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We characterized the boundedness and compactness of weighted differentiation composition operators from BMOA and the Bloch
space to Bloch-type spaces.Moreover, we obtain new characterizations of boundedness and compactness of weighted differentiation
composition operators.

1. Introduction

LetD be the open unit disk in the complex planeC,𝐻(D) the
space of all functions holomorphic onD, 𝑑𝐴(𝑧) = (1/𝜋)𝑑𝑥𝑑𝑦
the normalized area measure on D, and 𝐻

∞ the space of
all bounded holomorphic functions with the norm ‖𝑓‖

∞
=

sup
𝑧∈D|𝑓(𝑧)|.
Let 𝛼 > 0. The 𝛼-Bloch space B𝛼 on D is the space of all

holomorphic functions 𝑓 on D such that

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (1)

The little 𝛼-Bloch spaceB𝛼
0
consists of all 𝑓 ∈ B𝛼 such that

lim
|𝑧|→1

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (2)

Both spacesB𝛼 andB𝛼
0
are Banach spaces with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B𝛼

=
󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 + sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
, (3)

and B𝛼
0
is a closed subspace of B𝛼. If 𝛼 = 1, they

become the classical Bloch space B and little Bloch space
B
0
, respectively. For any 𝛼 > 0, the space A𝛼

∞
consists of

functions 𝑓 ∈ 𝐻(D) such that
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 < ∞. (4)

For information of such spaces, see, for example, [1–4].

For 𝑎 ∈ D, let 𝜎
𝑎
(𝑧) = (𝑎 − 𝑧)/(1 − 𝑎𝑧) be the auto-

morphism ofD that interchanges 0 and 𝑎. Let theGreen func-
tion in D with logarithmic singularity at 𝑎 be given by

𝑔 (𝑧, 𝑎) = log
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎𝑧

𝑎 − 𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= log 1

󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)
󵄨󵄨󵄨󵄨

. (5)

The space BMOA consists of all𝑓 in the Hardy space𝐻2 such
that

sup
𝑎∈D

󵄩󵄩󵄩󵄩𝑓 ∘ 𝜎𝑎 − 𝑓(𝑎)
󵄩󵄩󵄩󵄩𝐻2

< ∞. (6)

BMOA is a Banach space under following norm (see, e.g., [5]):
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMOA =

󵄨󵄨󵄨󵄨𝑓 (0)
󵄨󵄨󵄨󵄨 + sup
𝑎∈D

󵄩󵄩󵄩󵄩𝑓 ∘ 𝜎𝑎 − 𝑓 (𝑎)
󵄩󵄩󵄩󵄩𝐻2

. (7)

Let 𝜑 and 𝜓 be holomorphic maps on the open unit disk
D such that 𝜑(D) ⊂ D. For a nonnegative integer 𝑛, we define
a linear operator𝐷𝑛

𝜑,𝜓
as follows:

𝐷
𝑛

𝜑,𝜓
𝑓 = 𝜓 ⋅ (𝑓

(𝑛)

∘ 𝜑) , 𝑓 ∈ 𝐻 (D) . (8)

We call it weighted differentiation composition operators,
whichwas defined in [6, 7]. If 𝑛 = 0 and𝜓 ≡ 1, 𝐷

𝑛

𝜑,𝜓
becomes

𝐶
𝜑
induced by 𝜑, defined as 𝐶

𝜑
𝑓 = 𝑓 ∘ 𝜑, 𝑓 ∈ 𝐻(D). If 𝜓 =

1 and 𝜑(𝑧) = 𝑧, then 𝐷
𝑛

𝜑,𝜓
is the differentiation operator

defined as 𝐷𝑛𝑓 = 𝑓
(𝑛). If 𝑛 = 0, then we get the weighted
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composition operator 𝜓𝐶
𝜑
defined as 𝜓𝐶

𝜑
𝑓 = 𝜓 ⋅ (𝑓 ∘ 𝜑). If

𝑛 = 1 and𝜓(𝑧) = 𝜑󸀠(𝑧), then𝐷𝑛
𝜑,𝜓

reduces to𝐷𝐶
𝜑
.When𝜓 ≡

1, then 𝐷𝑛
𝜑,𝜓

reduces to differentiation composition operator
𝐶
𝜑
𝐷
𝑛 (also named as product of differentiation and compo-

sition operator). If we put 𝜑(𝑧) = 𝑧, then 𝐷𝑛
𝜑,𝜓

= 𝑀
𝜓
𝐷
𝑛, the

product of multiplication and differentiation operator.
The boundedness and compactness of differentiation

composition operator between spaces of holomorphic func-
tions have been studied extensively. For example, Hibschwei-
ler; Portnoy and Ohno studied differentiation composition
operator 𝐶

𝜑
𝐷 on Hardy and Bergman spaces in [8, 9]; Li;

Stević andOhno studied𝐶
𝜑
𝐷 onBloch type spaces in [10–12];

Wu andWulan gave a new compactness criterion of𝐶
𝜑
𝐷
𝑚 on

the Bloch space in [13]. Recently, the weighted differentiation
composition operator between different function spaces has
also been investigated by several authors (see, for example,
[14–21]).

Boundedness, compactness, and essential norm of
weighted composition operator 𝜓𝐶

𝜑
between Bloch-type

spaces have been studied in [22–24]. Recently, Manhas and
Zhao [25] and Hyvärinen and Lindström [26] gave a new
characterization of boundedness and compactness of 𝜓𝐶

𝜑
in

terms of the norm of 𝜑𝑛 (for the compactness of composition
operator, see [27, 28]).

Motivated by [13, 25, 26], we study the operator𝐷𝑛
𝜑,𝜓

(𝑛 ≥

1) from BMOA and Bloch space to Bloch-type spaces.
Throughout this paper, constants are denoted by 𝐶; they

are positive and not necessarily the same at each occurrence.
The notation 𝐴 ≲ 𝐵means that there is a positive constant 𝐶
such that 𝐴 ≤ 𝐶𝐵. When 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴, we write 𝐴 ≈ 𝐵.

2. Some Lemmas

It is well known that𝐻∞ ⊂ BMOA ⊂ B. From the definition
of the norm, we know

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMOA ≲

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

, 𝑓 ∈ 𝐻
∞

. (9)

Indeed, Girela proved that
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMOA

1

(10)

in Corollary 5.2 of [5]. The following lemma is from Lemma
5 in [29] (see also Lemma 4.12 of [4]).

Lemma 1. If 𝑓 ∈ 𝐻(D), then

|𝑓(0)|
2

≤ 2∫
D

󵄨󵄨󵄨󵄨𝑓(𝑧)
󵄨󵄨󵄨󵄨

2 log 1

|𝑧|
𝑑𝐴 (𝑧) . (11)

The following lemma may be known, but we fail to find
its reference; so we give a proof for the completeness of the
paper.

Lemma 2. Let 𝑓 ∈ 𝐻(D). Then,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMOA. (12)

Proof. Applying Littlewood-Paley identity

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻
2 = |𝑓(0)|

2

+ 2∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

log 1

|𝑧|
𝑑𝐴 (𝑧) (13)

and Lemma 1, we have

sup
𝑎∈D

󵄩󵄩󵄩󵄩𝑓 ∘ 𝜎𝑎 − 𝑓 (𝑎)
󵄩󵄩󵄩󵄩𝐻2

= sup
𝑎∈D

(2∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝜎
𝑎
(𝑧)) 𝜎

󸀠

𝑎
(𝑧)

󵄨󵄨󵄨󵄨󵄨

2

log 1

|𝑧|
𝑑𝐴 (𝑧))

1/2

≥ sup
𝑎∈D

(1 − |𝑎|
2

)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑎)
󵄨󵄨󵄨󵄨󵄨
.

(14)

It follows from the definitions of Bloch space and BMOA
space that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMOA. (15)

ByTheorem 6.2 of [5] and the proof ofTheorem 1 of [30],
we have the following lemma.

Lemma 3. Let 𝑛 be a fixed positive integer and 𝑓 ∈ B with
𝑓(0) = 𝑓

󸀠

(0) = ⋅ ⋅ ⋅ = 𝑓
(𝑛−1)

(0) = 0. If

sup
𝑎∈D

∫
D

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

(1 − |𝑧|
2

)
2𝑛−2

(1 −
󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)

󵄨󵄨󵄨󵄨

2

) 𝑑𝐴 (𝑧) ≲ 1,

(16)

then ‖ 𝑓‖BMOA ≲ 1.

Lemma 4. Suppose that 𝑛 is a fixed positive integer. Let 𝑘 ∈

N+, 0 ≤ 𝑥 ≤ 1, and

𝐻
𝑛

𝑘
(𝑥) = {

𝑘 (𝑘 − 1) ⋅ ⋅ ⋅ (𝑘 − 𝑛 + 1) (1 − 𝑥)
𝑛

𝑥
𝑘−𝑛 if 𝑘 > 𝑛

𝑛!(1 − 𝑥)
𝑛 if 𝑘 = 𝑛.

(17)

If 𝑘 ≥ 𝑛, then there are two positive constants 𝑐
𝑛
and 𝐶

𝑛
,

depending only on 𝑛, such that

𝑐
𝑛
≤ 𝐻
𝑛

𝑘
(𝑥) ≤ 𝐶

𝑛
, for 𝑘 − 𝑛

𝑘
≤ 𝑥 ≤

𝑘 − 𝑛 + 1

𝑘 + 1
. (18)

Proof. The proof is similar to that of Lemma 2.2 of [13] and is
so omitted.

3. Boundedness of 𝐷𝑛
𝜑,𝜓

In this section, we characterize the boundedness of𝐷𝑛
𝜑,𝜓

from
BMOA and the Bloch space to Bloch-type spaces.

Theorem 5. Let 𝛼 > 0, 𝜓 ∈ 𝐻(D), 𝑛 ∈ N+, and 𝜑 a hol-
omorphic self-map of D. Then, the following statements are
equivalent:

(a) 𝐷𝑛
𝜑,𝜓

: BMOA → B𝛼 is bounded.

(b) 𝐷𝑛
𝜑,𝜓
󸀠 : BMOA → A𝛼

∞
and 𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 : BMOA → A𝛼

∞

are bounded.
(c) 𝐷𝑛
𝜑,𝜓

: B
0
→ B𝛼 is bounded.
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(d) 𝐷𝑛
𝜑,𝜓
󸀠 : B0 → A𝛼

∞
and 𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 : B0 → A𝛼

∞
are

bounded.

(e) 𝐷𝑛
𝜑,𝜓

: B → B𝛼 is bounded.

(f) 𝐷𝑛
𝜑,𝜓
󸀠 : B → A𝛼

∞
and 𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 : B → A𝛼

∞
are

bounded.

(g) sup
𝑧∈D((1 − |𝑧|

2

)
𝛼

/(1 − |𝜑(𝑧)|
2

)
𝑛

)|𝜓
󸀠

(𝑧)| < ∞ and
sup
𝑧∈D((1 − |𝑧|

2

)
𝛼

/(1 − |𝜑(𝑧)|
2

)
𝑛+1

)|𝜓(𝑧)𝜑
󸀠

(𝑧)| < ∞.

(h) sup
𝑘∈N‖𝐷

𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)‖
A𝛼
∞

< ∞

and sup
𝑘∈N‖𝐷

𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)‖
A𝛼
∞

< ∞.

Proof. It is obvious that (f) ⇒ (b), (f) ⇒ (d), (e) ⇒ (c), and
(e) ⇒ (a). Thus, we will prove the theorem according to the
following steps. (I): (a) ⇒ (g), (c) ⇒ (g). (II): (b) ⇒ (g),
(d) ⇒ (g). (III): (g) ⇒ (e), (g) ⇒ (f). (IV): (f) ⇔ (h).

(I): (a) ⇒ (g), (c) ⇒ (g). Suppose that (a) or (c) holds.
We choose the test function 𝑔

1
(𝑧) = 𝑧

𝑛. By Lemma 2, we get

󵄩󵄩󵄩󵄩𝑔1
󵄩󵄩󵄩󵄩B

≤
󵄩󵄩󵄩󵄩𝑔1

󵄩󵄩󵄩󵄩BMOA ≲
󵄩󵄩󵄩󵄩𝑔1

󵄩󵄩󵄩󵄩∞
= 1. (19)

So

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑔
1

󵄩󵄩󵄩󵄩󵄩B𝛼
< ∞. (20)

Taking 𝑔
2
(𝑧) = 𝑧

𝑛+1 and using the fact that |𝜑(𝑧)| < 1, we
have

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑔
2

󵄩󵄩󵄩󵄩󵄩B𝛼
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑔
1

󵄩󵄩󵄩󵄩󵄩B𝛼
< ∞.

(21)

We now consider the function

𝑓
𝜆
(𝑧) = (𝑛 + 1)

1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

1 − 𝜑(𝜆)𝑧

−

(1 − |𝜑(𝜆)|
2

)
2

(1 − 𝜑(𝜆)𝑧)
2
, 𝜆 ∈ D.

(22)

It is easy to check that 𝑓
𝜆
∈ B
0
∩ BMOA and ‖𝑓

𝜆
‖BMOA ≲

‖𝑓
𝜆
‖
∞
≲ 1. Moreover,

𝑓
(𝑛)

𝜆
(𝑧) = (𝑛 + 1)!(𝜑 (𝜆))

𝑛

× [

[

1 −
󵄨󵄨󵄨󵄨𝜑 (𝜆)

󵄨󵄨󵄨󵄨

2

(1 − 𝜑 (𝜆)𝑧)
𝑛+1

−

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜆)

󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝜑 (𝜆)𝑧)
𝑛+2

]

]

.

(23)

Thus, 𝑓(𝑛)
𝜆
(𝜑(𝜆)) = 0 and

𝑓
(𝑛+1)

𝜆
(𝜑 (𝜆)) =

− (𝑛 + 1)!(𝜑 (𝜆))
𝑛+1

(1 − |𝜑(𝜆)|
2

)
𝑛+1

. (24)

We obtain
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑓
𝜆

󵄩󵄩󵄩󵄩󵄩B𝛼

≳ (1 − |𝜆|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝜆) 𝑓
(𝑛)

𝜆
(𝜑 (𝜆))

+𝜓 (𝜆) 𝜑
󸀠

(𝜆) 𝑓
(𝑛+1)

𝜆
(𝜑 (𝜆))

󵄨󵄨󵄨󵄨󵄨

≳ (𝑛 + 1)!
(1 − |𝜆|

2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨𝜑 (𝜆)
󵄨󵄨󵄨󵄨

𝑛+1 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝜆) 𝜑

󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
.

(25)

Thus, for any 𝑟
0
∈ (0, 1), we have

sup
𝑟
0
<|𝜑(𝜆)|<1

(1 − |𝜆|
2

)
𝛼

(1 − |𝜑(𝜆)|
2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝜆) 𝜑

󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
< ∞. (26)

Using (21) yields

sup
|𝜑(𝜆)|≤𝑟

0

(1 − |𝜆|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝜆) 𝜑

󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨

≲
1

(1 − 𝑟
2

0
)
𝑛+1

sup
𝜆∈D

(1 − |𝜆|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝜆) 𝜑

󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨

< ∞.

(27)

Combining (26) with (27), we get

sup
𝜆∈D

(1 − |𝜆|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝜆) 𝜑

󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
< ∞. (28)

We next consider the function

𝑔
𝜆
(𝑧) = (𝑛 + 2)

1 − |𝜑(𝜆)|
2

1 − 𝜑(𝜆)𝑧

−

(1 − |𝜑(𝜆)|
2

)
2

(1 − 𝜑(𝜆)𝑧)
2
, 𝜆 ∈ D.

(29)

Similarly, we get 𝑔
𝜆
∈ B
0
∩ BMOA and

󵄩󵄩󵄩󵄩𝑔𝜆
󵄩󵄩󵄩󵄩BMOA ≲

󵄩󵄩󵄩󵄩𝑔𝜆
󵄩󵄩󵄩󵄩∞

≲ 1. (30)

Moreover,

𝑔
(𝑛)

𝜆
(𝑧) = 𝑛!(𝜑(𝜆))

𝑛

[

[

(𝑛 + 2)
1 −

󵄨󵄨󵄨󵄨𝜑 (𝜆)
󵄨󵄨󵄨󵄨

2

(1 − 𝜑 (𝜆)𝑧)
𝑛+1

− (𝑛 + 1)

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝜑(𝜆)𝑧)
𝑛+2

]

]

.

(31)

So

𝑔
(𝑛)

𝜆
(𝜑 (𝜆)) =

𝑛!(𝜑 (𝜆))
𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛

(32)
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and 𝑔(𝑛+1)
𝜆

(𝜑(𝜆)) = 0. We have, as above,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑔
𝜆

󵄩󵄩󵄩󵄩󵄩B𝛼

≳ 𝑛!

(1 − |𝜆|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨𝜑 (𝜆)
󵄨󵄨󵄨󵄨

𝑛 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
.

(33)

Thus, for any 𝑠
0
∈ (0, 1),

sup
𝑠
0
<|𝜑(𝜆)|<1

(1 − |𝜆|
2

)
𝛼

(1 − |𝜑(𝜆)|
2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
< ∞. (34)

Applying (20), we get

sup
|𝜑(𝜆)|≤𝑠

0

(1 − |𝜆|
2

)
𝛼

(1 − |𝜑(𝜆)|
2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
< ∞. (35)

Combining (34) with (35) yields

sup
𝜆∈D

(1 − |𝜆|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜆)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝜆)
󵄨󵄨󵄨󵄨󵄨
< ∞. (36)

(II): (b) ⇒ (g) and (d) ⇒ (g). Suppose that 𝐷𝑛
𝜑,𝜓
󸀠 :

BMOA → A𝛼
∞

is bounded or 𝐷𝑛
𝜑,𝜓
󸀠 : B

0
→ A𝛼

∞
is

bounded. Set

𝜆 = sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
. (37)

If 𝜆 = ∞, then for any positive integer𝑁, we can find 𝑏 ∈ D

such that

(1 − |𝑏|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑏)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑏)
󵄨󵄨󵄨󵄨󵄨
> 𝑁. (38)

If 𝜑(𝑏) = 0, then choose the test function 𝑔(𝑧) = 𝑧𝑛. It is clear
that 𝑔 ∈ B

0
. From Lemma 2, we have

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩B

≤
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩BMOA ≲

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩∞

= 1. (39)

So
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑔
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

> (1 − |𝑏|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑏)
󵄨󵄨󵄨󵄨󵄨
> 𝑁. (40)

If 𝜑(𝑏) ̸= 0, consider the function

𝑔 (𝑧) =
1

𝑎
𝑛

(1 − |𝑎|
2

)
𝑛

(1 − 𝑎𝑧)
𝑛
≜

∞

∑

𝑗=0

𝑐
𝑗
𝑧
𝑗

, (41)

where 𝑎 = 𝜑(𝑏). Let 𝐹(𝑧) = ∑
∞

𝑗=𝑛
𝑐
𝑗
𝑧
𝑗. Then, 𝐹(0) = 𝐹

󸀠

(0) =

⋅ ⋅ ⋅ = 𝐹
(𝑛−1)

(0) = 0 and

𝐹
(𝑛)

(𝑧) = (
1 − |𝑎|

2

(1 − 𝑎𝑧)
2
)

𝑛

. (42)

It is easy to see that

(1 − |𝑧|
2

)
𝑛 󵄨󵄨󵄨󵄨󵄨
𝐹
(𝑛)

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= (1 −

󵄨󵄨󵄨󵄨𝜎𝑎(𝑧)
󵄨󵄨󵄨󵄨

2

)
𝑛

≤ 1. (43)

So, by Theorems 5.4 and 5.13 of [4], we have 𝐹 ∈ B
0

and ‖𝐹‖B ≲ 1. By Lemma 1 of [31] and Lemma 3, we get
‖𝐹‖BMOA ≲ 1. We have

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝐹
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

>

(1 − |𝑏|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑏)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑏)
󵄨󵄨󵄨󵄨󵄨
> 𝑁.

(44)

Since𝑁 is arbitrary, we get ‖ 𝐷𝑛
𝜑,𝜓
󸀠 ‖= ∞.This contradicts the

boundedness of 𝐷𝑛
𝜑,𝜓
󸀠 : BMOA → A𝛼

∞
and that of 𝐷𝑛

𝜑,𝜓
󸀠 :

B
0
→ A𝛼

∞
.

Now, suppose that 𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 : BMOA → A𝛼

∞
is bounded

or𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 : B0 → A𝛼

∞
is bounded. Set

𝜂 = sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
. (45)

If 𝜂 = ∞, then for any positive integer𝑀, exists 𝑢 ∈ D such
that

(1 − |𝑢|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑢)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑢) 𝜑

󸀠

(𝑢)
󵄨󵄨󵄨󵄨󵄨
> 𝑀. (46)

If 𝜑(𝑢) = 0, then set 𝑔(𝑧) = 𝑧𝑛+1. The process as above gives
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝑔
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

> 𝑀. (47)

If 𝜑(𝑢) ̸= 0, consider the function

𝑔 (𝑧) =
1

𝑎
𝑛+1

(1 − |𝑎|
2

)
𝑛+1

(1 − 𝑎𝑧)
𝑛+1

≜

∞

∑

𝑗=0

𝑐
𝑗
𝑧
𝑗

, (48)

where 𝑎 = 𝜑(𝑢). Let 𝐹(𝑧) = ∑∞
𝑗=𝑛+1

𝑐
𝑗
𝑧
𝑗. Then, 𝐹(0) = 𝐹󸀠(0) =

⋅ ⋅ ⋅ = 𝐹
(𝑛)

(0) = 0 and

𝐹
(𝑛+1)

(𝑧) = (
1 − |𝑎|

2

(1 − 𝑎𝑧)
2
)

𝑛+1

,

(1 − |𝑧|
2

)
𝑛+1 󵄨󵄨󵄨󵄨󵄨

𝐹
(𝑛+1)

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= (1 −

󵄨󵄨󵄨󵄨𝜎𝑎 (𝑧)
󵄨󵄨󵄨󵄨

2

)
𝑛+1

≤ 1.

(49)

Applying Theorems 5.4 and 5.13 of [4] again yields 𝐹 ∈ B
0

and ‖𝐹‖B ≲ 1. We get ‖𝐹‖BMOA ≲ 1 and
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠

󵄩󵄩󵄩󵄩󵄩
≳
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝐹
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

>

(1 − |𝑢|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑢)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑢) 𝜑

󸀠

(𝑢)
󵄨󵄨󵄨󵄨󵄨
> 𝑀.

(50)

Since𝑀 is arbitrary, we have ‖ 𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 ‖= ∞. This contradicts

the boundedness of𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 .
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(III): (g) ⇒ (e), (g) ⇒ (f). Note that

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑓
󵄩󵄩󵄩󵄩󵄩B𝛼

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

×
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧) 𝑓
(𝑛+1)

(𝜑 (𝑧))

+𝜓
󸀠

(𝑧) 𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

[

[

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

+sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
]

]

,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝑓
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

×
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧) 𝑓
(𝑛+1)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

[

[

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
]

]

,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑓
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧) 𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

[

[

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
]

]

.

(51)

The desired results follow.
(IV): (f) ⇔ (h). Suppose that (f) is true. It follows from

Proposition 5.1 of [4] that ‖𝑧𝑘‖B ≤ ‖𝑧
𝑘

‖
∞
= 1 (𝑘 ∈ N). So,

sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠

󵄩󵄩󵄩󵄩󵄩
< ∞,

sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠

󵄩󵄩󵄩󵄩󵄩
< ∞.

(52)

Conversely, assume that (h) is true. It is easy to see that

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠 (𝑧
𝑛

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤ sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< ∞,

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠 (𝑧
𝑛+1

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤ sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< ∞.

(53)

If ‖𝜑‖
∞
< 1, then

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

<
1

(1 −
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

)
𝑛
sup
𝑧∈D

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞,

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 − |𝜑(𝑧)|2)
𝑛+1

<
1

(1 −
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩∞

)
𝑛+1

sup
𝑧∈D

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞.

(54)

Hence, (g) is true. From (g) ⇒ (f), we obtain that (f) is also
true.

From now on, we assume that ‖𝜑‖
∞
= 1. For any integer

𝑘 ≥ 𝑛, let

Δ
𝑛

𝑘
= {𝑧 ∈ D :

𝑘 − 𝑛

𝑘
≤
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨 ≤
𝑘 − 𝑛 + 1

𝑘 + 1
} . (55)

Let 𝑚 with 𝑚 ≥ 𝑛 be the smallest positive integer such that
Δ
𝑛

𝑚
̸= ⌀. Since Δ𝑛

𝑘
is not empty for every integer 𝑘 ≥ 𝑚 and

D = ∪
∞

𝑘=𝑚
Δ
𝑛

𝑘
. By Lemma 4, for 𝑓 ∈ B,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑓
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

= sup
𝑘≥𝑚

sup
𝑧∈Δ
𝑛

𝑘

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝜑 (𝑧)) 𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

= sup
𝑘≥𝑚

sup
𝑧∈Δ
𝑛

𝑘

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
𝑛 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

×

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
(𝐻
𝑛

𝑘
(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨) /(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
𝑛

)

𝐻
𝑛

𝑘
(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)

≲
1

𝑐
𝑛

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

.

(56)

So,𝐷𝑛
𝜑,𝜓
󸀠 : B → A𝛼

∞
is bounded. Similar argument implies

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝑓
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑘≥𝑚+1

sup
𝑧∈Δ
𝑛+1

𝑘

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

≲
1

𝑐
𝑛+1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩B

sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

.

(57)

Thus, 𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 : B → A𝛼

∞
is bounded. Theorem 5 is proved.
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4. Compactness of 𝐷𝑛
𝜑,𝜓

The following criterion for the compactness is a useful
tool and it follows from standard arguments, for example,
Proposition 3.11 of [32] or Lemma 2.10 of [33].

Lemma 6. Let 𝛼 > 0, 𝑛 ∈ N+, and 𝑋 = B
0
,B, or BMOA.

Suppose that 𝜓 and 𝜑 are in𝐻(D) such that 𝜑(D) ⊂ D. Then,
𝐷
𝑛

𝜑,𝜓
: 𝑋 → B𝛼 is compact if and only if for any sequence {𝑓

𝑚
}

in 𝑋 with sup
𝑚
‖𝑓
𝑚
‖
𝑋
< ∞, which converges to zero locally

uniformly on D; we have lim
𝑚→∞

‖ 𝐷
𝑛

𝜑,𝜓
𝑓
𝑚
‖B𝛼 = 0.

We now give the compactness of 𝐷𝑛
𝜑,𝜓

from BMOA and
the Bloch space to Bloch-type spaces.

Theorem 7. Let 𝛼 > 0, 𝜓 ∈ 𝐻(D), 𝑛 ∈ N+, and 𝜑 a hol-
omorphic self-map of D. Then, the following statements are
equivalent:

(a) 𝐷𝑛
𝜑,𝜓

: BMOA → B𝛼 is compact.

(b) 𝐷𝑛
𝜑,𝜓
󸀠 : BMOA → A𝛼

∞
is compact and 𝐷

𝑛+1

𝜑,𝜓𝜑
󸀠 :

BMOA → A𝛼
∞

is compact.

(c) 𝐷𝑛
𝜑,𝜓

: B
0
→ B𝛼 is compact.

(d) 𝐷𝑛
𝜑,𝜓
󸀠 : B0 → A𝛼

∞
is compact and 𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 : B0 →

A𝛼
∞

is compact.

(e) 𝐷𝑛
𝜑,𝜓

: B → B𝛼 is compact.

(f) 𝐷𝑛
𝜑,𝜓
󸀠 : B → A𝛼

∞
is compact and𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 : B → A𝛼

∞

is compact.

(g) 𝜓 ∈ B𝛼, 𝜓𝜑󸀠 ∈ A𝛼
∞
,

lim
|𝜑(𝑧)|→1

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0,

lim
|𝜑(𝑧)|→1

(1 − |𝑧|
2

)
𝛼

(1 − |𝜑(𝑧)|
2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0.

(58)

(h) lim sup
𝑘→∞

‖𝐷
𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)‖
A𝛼
∞

= 0

and lim sup
𝑘→∞

‖𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)‖
A𝛼
∞

= 0.

Proof. The proof is a modification of that of Theorem 5; so
we give a sketch of the proof. We will prove the theorem
according to the following steps. (I): (a) ⇒ (g), (c) ⇒ (g).
(II): (b) ⇒ (g), (d) ⇒ (g). (III): (g) ⇒ (e), (g) ⇒ (f). (IV):
(f) ⇔ (h).

(I): (a) ⇒ (g), (c) ⇒ (g). Suppose that (a) or (c) holds.
Then byTheorem 5, we have

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤ sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

< ∞,

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

< ∞.

(59)

That is, 𝜓 ∈ B𝛼, 𝜓𝜑󸀠 ∈ A𝛼
∞
.

Let {𝑧
𝑗
} be a sequence inD such that |𝜑(𝑧

𝑗
)| → 1 as 𝑗 →

∞. Now, we consider the function

𝑓
𝑗
(𝑧) = (𝑛 + 1)

1 − |𝜑(𝑧
𝑗
)|
2

1 − 𝜑(𝑧
𝑗
)𝑧

−

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

2

(1 − 𝜑(𝑧
𝑗
)𝑧)
2
. (60)

Simple computation shows that 𝑓
𝑗
∈ B
0
∩ BMOA and

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩BMOA
≲
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩∞
≲ 1. (61)

It is also easy to check that 𝑓
𝑗
→ 0 uniformly on compact

subsets of D as 𝑗 → ∞. Moreover,

𝑓
(𝑛)

𝑗
(𝑧) = (𝑛 + 1)!(𝜑 (𝑧

𝑗
))

𝑛

×

[
[
[

[

1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(1 − 𝜑 (𝑧
𝑗
)𝑧)

𝑛+1
−

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

2

(1 − 𝜑 (𝑧
𝑗
)𝑧)

𝑛+2

]
]
]

]

.

(62)

We have
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩B𝛼

≳ (𝑛 + 1)!

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝑛+1 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧
𝑗
) 𝜑
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
.

(63)

By Lemma 6, we get

lim
|𝜑(𝑧
𝑗
)|→1

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧
𝑗
) 𝜑
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
= 0. (64)

We next consider the function

𝑔
𝑗
(𝑧) = (𝑛 + 2)

1 − |𝜑(𝑧
𝑗
)|
2

1 − 𝜑(𝑧
𝑗
)𝑧

−

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

2

(1 − 𝜑(𝑧
𝑗
)𝑧)
2
. (65)

Similarly, we get 𝑔
𝑗
∈ B
0
∩ BMOA and

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩BMOA ≲
󵄩󵄩󵄩󵄩󵄩
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩∞
≲ 1. (66)
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It is easy to see that 𝑔
𝑗
converges to zero uniformly on

compact subsets of D as 𝑗 → ∞ and

𝑔
(𝑛)

𝑗
(𝑧) = 𝑛!(𝜑 (𝑧

𝑗
))

𝑛

×

[
[
[

[

(𝑛 + 2)

1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(1 − 𝜑 (𝑧
𝑗
)𝑧)

𝑛+1

− (𝑛 + 1)

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

2

(1 − 𝜑 (𝑧
𝑗
)𝑧)

𝑛+2

]
]
]

]

.

(67)

Thus,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩B𝛼
≳ 𝑛!

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝑛 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
. (68)

Applying Lemma 6 again, we have

lim
|𝜑(𝑧𝑗)|→ 1

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
= 0. (69)

Since 𝑧
𝑗
∈ D is arbitrary, we proved that (g) is true.

(II) (b) ⇒ (g), (d) ⇒ (g). Suppose that (b) or (d) holds. A
similar argument to (I) shows that 𝜓 ∈ B𝛼, 𝜓𝜑󸀠 ∈ A𝛼

∞
. Now,

suppose that the equations in (g) are not true. Then, there
exists a sequence {𝑧

𝑗
} in D and 𝛿 > 0 such that |𝜑(𝑧

𝑗
)| → 1

as 𝑗 → ∞ and

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
> 𝛿,

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧
𝑗
) 𝜑
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
> 𝛿.

(70)

Choose a subsequence of {𝑧
𝑗
} if necessary and suppose that

inf
𝑗
|𝜑(𝑧
𝑗
)| > 1/2. Let

𝑓
𝑗
(𝑧) =

1 − |𝜑(𝑧
𝑗
)|
2

1 − 𝜑(𝑧
𝑗
)𝑧

, 𝑧 ∈ D. (71)

Then, it is easy to check that 𝑓
𝑗
∈ B
0
∩ BMOA, 𝑓

𝑗
→ 0,

uniformly on compact subsets of D and

𝑓
(𝑛)

𝑗
(𝑧) = 𝑛!

1 −
󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

(1 − 𝜑 (𝑧
𝑗
)𝑧)

𝑛+1
(𝜑(𝑧
𝑗
))
𝑛

. (72)

Thus,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑓𝑗

󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≥ 𝑛!

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝑛 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
>
𝑛!𝛿

2𝑛
,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≥ (𝑛 + 1)!

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

𝛼

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

𝑛+1

×
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨

𝑛+1 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧
𝑗
) 𝜑
󸀠

(𝑧
𝑗
)
󵄨󵄨󵄨󵄨󵄨
>
(𝑛 + 1)!𝛿

2𝑛+1
.

(73)

Those contradict the compactness of𝐷𝑛
𝜑,𝜓
󸀠 and𝐷𝑛+1

𝜑,𝜓𝜑
󸀠 .

(III) (g) ⇒ (e), (g) ⇒ (f). Let {𝑓
𝑚
} be a norm bounded

sequence inB that converges to zero uniformly on compact
subsets ofD. Let𝑀 = sup

𝑚
‖𝑓
𝑚
‖B < ∞. For 𝜀 > 0, then there

exists 𝑟
0
∈ (0, 1) such that for |𝜑(𝑧)| > 𝑟

0
, we have

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< 𝜀,

(1 − |𝑧|
2

)
𝛼

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< 𝜀.

(74)

Thus, for 𝑧 ∈ D, we have
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩B𝛼
≲
󵄨󵄨󵄨󵄨󵄨
𝜓 (0) 𝑓

(𝑛)

𝑚
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑚
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|>𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩B

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

+ sup
|𝜑(𝑧)|≤𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑚
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|>𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩B

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

≲
󵄨󵄨󵄨󵄨󵄨
𝜓 (0) 𝑓

(𝑛)

𝑚
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨
+ 𝐾
1
sup
|𝑧|≤𝑟
0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑚
(𝑧)

󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
sup
|𝑧|≤𝑟
0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑚
(𝑧)

󵄨󵄨󵄨󵄨󵄨
+ 2𝜀𝑀,

(75)

where 𝐾
1
= sup

𝑧∈D(1 − |𝑧|
2

)
𝛼

|𝜓
󸀠

(𝑧)| and 𝐾
2
= sup

𝑧∈D(1 −

|𝑧|
2

)
𝛼

|𝜓(𝑧)𝜑
󸀠

(𝑧)|. Since 𝑓(𝑛)
𝑚

→ 0 uniformly on compact
subsets of D as 𝑚 → ∞, we have ‖𝐷𝑛

𝜑,𝜓
𝑓
𝑚
‖
B𝛼

→ 0 as
𝑚 → ∞. It follows from Lemma 6 that 𝐷𝑛

𝜑,𝜓
: B → B𝛼

is compact.
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Similar as above, we know

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≲ sup
|𝜑(𝑧)|≤𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑚
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|>𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩B

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

≤ 𝐾
1
sup
|𝑧|≤𝑟
0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑚
(𝑧)

󵄨󵄨󵄨󵄨󵄨
+ 𝜀𝑀,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠𝑓
𝑚

󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≲ sup
|𝜑(𝑧)|≤𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑚
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|>𝑟

0

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩B

(1 −
󵄨󵄨󵄨󵄨𝜑(𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

≤ 𝐾
2
sup
|𝑧|≤𝑟
0

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑚
(𝑧)

󵄨󵄨󵄨󵄨󵄨
+ 𝜀𝑀.

(76)

From 𝑓
(𝑛)

𝑚
→ 0 uniformly on compact subsets of D, we have

‖𝐷
𝑛

𝜑,𝜓
󸀠𝑓𝑚‖A𝛼

∞

→ 0 and ‖𝐷𝑛+1
𝜑,𝜓𝜑
󸀠𝑓𝑚‖A𝛼

∞

→ 0 as𝑚 → ∞. So,

𝐷
𝑛

𝜑,𝜓
󸀠 ,𝐷𝑛+1
𝜑,𝜓𝜑
󸀠 : B → A𝛼

∞
are compact.

(IV): (f) ⇔ (h). Suppose that (f) is true.Note that ‖𝑧𝑘‖B ≤

‖𝑧
𝑘

‖
∞
= 1 and 𝑧𝑘 → 0 uniformly on compact subsets of D

as 𝑘 → ∞; by Lemma 6, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= 0.

(77)

Conversely, assume that (h) is true. It is easy to see that

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠 (𝑧
𝑛

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤ sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< ∞,

sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑧) 𝜑

󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠 (𝑧
𝑛+1

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≤ sup
𝑘∈N

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< ∞.

(78)

If ‖𝜑‖
∞
< 1, from (g) ⇒ (f), we get that (f) is true. If ‖𝜑‖

∞
=

1, as in the proof of Theorem 5, let

Δ
𝑛

𝑘
= {𝑧 ∈ D :

𝑘 − 𝑛

𝑘
≤
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨 ≤
𝑘 − 𝑛 + 1

𝑘 + 1
} . (79)

And let 𝑚 with 𝑚 ≥ 𝑛 be the smallest positive integer such
that Δ𝑛

𝑚
̸= ⌀. For given 𝜀 > 0, there exists a large enough

integer𝑀
1
with𝑀

1
> 𝑚 such that

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< 𝜀,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠(𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

< 𝜀,

(80)

whenever 𝑘 > 𝑀
1
. Let {𝑓

𝑗
} be a norm bounded sequence in

B that converges to zero uniformly on compact subsets of D
as 𝑗 → ∞. Denote𝑀 = sup

𝑚
‖𝑓
𝑚
‖B < ∞. We get

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩A𝛼
∞

= sup
𝑘≥𝑚

sup
𝑧∈Δ
𝑛

𝑘

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

= ( sup
𝑚≤𝑘≤𝑀

1

+ sup
𝑘>𝑀
1

) sup
𝑧∈Δ
𝑛

𝑘

(1 − |𝑧|
2

)
𝛼

×
󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

=: 𝐼
1
+ 𝐼
2
.

(81)

Then,

𝐼
1
= sup
𝑚≤𝑘≤𝑀

1

sup
𝑧∈Δ
𝑛

𝑘

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
sup
|𝜑(𝑧)|≤𝑟

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
,

(82)

where

𝑟 =
𝑀
1
− 𝑛 + 1

𝑀
1
+ 1

, (83)

𝐼
2
= sup
𝑘≥𝑀
1

sup
𝑧∈Δ
𝑛

𝑘

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

= sup
𝑘≥𝑀
1

sup
𝑧∈Δ
𝑛

𝑘

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
𝑛 󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑗
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

×

(1 − |𝑧|
2

)
𝛼 󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
(𝐻
𝑛

𝑘
(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨) /(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)
𝑛

)

𝐻
𝑛

𝑘
(
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨)

≲
1

𝑐
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩B
sup
𝑘>𝑀
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑛

𝜑,𝜓
󸀠 (𝑧
𝑘

)
󵄩󵄩󵄩󵄩󵄩A𝛼
∞

≲
1

𝑐
𝑛

𝜀.

(84)

Since 𝑓(𝑛)
𝑗

→ 0 uniformly on compact subsets of D, then
‖𝐷
𝑛

𝜑,𝜓
󸀠𝑓𝑗‖A𝛼

∞

→ 0 as 𝑗 → ∞. Thus, by Lemma 6, 𝐷𝑛
𝜑,𝜓
󸀠 :

B → A𝛼
∞

is compact. Similar as above, we can prove that
𝐷
𝑛+1

𝜑,𝜓𝜑
󸀠 : B → A𝛼

∞
is compact. The proof is complete.
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