, V)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑎 (𝑗, V)
󵄨󵄨󵄨󵄨
2
[𝛽
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+ 𝛽
2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2

+𝛽
4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2
] ,

(68)

where

𝛽
1
(𝑗, V) =

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
+
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2

× (2
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
3
+ 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
5
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
7
) ,

𝛽
2
(𝑗, V) =

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
+
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2

× (2 + 2
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
) ,

𝛽
4
(𝑗, V) =

󵄨󵄨󵄨󵄨𝑎 (𝑗, V)
󵄨󵄨󵄨󵄨
2

× (2 + 2
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+ 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3

+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
4
+ 2

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
5

+
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
7
) .

󵄨󵄨󵄨󵄨󵄨
𝛽 (𝑗, V)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2

× [𝛽
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+ 𝛽
2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2
+ 𝛽
4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2
] ,

(69)

where

𝛽
1
(𝑗, V) =

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
, 𝛽

2
(𝑗, V) = 1,

𝛽
4
(𝑗, V) = 1 +

󵄨󵄨󵄨󵄨𝜆 (𝑗, V)
󵄨󵄨󵄨󵄨
3
.

(70)

Write

𝐶
𝑙
(𝑗, V) = 𝛼

𝑙
(𝑗, V) + 𝛽

𝑙
(𝑗, V) ,

𝐶
𝑙
(𝑗, V) = 𝛼

𝑙
(𝑗, V) − 𝛽

𝑙
(𝑗, V) for 𝑙 = 1, 2, 4,

𝐶 (𝑗, V) = (1 +
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
)
2󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
,

𝐷
𝑙
(𝑗, V) = 𝛼̃

𝑙
(𝑗, V) + 𝛽

𝑙
(𝑗, V) ,

𝐷
𝑙
(𝑗, V) = 𝛼̃

𝑙
(𝑗, V) − 𝛽

𝑙
(𝑗, V) for 𝑙 = 1, 2, 4,

𝐷 (𝑗, V) =
󵄨󵄨󵄨󵄨𝜆 (𝑗, V)

󵄨󵄨󵄨󵄨
2
+ 1.

(71)

Take

𝐶 = min {𝐶 (𝑗, V) , 𝐶
𝑙
(𝑗, V) : 𝑙 = 1, 2, 4, 𝑗 ∈ N

2
, V ∈ [0, 1]} ,

𝐶 = max {𝐶 (𝑗, V) , 𝐶
𝑙
(𝑗, V) : 𝑙 = 1, 2, 4, 𝑗 ∈ N

2
, V ∈ [0, 1]} ,

𝐷 = min {𝐷 (𝑗, V) , 𝐷
𝑙
(𝑗, V) : 𝑙 = 1, 2, 4, 𝑗 ∈ N

2
, V ∈ [0, 1]} ,

𝐷 = max {𝐷 (𝑗, V) , 𝐷
𝑙
(𝑗, V) : 𝑙 = 1, 2, 4, 𝑗 ∈ N

2
, V ∈ [0, 1]} .

(72)
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Then

⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

𝑥, 𝑥⟩

≤
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
[𝐶
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+ 𝐶

2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2

+ 𝐶
4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2
+ 𝐶 (𝑗, V)

× (
󵄨󵄨󵄨󵄨𝑥3

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑥5

󵄨󵄨󵄨󵄨
2
)]

≤ 𝐶
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
‖𝑥‖
2
,

⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

𝑥, 𝑥⟩

≥
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
[𝐶
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+ 𝐶

2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2

+ 𝐶
4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2
+ 𝐶 (𝑗, V)

× (
󵄨󵄨󵄨󵄨𝑥3

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑥5

󵄨󵄨󵄨󵄨
2
)]

≥ 𝐶
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
‖𝑥‖
2
,

⟨Ψg (𝑗, V) Ψ
∗

g (𝑗, V) 𝑥, 𝑥⟩

≤
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
[𝐷
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+ 𝐷

2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2

+ 𝐷
4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2
+ 𝐷 (𝑗, V)

× (
󵄨󵄨󵄨󵄨𝑥3

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑥5

󵄨󵄨󵄨󵄨
2
)]

≤ 𝐷
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
‖𝑥‖
2
,

⟨Ψg (𝑗, V) Ψ
∗

g (𝑗, V) 𝑥, 𝑥⟩

≥
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
[𝐷
1
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2

+ 𝐷
2
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2
+ 𝐷

4
(𝑗, V)

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨
2

+𝐷 (𝑗, V) (
󵄨󵄨󵄨󵄨𝑥3

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑥5

󵄨󵄨󵄨󵄨
2
)]

≥ 𝐷
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
‖𝑥‖
2
.

(73)

It follows that
𝐴

2
⟨Ψg (𝑗, V) Ψ

∗

g (𝑗, V) 𝑥, 𝑥⟩ ≤ ⟨(Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

𝑥, 𝑥⟩

≤
𝐵

2
⟨Ψg (𝑗, V) Ψ

∗

g (𝑗, V) 𝑥, 𝑥⟩ ,

(74)

for 𝑥 ∈ C5, 𝑗 ∈ N
2
, and a.e. V ∈ [0, 1), and thus

𝐴

2
Ψg (𝑗, V) Ψ

∗

g (𝑗, V) ≤ (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
2

≤
𝐵

2
Ψg (𝑗, V) Ψ

∗

g (𝑗, V)

(75)

for 𝑗 ∈ N
2
and a.e. V ∈ [0, 1), where𝐴 = 2𝐶/𝐷, 𝐵 = 2𝐶/𝐷. By

Theorem 19,𝐺(g,N,M) is a frame forM(g,N,M)with frame
bounds 𝐴 and 𝐵.

Remark 26. By a simple computation, we have rank(Ψg(𝑗,
V)) = 5 if and only if

𝑎 (0, V) 𝑎 (1, V) 𝜆 (0, V) 𝜆 (1, V) ̸= 0 for a.e. V ∈ [0, 1) .

(76)

Also observe that rank(Ψg(𝑗, V)) = 5 is equivalent to
Ψg(𝑗, V)Ψ

∗

g (𝑗, V) being invertible, and that (75) can be reduced
to

𝐴𝐼

2
≤ Ψg (𝑗, V) Ψ

∗

g (𝑗, V) ≤
𝐵𝐼

2
for 𝑗 ∈ N

2
, a.e. V ∈ [0, 1)

(77)

in this case. Therefore, 𝐺(g,N,M) is a Riesz basis for
M(g,N,M) with Riesz bounds 𝐴 and 𝐵 if and only if (76)
holds.

4. Gabor Dual Characterization

Let 𝐺(g,N,M) be a frame for M(g,N,M). In this section,
we discuss three kinds of duals with Gabor structure. We
establish characterizations of Gabor duals of type I and type
II and obtain a sufficient condition for Gabor duals of type II
and oblique Gabor duals.

By an argument similar to [5, Lemma 2.6], we have the
following lemmas.

Lemma 27. For g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) and h = (ℎ

1
, ℎ
2
, . . . , ℎ

𝐿
)

with each 𝑔
𝑙
, ℎ
𝑙
∈ 𝑙
2
(Z), the following are equivalent:

(i) ℎ
𝑙
∈ M(g,N,M) for each 1 ≤ 𝑙 ≤ 𝐿;

(ii) there exists a function𝐴 : N
𝑀/𝑞

×[0, 1) → M
𝑄,𝑄

such
that

Ψh (𝑗, V) = 𝐴 (𝑗, V) Ψg (𝑗, V) (78)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1);
(iii) there exists a function 𝐴 : Z ×R → M

𝑄,𝑄
such that

Ψh (𝑗, V) = 𝐴 (𝑗, V) Ψg (𝑗, V) (79)

for 𝑗 ∈ Z and a.e. V ∈ R.

Lemma 28. Given g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

h = (ℎ
1
, ℎ
2
, . . . , ℎ

𝐿
) with each ℎ

𝑙
∈ 𝑙

2
(Z), let 𝐺(g,N,M)

and 𝐺(h,N,M) be both Bessel sequences in 𝑙
2
(Z). Then the

following are equivalent:

(i) range(T∗h) ⊂ range(T∗g );
(ii) there exists a function 𝐵 : N

𝑀/𝑞
× [0, 1) → M

𝑝,𝑝
such

that

Ψh (𝑗, V) = Ψg (𝑗, V) 𝐵 (𝑗, V) 𝑓𝑜𝑟 (𝑗, V) ∈ N
𝑀/𝑞

× [0, 1) ;

(80)

(iii) there exists a function 𝐵 : Z ×R → M
𝑝,𝑝

such that

Ψh (𝑗, V) = Ψg (𝑗, V) 𝐵 (𝑗, V) 𝑓𝑜𝑟 (𝑗, V) ∈ Z ×R. (81)
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Proof. If (ii) holds, we can obtain (iii) by choosing 𝐵 : Z ×

R → M
𝑝,𝑝

as

𝐵(𝑗 +
𝑀

𝑞
𝑛, V) = D

∗

𝑛
(V) 𝐵 (𝑗, V)D

𝑛 (V) (82)

for (𝑗, V) ∈ N
𝑀/𝑞

×R, whereD
𝑛
(V) is defined as in Lemma 12.

So we only need to prove that (i) holds if and only if there
exists a function 𝐵 : N

𝑀
× [0, 1) → M

𝑝,𝑝
such that

Ψh (𝑗, V) = Ψg (𝑗, V) 𝐵 (𝑗, V) for (𝑗, V) ∈ N
𝑀
× [0, 1) .

(83)

For 𝑐 ∈ 𝑙
2
(N
𝑀

× Z,C𝐿), 𝑐 is orthogonal to range(T∗g )
(range(T∗h )) if and only if

J𝑐 (𝑗, V) ⊥ Ψg (𝑗, V)Z𝑞𝑁𝑓 (𝑗, V)

(J𝑐 (𝑗, V) ⊥ Ψh (𝑗, V)Z𝑞𝑁𝑓 (𝑗, V))

(84)

in 𝐿
2
(N
𝑀

× [0, 1),C𝑄)-inner product by Lemmas 9 and 17,
equivalently,

Ψ∗g (𝑗, V)J𝑐 (𝑗, V) ⊥ Z
𝑞𝑁

𝑓 (𝑗, V)

(Ψ∗h (𝑗, V)J𝑐 (𝑗, V) ⊥ Z
𝑞𝑁

𝑓 (𝑗, V)) for 𝑓 ∈ 𝑙
2
(Z)

(85)

in 𝐿
2
(N
𝑀

× [0, 1),C𝑝)-inner. Again by Lemma 6, (85) is
equivalent to

Ψ∗g (𝑗, V)J𝑐 (𝑗, V) = 0 (Ψ∗h (j, V)J𝑐 (𝑗, V) = 0)

for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) .

(86)

So we only need to prove that (83) holds if and only if, for
J𝑐(𝑗, V) ∈ 𝐿

2
(N
𝑀
× [0, 1),C𝑄),

Ψ∗h (𝑗, V)J𝑐 (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) (87)

whenever

Ψ∗g (𝑗, V)J𝑐 (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) . (88)

Obviously the necessity holds. Next we prove that a contra-
diction will occur if (83) is violated. Suppose (83) does not
hold. Then there exist some 𝑗

0
∈ N

𝑀
and 𝐸 ⊂ [0, 1) with

|𝐸| > 0, on which some 𝑟
0
th column ℎ

𝑟0
of Ψh(𝑗0, V) satisfies

ℎ
𝑟0
∉ range (Ψg (𝑗0, V)) for V ∈ 𝐸. (89)

Let P(𝑗
0
, V) be the orthogonal projection of C𝑄 onto

ker(Ψ∗g (𝑗0, V)). DefineJ𝑐(𝑗, V) ∈ 𝐿
2
(N
𝑀
× [0, 1),C𝑄) by

J𝑐 (𝑗, V) = {
P (𝑗

0
, V) ℎ

𝑟0
(𝑗
0
, V) , if 𝑗 = 𝑗

0
, V ∈ 𝐸,

0, otherwise
(90)

for (𝑗, V) ∈ N
𝑀

× [0, 1). Then J𝑐(𝑗, V) solves (88) and
J𝑐(𝑗

0
, V) ̸= 0 for V ∈ 𝐸. Also observe that the 𝑟

0
th component

of Ψ∗h (𝑗0, V)J𝑐(𝑗
0
, V) is exactly ‖J𝑐(𝑗

0
, V)‖2 for V ∈ 𝐸. It

follows that J𝑐(𝑗, V) fails to solve (87). This finishes the
proof.

Lemma 29. Given g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
), h = (ℎ

1
, ℎ
2
, . . . , ℎ

𝐿
)

with each 𝑔
𝑙
, ℎ
𝑙
∈ 𝑙
2
(Z), let𝐺(g,N,M) and𝐺(h,N,M) be both

Bessel sequences in 𝑙
2
(Z). Then

Sh,g𝑓 = 𝑓 (91)

for 𝑓 ∈ M(g,N,M) if and only if

Ψ
∗

g (𝑗, V) = 𝑀Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V) (92)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1).

Proof. By Lemma 12, (92) holds for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈

[0, 1) if and only if it holds for 𝑗 ∈ N
𝑀

and a.e. V ∈ [0, 1).
Next we prove that (91) holds for 𝑓 ∈ M(g,N,M) if and only
if (92) holds for 𝑗 ∈ N

𝑀
and a.e. V ∈ [0, 1).

Since range(Tg) is dense in M(g,N,M), (91) holds for
𝑓 ∈ M(g,N,M) if and only if it holds for 𝑓 ∈ range(Tg),
equivalently,

Ψ
∗

g (𝑗, V)J𝑐 (𝑗, V)

= 𝑀Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V)J𝑐 (𝑗, V)
(93)

for 𝑐 ∈ 𝑙
2
(N
𝑀
× Z,C𝐿) by Remark 11 andTheorem 18. This is

also equivalent to

Ψ
∗

g (𝑗, V) 𝑑 (𝑗, V)

= 𝑀Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V) 𝑑 (𝑗, V)
(94)

for 𝑑(𝑗, V) ∈ 𝐿
2
(N
𝑀
×[0, 1),C𝑄), 𝑗 ∈ N

𝑀
, and a.e. V ∈ [0, 1) by

Lemma 9. It is obvious that (94) holds if (92) holds for 𝑗 ∈ N
𝑀

and a.e. V ∈ [0, 1). Now suppose (94) holds. For an arbitrarily
fixed 𝑥 ∈ C𝑄, choose 𝑑(𝑗, V) as

𝑑 (𝑗, V) = 𝑥 for (𝑗, V) ∈ N
𝑀
× [0, 1) . (95)

Then 𝑑(𝑗, V) ∈ 𝐿
2
(N
𝑀

× [0, 1),C𝑄), and thus Ψ∗g (𝑗, V)𝑥 =

𝑀Ψ
∗

g (𝑗, V)Ψh(𝑗, V)Ψ
∗

g (𝑗, V)𝑥 for 𝑗 ∈ N
𝑀

and a.e. V ∈ [0, 1)

by (94). So (92) holds for 𝑗 ∈ N
𝑀

and a.e. V ∈ [0, 1) by the
arbitrariness of 𝑥. The proof is completed.

By Lemmas 27–29, we have the following theorem which
characterizes the Gabor duals of type I (resp., type II).

Theorem 30. Given g = (g
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

let 𝐺(g,N,M) be a frame forM(g,N,M). Then, for any Bessel
sequence 𝐺(h,N,M) in 𝑙

2
(Z), 𝐺(h,N,M) is a Gabor dual of

type I (type II) for 𝐺(g,N,M) if and only if the following hold:

(i) there exists 𝐴 : N
𝑀/𝑞

× [0, 1) → M
𝑄,𝑄

(𝐵 : N
𝑀/𝑞

×

[0, 1) → M
𝑝,𝑝

) such that

Ψh (𝑗, V) = 𝐴 (𝑗, V) Ψg (𝑗, V) (Ψh (𝑗, V) = Ψg (𝑗, V) 𝐵 (𝑗, V)) ;

(96)

(ii) Ψ∗g (𝑗, V) = 𝑀Ψ
∗

g (𝑗, V)Ψh(𝑗, V)Ψ
∗

g (𝑗, V) for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1).
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Theorem 31. Given g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

let 𝐺(g,N,M) be a frame forM(g,N,M). Then, for any Bessel
sequence 𝐺(h,N,M) in 𝑙

2
(Z),

(i) 𝐺(h,N,M) is a Gabor dual of type I for 𝐺(g,N,M) if
and only if there exists A : N

𝑀/𝑞
× [0, 1) → M

𝑄,𝑄

such that

Ψh (𝑗, V) =
1

𝑀
(Ψg (𝑗, V) Ψ

∗

g (𝑗, V))
†

Ψg (𝑗, V)

× [𝐼 −𝑀Ψ
∗

g (𝑗, V)A (𝑗, V) Ψg (𝑗, V)]

+A (𝑗, V) Ψg (𝑗, V)

(97)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1);
(ii) 𝐺(h,N,M) is a Gabor dual of type II for 𝐺(g,N,M) if

Ψh (𝑗, V) =
1

𝑀
Ψg (𝑗, V) (Ψ

∗

g (𝑗, V) Ψg (𝑗, V))
†

× [𝐼 −𝑀Ψ
∗

g (𝑗, V) Ψg (𝑗, V)A (𝑗, V)]

+ Ψg (𝑗, V)A (𝑗, V)

(98)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1);
(iii) 𝐺(h,N,M) is an oblique dual of 𝐺(g,N,M) if one of

the following conditions holds:

(a) Ψh(𝑗, V) = (1/𝑀)Ψg(𝑗, V)(Ψ
∗

g (𝑗, V)Ψg(𝑗, V))
†
[𝐼 −

𝑀Ψ
∗

g (𝑗, V)A(𝑗, V)Ψg(𝑗, V)] + A(𝑗, V)Ψg(𝑗, V) for
𝑗 ∈ N

𝑀/𝑞
and a.e. V ∈ [0, 1);

(b) Ψh(𝑗, V) = (1/𝑀)(Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
†
Ψg(𝑗, V)[𝐼 −

𝑀Ψ
∗

g (𝑗, V)Ψg(𝑗, V)A(𝑗, V)] + Ψg(𝑗, V)A(𝑗, V) for
𝑗 ∈ N

𝑀/𝑞
and a.e. V ∈ [0, 1).

Proof. The items (ii) and (iii) can be proved similarly to item
(i). Next we prove item (i). First we assume that (97) holds.
Then

𝑀Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V)

= Ψ
∗

g (𝑗, V) (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

× Ψg (𝑗, V) Ψ
∗

g (𝑗, V)

− 𝑀Ψ
∗

g (𝑗, V) (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

× Ψg (𝑗, V) Ψ
∗

g (𝑗, V)A (𝑗, V)

× Ψg (𝑗, V) Ψ
∗

g (𝑗, V)

+ 𝑀Ψ
∗

g (𝑗, V)A (𝑗, V) Ψg (𝑗, V) Ψ
∗

g (𝑗, V)

(99)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1). Also observe that (Ψg(𝑗,

V)Ψ∗g (𝑗, V))
†
Ψg(𝑗, V)Ψ

∗

g (𝑗, V) is the projection from C𝑄 onto
range(Ψg(𝑗, V)). It follows that 𝑀Ψ

∗

g (𝑗, V)Ψh(𝑗, V)Ψ
∗

g (𝑗, V) =

Ψ
∗

g (𝑗, V), and thus 𝐺(h,N,M) is a Gabor dual of type I for
𝐺(g,N,M) byTheorem 30.

Now we turn to the converse implication. Suppose
𝐺(h,N,M) is aGabor dual of type I for𝐺(g,N,M).Then there
exists 𝐵(𝑗, V) : N

𝑀/𝑞
× [0, 1) → M

𝑄,𝑄
such that

Ψh (𝑗, V) = 𝐵 (𝑗, V) Ψg (𝑗, V) ,

Ψ
∗

g (𝑗, V) = 𝑀Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V)
(100)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1). It follows that

1

𝑀
(Ψg (𝑗, V) Ψ

∗

g (𝑗, V))
†

Ψg (𝑗, V) Ψ
∗

g (𝑗, V)

= (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

Ψg (𝑗, V)

× Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V)

(101)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1), and thus

1

𝑀
(Ψg (𝑗, V) Ψ

∗

g (𝑗, V))
†

Ψg (𝑗, V)

= (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

× Ψg (𝑗, V) Ψ
∗

g (𝑗, V) Ψh (𝑗, V)

(102)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1) due to the fact that
C𝑝 = range(Ψ∗g (𝑗, V)) ⊕ ker(Ψg(𝑗, V)). PutA(𝑗, V) = 𝐵(𝑗, V) −

(Ψg(𝑗, V)Ψ
∗

g (𝑗, V))
†. Then the right-hand side of (97) equals

Ψh (𝑗, V) + (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

Prange (Ψg(𝑗,V))Ψg (𝑗, V)

− (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

Ψg (𝑗, V)

(103)

by (102), and this is exactly Ψh(𝑗, V) for 𝑗 ∈ N
𝑀/𝑞

and a.e.
V ∈ [0, 1) again by the fact that

Ψg (𝑗, V) Ψ
∗

g (𝑗, V) (Ψg (𝑗, V) Ψ
∗

g (𝑗, V))
†

= Prange (Ψg(𝑗,V)).

(104)

5. The Case of 𝑁
1
=𝑁

2
= ⋅ ⋅ ⋅ =𝑁

𝐿

Theorems 30 and 31 characterize duals with Gabor structure
for general N = (𝑁

1
, 𝑁
2
, . . . , 𝑁

𝐿
). This section deals with the

case𝑁
1
= 𝑁

2
= ⋅ ⋅ ⋅ = 𝑁

𝐿
. We start with a remark on the case

of𝑁
𝑙
, 1 ≤ 𝑙 ≤ 𝐿, being not all the same.

Remark 32. Not every subspace Gabor frame 𝐺(g,N,M)

admits an oblique Gabor dual.

We show it by revisiting Example 25. Let us make an
additional assumption that 𝜆(0, V) = 𝜆(1, V) = 0 and 𝑎(0,

V)𝑎(1, V) ̸= 0 for V ∈ [0, 1]. Then 𝐺(g,N,M) is a frame but
not a Riesz basis for M(g,N,M) by Remark 26. Suppose
𝐺(h,N,M) with h = (ℎ

1
, ℎ
2
) is an oblique Gabor dual for

𝐺(g,N,M). Then

Ψ
∗

g (𝑗, V) = 2Ψ
∗

g (𝑗, V) Ψh (𝑗, V) Ψ
∗

g (𝑗, V)

for 𝑗 ∈ N
2
, a.e. V ∈ [0, 1)

(105)
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by Theorem 30. Writing out (0, 0), (3, 1), and (5, 4) entries of
both sides, we have

2(𝑎 (𝑗, V))
2

Z
12
ℎ
1
(𝑗, V) = 𝑎 (𝑗, V), (106)

2(𝑎 (𝑗, V))
2

Z
12
ℎ
1
(𝑗, V)

+ 2
󵄨󵄨󵄨󵄨𝑎 (𝑗, V)

󵄨󵄨󵄨󵄨
2
Z
12
ℎ
2
(𝑗 + 2, V) = 𝑎(𝑗, V),

(107)

2(𝑎 (𝑗, V))
2
Z
12
ℎ
2
(𝑗 + 2, V) = 𝑎 (𝑗, V) (108)

for 𝑗 ∈ N
2
and a.e. V ∈ [0, 1). By (107) and (108), we have

2𝑎(𝑗, V)Z
12
ℎ
1
(𝑗, V) = 0 for 𝑗 ∈ N

2
and a.e. V ∈ [0, 1). This

contradicts (106).
Observe that𝑁

1
̸=𝑁
2
in Remark 32 (𝑁

1
= 6 and𝑁

2
= 4).

It is natural to ask the following question.
Does every subspace Gabor frame 𝐺(g,N,M) admit no

oblique Gabor dual whenever 𝑁
𝑙
, 1 ≤ 𝑙 ≤ 𝐿, are not all the

same?
The following example gives a negative answer to this

question.

Example 33. Let N = (1, 2) and M = (3, 3). Assume that
J(V) = (

J1(V)
J2(V)

), E(V) = (
E1(V)
E2(V)

) have the form

J
1 (V) =

(
(
(
(
(
(
(
(
(
(

(

𝑎
0,0 (V) 𝑎

0,1 (V)

𝑎
1,0 (V) 𝑎

1,1 (V)

𝑎
2,0 (V) 𝑎

2,1 (V)

𝑎
2,1 (V) 𝑒

−2𝜋𝑖V
𝑎
2,0 (V)

𝑒
2𝜋𝑖V

𝑎
0,1 (V) 𝑎

0,0 (V)

𝑒
2𝜋𝑖V

𝑎
1,1 (V) 𝑎

1,0 (V)

)
)
)
)
)
)
)
)
)
)

)

,

E
1 (V) =

(
(
(
(
(
(
(
(
(
(

(

𝑐
0,0 (V) 𝑐

0,1 (V)

𝑐
1,0 (V) 𝑐

1,1 (V)

𝑐
2,0 (V) c

2,1 (V)

𝑐
2,1 (V) 𝑒

−2𝜋𝑖V
𝑐
2,0 (V)

𝑒
2𝜋𝑖V

𝑐
0,1 (V) 𝑐

0,0 (V)

𝑒
2𝜋𝑖V

𝑐
1,1 (V) 𝑐

1,0 (V)

)
)
)
)
)
)
)
)
)
)

)

,

J
2 (V) = (

𝑏
0,0 (V) 𝑏

0,1 (V)

𝑏
1,0 (V) 𝑏

1,1 (V)

𝑏
2,0 (V) 𝑏

2,1 (V)

) ,

E
2 (V) = (

𝑑
0,0 (V) 𝑑

0,1 (V)

𝑑
1,0 (V) 𝑑

1,1 (V)

𝑑
2,0 (V) 𝑑

2,1 (V)

) ,

(109)

for V ∈ [0, 1) with all entries of J(V) and E(V) in 𝐿
∞
([0, 1)),

that (J
1
(V))∗E

1
(V) has the form (

𝐴(V) 0
0 𝐴(V) ) and (J(V))∗J(V)

has the form (
𝐵(V) 0
0 𝐵(V) ) for V ∈ [0, 1), and that

(J
2 (V))

∗
E
2 (V) = (

1

3
− 𝐴 (V) 0

0
1

3
− 𝐴 (V)

) (110)

for V ∈ [0, 1) satisfying 𝐵(V) ̸= 0. Define g = (𝑔
1
, 𝑔
2
) and h =

(ℎ
1
, ℎ
2
) by

Ψg (0, V) = J (V) , Ψh (0, V) = E (V) for V ∈ [0, 1) .

(111)

Then g and h are well defined by the quasi-periodicity of the
Zak transform Z

6
and 6Z congruence between {0} − 2N

3
+

3N
2
and N

6
, and 𝐺(g,N,M) and 𝐺(h,N,M) are both Bessel

sequences by Remark 16. A simple computation shows that

Ψ
∗

g (0, V) Ψg (0, V) = 3Ψ
∗

g (0, V) Ψh (0, V) Ψ
∗

g (0, V) Ψg (0, V)

(112)

for V ∈ [0, 1). This implies that Ψ∗g (0, V) = 3Ψ
∗

g (0, V) Ψh(0,

V) Ψ∗g (0, V) for V ∈ [0, 1) due to the fact that C9 =

range(Ψg(0, V)) ⊕ ker(Ψ∗g (0, V)). So 𝐺(h,N,M) is an oblique
Gabor dual for 𝐺(h,N,M) by Lemma 29.

Remark 32 and Example 33 show that the Gabor dual
theory for subspace Gabor frames is complicated when 𝑁

𝑙
,

1 ≤ 𝑙 ≤ 𝐿, are not all the same.There are still many unresolved
problems in this direction. Next we work under the following
assumption.

Assumption 34. 𝐿 is a positive integer, M = (𝑀,𝑀, . . . ,𝑀),
and N = (𝑁

1
, 𝑁
2
, . . . , 𝑁

𝐿
) with𝑁

1
= 𝑁

2
= ⋅ ⋅ ⋅ = 𝑁

𝐿
= 𝑁.

The following theorem characterizes the uniqueness of
such duals.

Theorem 35. Given g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) with each 𝑔

𝑙
∈ 𝑙
2
(Z),

let 𝐺(g,N,M) be a frame for M(g,N,M). Then the following
are equivalent:

(i) 𝐺(g,N,M) has a unique Gabor dual of type I (type II);
(ii) rank(Ψg(𝑗, V)) ∈ {0, 𝐿𝑞}(rank(Ψg(𝑗, V)) ∈ {0, 𝑝}) for

a.e. (𝑗, V) ∈ N
𝑀/𝑞

× [0, 1);
(iii) rank(Ψg(𝑗, V)) ∈ {0, 𝐿𝑞}(rank(Ψg(𝑗, V)) ∈ {0, 𝑝}) for

a.e. (𝑗, V) ∈ Z ×R.

Proof. We first deal with the Gabor dual of type I. By
Lemma 12, (ii) and (iii) are equivalent. By Theorem 30 and
Lemma 27, we only need to prove that (ii) holds if and only if
a function 𝐴 : N

𝑀
× [0, 1) → M

𝐿𝑞,𝐿𝑞
solves

𝐴 (𝑗, V) Ψg (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) (113)

whenever it solves
Ψ
∗

g (𝑗, V) 𝐴 (𝑗, V) Ψg (𝑗, V) Ψ
∗

g (𝑗, V) = 0

for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) .

(114)
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Suppose (ii) holds and𝐴 : N
𝑀
×[0, 1) → M

𝐿𝑞,𝐿𝑞
solves (114).

If (𝑗, V) is such that rank(Ψg(𝑗, V)) = 0, then Ψg(𝑗, V) = 0, and
thus 𝐴(𝑗, V)Ψg(𝑗, V) = 0. If (𝑗, V) is such that rank(Ψg(𝑗, V)) =
𝐿𝑞, then (114) implies that

𝐴 (𝑗, V) Ψg (𝑗, V) Ψ
∗

g (𝑗, V) = 0, (115)

which leads to 𝐴(𝑗, V) = 0 and thus 𝐴(𝑗, V)Ψg(𝑗, V) = 0.
Conversely, suppose (ii) does not hold.Then there exist some
𝑗
0
∈ N

𝑀
and e

𝑘
, e
𝑟
such that

P (𝑗
0
, V) e

𝑘
̸= 0, e∗

𝑟
Ψg (𝑗0, V) ̸= 0 (116)

on some 𝐸 ⊂ [0, 1) with |𝐸| > 0, where P(𝑗
0
, V) is the

orthogonal projection of C𝐿𝑞 onto ker(Ψ∗g (𝑗0, V)). Define

𝐴 (𝑗
0
, V) = {

P (𝑗
0
, V) e

𝑘
e∗
𝑟
, if 𝑗 = 𝑗

0
, V ∈ 𝐸,

0, otherwise
(117)

for (𝑗, V) ∈ N
𝑀
×[0, 1).Then (114) holds, but (113) fails to hold.

Next we turn to the Gabor duals of type II. Similarly to
the above arguments, byTheorem 30 and Lemmas 27 and 28,
we only need to prove that (ii) holds if and only if a function
𝐵 : N

𝑀
× [0, 1) → M

𝑝,𝑝
solves

Ψg (𝑗, V) 𝐵 (𝑗, V) = 0 for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) (118)

whenever it solves

Ψ
∗

g (𝑗, V) Ψg (𝑗, V) 𝐵 (𝑗, V) Ψ
∗

g (𝑗, V) = 0

for 𝑗 ∈ N
𝑀
, a.e. V ∈ [0, 1) .

(119)

The necessity can be proved similarly to the case of type I.
Now we suppose (ii) does not hold. Then there exist some
𝑗
0
∈ N

𝑀
and e

𝑘
, e
𝑟
such that

P (𝑗
0
, V) e

𝑘
̸= 0, Ψg (𝑗0, V) e𝑟 ̸= 0 (120)

on some 𝐸 ⊂ [0, 1) with |𝐸| > 0, where P(𝑗
0
, V) is

the orthogonal projection of C𝑝 onto ker(Ψg(𝑗0, V)). Define
𝐵(𝑗
0
, V) by

𝐵
∗
(𝑗
0
, V) = {

P (𝑗
0
, V) e

𝑘
e∗
𝑟
, if 𝑗 = 𝑗

0
, V ∈ 𝐸,

0, otherwise
(121)

for (𝑗, V) ∈ N
𝑀
×[0, 1).Then (119) holds, but (118) fails to hold.

The proof is completed.

It is well known that every scalar 𝑘 × 𝑛 matrix 𝑀 with
rank 𝑟 ≥ 1 has a decomposition

𝑀 = 𝑈(
𝐷 0

0 0
)𝑉

∗
, (122)

where 𝑈 and 𝑉 are, respectively, 𝑘 × 𝑘 and 𝑛 × 𝑛 unitary
matrices, (𝐷 0

0 0
) is a 𝑘 × 𝑛 block matrix in which 𝐷 is an

𝑟 × 𝑟 diagonal matrix with positive entries in the diagonal
(see [1, Theorem 1.5.4]). Observe that rank(𝑀) may change

in variables if𝑀 is a matrix-valued function. Next we restrict
ourselves to Gabor systems 𝐺(g,N,M) such that

Ψg (𝑗, V) = 𝑈 (𝑗, V) (
𝐷 (𝑗, V) 0

0 0
)𝑉

∗
(𝑗, V)

for 𝑗 ∈ N
𝑀/𝑞

, a.e. V ∈ [0, 1) ,

(123)

where𝑈(𝑗, V) and 𝑉(𝑗, V) are, respectively, 𝐿𝑞 × 𝐿𝑞 and 𝑝 × 𝑝

unitarymatrices for 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1), and ( D(𝑗,V) 0
0 0

)

is an 𝐿𝑞 × 𝑝 block matrix in which𝐷(𝑗, V) is of the form

𝐷(𝑗, V) = diag (𝜆
1
(𝑗, V) , 𝜆

2
(𝑗, V) , . . . , 𝜆

𝑚
(𝑗, V)) (124)

with 𝜆
𝑖
(𝑗, V) ≥ 0 for 𝑗 ∈ N

𝑀/𝑞
and a.e. V ∈ [0, 1) and

⋃
𝑗∈N𝑀/𝑞

{V ∈ [0, 1) : 𝜆
𝑖
(𝑗, V) > 0} being of positive measure

for each 1 ≤ 𝑖 ≤ 𝑚.
As an immediate consequence ofTheorems 19, 24, and 35,

we have the following theorem.

Theorem 36. Let 0 ̸= g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝐿
) be defined as in

(123). Then

(i) 𝐺(g,N,M) is a frame for M(g,N,M) with frame
bounds 𝐴, 𝐵 if and only if

√
𝐴

𝑀
≤ 𝜆

𝑖
(𝑗, V)

≤ √
𝐵

𝑀
𝑜𝑛 {(𝑗, V) ∈ N

𝑀/𝑞
× [0, 1) : 𝜆𝑖 (𝑗, V) > 0}

(125)

for 1 ≤ 𝑖 ≤ 𝑚;
(ii) 𝐺(g,N,M) is a Riesz basis (an orthonormal basis) for

M(g,N,M) with Riesz bounds 𝐴, 𝐵 if and only if

𝑚 = 𝐿𝑞, √
𝐴

𝑀
≤ 𝜆

𝑖
(𝑗, V) ≤ √

𝐵

𝑀
(𝜆
𝑖
(𝑗, V) = √

1

𝑀
)

(126)

for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ∈ N
𝑀/𝑞

, and a.e. V ∈ [0, 1);
(iii) 𝐺(g,N,M) is a frame for M(g,N,M) with frame

bounds 𝐴 and 𝐵 and simultaneously admits a unique
Gabor dual of type I (type II) if and only if 𝑚 = 𝐿𝑞

(𝑚 = 𝑝), and for each 𝑗 ∈ N
𝑀/𝑞

and a.e. V ∈ [0, 1),
either 𝜆

𝑖
(𝑗, V) = 0 for each 1 ≤ 𝑖 ≤ 𝑚 or √𝐴/𝑀 ≤

𝜆
𝑖
(𝑗, V) ≤ √𝐵/𝑀 for each 1 ≤ 𝑖 ≤ 𝑚.

Theorem 37. Let g be defined as in (123) and let 𝐺(g,N,M)

be a frame forM(g,N,M). Then, for h = (ℎ
𝑙
, ℎ
2
, . . . , ℎ

𝐿
) with

each ℎ
𝑙
∈ 𝑙
2
(Z), we have

(i) 𝐺(h,N,M) is a Gabor dual of type I for 𝐺(g,N,M) if
and only if Ψh has the form

Ψh (𝑗, V) =
1

𝑀
𝑈 (𝑗, V) 𝐶 (𝑗, V) (

D (𝑗, V) 0

0 0
)𝑉

∗
(𝑗, V)

𝑓𝑜𝑟 𝑗 ∈ N
𝑀/𝑞

, 𝑎.𝑒. V ∈ [0, 1) ,

(127)
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where 𝐶 : N
𝑀/𝑞

× [0, 1) → M
𝐿𝑞,𝐿𝑞

satisfies 𝐶(𝑗, V) =
(𝐶
1
(𝑗, V), 0) with 𝐶

1
(𝑗, V) ∈ M

𝐿𝑞,𝑚
, the entries of

the 𝑖th column of 𝐶
1
(𝑗, V) are essentially bounded on

{(𝑗, V) ∈ N
𝑀/𝑞

× [0, 1) : 𝜆
𝑖
(𝑗, V) > 0} for 1 ≤ 𝑖 ≤ 𝑚,

and

(𝐶 (𝑗, V))
𝑖,𝑛

= {
0, 𝑖 ̸= 𝑛, 𝜆

𝑖
(𝑗, V) 𝜆

𝑛
(𝑗, V) ̸= 0,

(𝜆
𝑖
(𝑗, V))

−2
, 𝑖 = 𝑛, 𝜆

𝑖
(𝑗, V) ̸= 0

(128)

for 1 ≤ 𝑖, 𝑛 ≤ 𝑚;
(ii) 𝐺(h,N,M) is a Gabor dual of type II for 𝐺(g,N,M) if

and only if Ψh has the form

Ψh (𝑗, V) =
1

𝑀
𝑈(𝑗, V) (

𝐷 (𝑗, V) 0

0 0
)𝐶 (𝑗, V) 𝑉

∗
(𝑗, V)

𝑓𝑜𝑟 𝑗 ∈ N
𝑀/𝑞

, 𝑎.𝑒. V ∈ [0, 1) ,

(129)

where 𝐶 : N
𝑀/𝑞

× [0, 1) → M
𝑝,𝑝

satisfies 𝐶(𝑗, V) = ( 𝐶1(𝑗,V)
0

)

with 𝐶
1
(𝑗, V) ∈ M

𝑚,𝑝
, the entries of the 𝑖th row of 𝐶

1
(𝑗, V) are

essentially bounded on {(𝑗, V) ∈ N
𝑀/𝑞

× [0, 1) : 𝜆
𝑖
(𝑗, V) > 0}

for 1 ≤ 𝑖 ≤ 𝑚, and

(𝐶 (𝑗, V))
𝑖,𝑛

= {
0, 𝑖 ̸= 𝑛, 𝜆

𝑖
(𝑗, V) 𝜆

𝑛
(𝑗, V) ̸= 0,

(𝜆
𝑖
(𝑗, V))

−2
, 𝑖 = 𝑛, 𝜆

𝑖
(𝑗, V) ̸= 0

(130)

for 1 ≤ 𝑖, 𝑛 ≤ 𝑚.

Proof. Weonly prove item (i), and (ii) can be proved similarly.
By Theorem 30, 𝐺(h,N,M) is a Gabor dual of type I for
𝐺(g,N,M) if and only if there exists a function 𝐴 : N

𝑀/𝑞
×

[0, 1) → M
𝐿𝑞,𝐿𝑞

such that

Ψh (𝑗, V) = 𝐴 (𝑗, V) Ψg (𝑗, V) , (131)

Ψ
∗

g (𝑗, V) = 𝑀Ψ
∗

g (𝑗, V) 𝐴 (𝑗, V) Ψg (𝑗, V) Ψ
∗

g (𝑗, V) (132)

for 𝑗 ∈ N
𝑀/𝑞

and a.e. [0, 1), and for each 𝑗 ∈ N
𝑀/𝑞

the entries
of Ψh(𝑗, V) belong to 𝐿

∞
([0, 1)). Write

𝐶 (𝑗, V) = 𝑀𝑈
∗
(𝑗, V) 𝐴 (𝑗, V) 𝑈 (𝑗, V)

= (𝐶
1
(𝑗, V) , 𝐶

2
(𝑗, V)) ,

(133)

where 𝐶
1
(𝑗, V) ∈ M

𝐿𝑞,𝑚
. A simple computation shows that

(132) is equivalent to

𝐷(𝑗, V) = 𝐷 (𝑗, V) 𝐶
11
(𝑗, V)𝐷

2
(𝑗, V)

for 𝑗 ∈ N
𝑀/𝑞

, a.e. V ∈ [0, 1) ,
(134)

where 𝐶
1
(𝑗, V) = (

𝐶11(𝑗,V)

𝐶21(𝑗,V)
), 𝐶

11
(𝑗, V) ∈ M

𝑚,𝑚
. It is obvious

that (134) is equivalent to (128), which implies that (132) is
equivalent to (128). By (133), (132) can be rewritten as

Ψh (𝑗, V) =
1

𝑀
𝑈(𝑗, V) (𝐶

1
(𝑗, V)𝐷 (𝑗, V) , 0) 𝑉

∗
(𝑗, V) .

(135)

Since 𝐶
2
(𝑗, V) does not appear in (135), we assume that

𝐶
2
(𝑗, V) = 0 without loss of generality. By the unitary

properties of𝑈(𝑗, V) and𝑉(𝑗, V), for each 𝑗 ∈ N
𝑀/𝑞

, the entries
of Ψh(𝑗, V) belong to 𝐿

∞
([0, 1)) if and only if the entries of

𝐶
1
(𝑗, V)𝐷(𝑗, V) belong to 𝐿

∞
([0, 1)); that is, the entries of the

𝑖th column of 𝐶
1
(𝑗, V) are essentially bounded on {(𝑗, V) ∈

N
𝑀/𝑞

× [0, 1) : 𝜆
𝑖
(𝑗, V) > 0} for 1 ≤ 𝑖 ≤ 𝑚. The proof is

completed.

Next we discuss a special case of Theorem 36. Let N = 1,
M = 2, 1⃗ = (1, 1), and 2⃗ = (2, 2) andwrite𝑉

1
(0, V) = 𝑉̃(0, V) =

1 and

𝑈
1 (0, V) =

1

√1 + cos22𝜋V
(

−1 cos 2𝜋V
cos 2𝜋V 1

) ,

𝐷
1 (0, V) = (

√1 + cos22𝜋V
0

) ,

𝑈̃ (0, V)

=
1

√3

(
(
(

(

−1 𝑖 −𝑖 cos 2𝜋V −𝑖 sin 2𝜋V
cos 2𝜋V 𝑖 sin 2𝜋V −𝑖 𝑖

−1 −𝑖 −𝑖 sin 2𝜋V 𝑖 cos 2𝜋V

−𝑖 sin 2𝜋V − cos 2𝜋V −1 −1

)
)
)

)

𝐷(0, V) = (

√3

0

0

0

)

(136)

for V ∈ [0, 1). Define g and g̃ = (𝑔
1
, 𝑔
2
) as

Ψg (0, V) = 𝑈
1 (0, V) 𝐷1 (0, V) 𝑉

∗

1
(0, V) ,

Ψg̃ (0, V) = 𝑈̃ (0, V) 𝐷 (0, V) 𝑉̃
∗
(0, V)

(137)

by letting 𝑈 = 𝑈
1
, 𝐷 = 𝐷

1
, and 𝑉 = 𝑉

1
and 𝑈 = 𝑈̃, 𝐷 = 𝐷,

and 𝑉 = 𝑉̃ in (123), respectively. Then

Ψg (0, V) = (
−1

cos 2𝜋V) ,

Ψg̃ (0, V) = (

−1

cos 2𝜋V
−1

−𝑖 sin 2𝜋V
) for V ∈ [0, 1) .

(138)

This implies that g = 𝑔
1
= −𝜒

{0}
+ (1/2)𝜒

{−3,1}
, 𝑔
2
= −𝜒

{0}
−

(1/2)𝜒
{1}

+ (1/2)𝜒
{−3}

and that

M (g, 1, 2) = M (g̃, 1⃗, 2⃗) = 𝑙
2
(Z) (139)

by [5, Theorem 3.1]. So 𝐺(g, 1, 2) and 𝐺(g̃, 1⃗, 2⃗) are both
frames for 𝑙2(Z), but neither is a Riesz basis by Theorem 36.
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Define h ∈ 𝑙
2
(Z) and h̃ = (ℎ̃

1
, ℎ̃
2
) with ℎ̃

1
, ℎ̃
2

∈ 𝑙
2
(Z)

by Ψh(0, V) = (1/2)Ψg(0, V)(Ψ
∗

g (0, V)Ψg(0, V))
† and Ψh̃(0, V) =

(1/2)Ψg̃(0, V)(Ψ
∗

g̃ (0, V)Ψg̃(0, V))
† for V ∈ [0, 1). Then 𝐺(h, 1, 2)

and 𝐺(h̃, 1⃗, 2⃗) are, respectively, the canonical duals for
𝐺(g, 1, 2) and 𝐺(g̃, 1⃗, 2⃗) by [5, Remark 5.5], and

Ψh (0, V) =
1

2 (1 + cos22𝜋V)
(

−1

cos 2𝜋V) , (140)

Ψh̃ (0, V) =
1

6
(

−1

cos 2𝜋V
−1

−𝑖 sin 2𝜋V
) (141)

for V ∈ [0, 1). It follows that

h̃ = (−
1

6
𝜒
{0}

+
1

12
𝜒
{−3,1}

, −
1

6
𝜒
{0}

−
1

12
𝜒
{1}

+
1

12
𝜒
{−3}

) ,

(142)

and h is infinitely supported. It is interesting that g̃ and
h̃ are both finitely supported, but h is not although g is
the first component of g̃. Therefore, there exist significant
differences in Gabor duals between multi-window Gabor
frames and single-window ones. Now we conclude this
paper by summarizing the above arguments as the following
example.

Example 38. Let 1⃗ = (1, 1) and 2⃗ = (2, 2),

g = 𝑔
1
= −𝜒

{0}
+
1

2
𝜒
{−3,1}

,

𝑔
2
= −𝜒

{0}
−
1

2
𝜒
{1}

+
1

2
𝜒
{−3}

.

(143)

h and h̃, as in (140) and (142) and write g̃ = (𝑔
1
, 𝑔
2
). Then

(i) 𝐺(g, 1, 2) and 𝐺(g̃, 1⃗, 2⃗) are both frames for 𝑙2(Z), but
neither is a Riesz basis for 𝑙2(Z);

(ii) 𝐺(h, 1, 2) and 𝐺(h̃, 1⃗, 2⃗) are, respectively, the canoni-
cal duals for 𝐺(g, 1, 2) and 𝐺(g̃, 1⃗, 2⃗);

(iii) h̃ is finitely supported, and h is not.
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Boston, Mass, USA, 2003.

[2] H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algo-
rithms: Theory and applications, Applied and Numerical Har-
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[30] Z. Cvetković and M. Vetterli, “Tight Weyl-Heisenberg frames
in 𝑙
2
(Z),” IEEE Transactions on Signal Processing, vol. 46, no. 5,

pp. 1256–1259, 1998.
[31] B. Hirosaki, “An orthogonally multiplexed QAM system using

discrete Fourier transform,” IEEE Transactions on Communica-
tions Systems, vol. 29, no. 7, pp. 982–989, 1981.

[32] Q.-F. Lian and Y.-Z. Li, “Gabor families in 𝑙2(Z𝑑),”Kyoto Journal
of Mathematics, vol. 52, no. 1, pp. 179–204, 2012.

[33] J. M. Morris and Y. Lu, “Discrete Gabor expansion of discrete-
time signals in 𝑙2(Z) via frame theory,” Signal Processing, vol. 40,
no. 2-3, pp. 155–181, 1994.

[34] J. Wexler and S. Raz, “Discrete Gabor expansions,” Signal
Processing, vol. 21, no. 3, pp. 207–220, 1990.

[35] Y.-Z. Li and Q.-F. Lian, “Gabor systems on discrete periodic
sets,” Science in China A, vol. 52, no. 8, pp. 1639–1660, 2009.

[36] I. Daubechies, “The wavelet transform, time-frequency local-
ization and signal analysis,” IEEE Transactions on Information
Theory, vol. 36, no. 5, pp. 961–1005, 1990.


