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A combined total variation and high-order total variation model is proposed to restore blurred images corrupted by impulse
noise or mixed Gaussian plus impulse noise. We attack the proposed scheme with an alternating direction method of multipliers
(ADMM).Numerical experiments demonstrate the efficiency of the proposedmethod and the performance of the proposedmethod
is competitive with the existing state-of-the-art methods.

1. Introduction

Image restoration is one of the most fundamental tasks in
image processing and plays an important role in various areas
of applied sciences [1]. In the literature of image restoration,
there exist a lot of good methods dealing with images which
are contaminated by single kind of noise, such as additive
Gaussian noise or impulse noise. However, in many practical
situations, the observed images are usually corrupted by
mixed noise, for example, Gaussian plus impulse noise and
Gaussian plus Poisson noise. In this work, we focus on
Gaussian plus impulse noise.This kind ofmixed noise is com-
monly caused by malfunctioning arrays in camera sensors or
transmission errors [2]. We aim to find the unknown true
image 𝑓 ∈ 𝑅𝑛

2

from the observed image 𝑔 ∈ 𝑅𝑛
2

defined
by

𝑔 = 𝑁imp (𝐻𝑓 + 𝑛) , (1)

where 𝑁imp denote the process of image degradation with
impulse noise, 𝐻 ∈ 𝑅𝑛

2
×𝑛
2

is a blurring matrix which is
assumed to be known, and 𝑛 ∈ 𝑅𝑛

2

is an additive zero-
mean Gaussian white noise of variance 𝜎2. For simplicity
and without loss of generality, we assume that the underlying
images have square domains. Based on the noise values,
impulse noise can be classified as salt-and-pepper noise
and random-valued noise. Suppose that [𝑑min, 𝑑max] is the

dynamic range of 𝑓 and 𝑓
𝑗,𝑘

((𝑗, 𝑘) ∈ Ω = {1, 2, . . . , 𝑛} ×
{1, 2, . . . , 𝑛}) is the gray value of an image 𝑓 at location (𝑗, 𝑘)
[3]. The operator 𝑔 = 𝑁imp(𝑓) is defined as follows.

(i) Salt-and-pepper noise: the gray level of 𝑔 at pixel
location (𝑗, 𝑘) is

𝑔
𝑗,𝑘
=

{{{{{
{{{{{
{

𝑑min, with probability 𝑠

2
,

𝑑max, with probability 𝑠

2
,

𝑓
𝑗,𝑘
, with probability 1 − 𝑠,

(2)

where 𝑠 is the noise ratio which defines the level of the salt-
and-pepper noise.

(ii) Random-valued noise: the gray level of 𝑔 at pixel
location (𝑗, 𝑘) is

𝑔
𝑗,𝑘
= {

𝑑
𝑗,𝑘
, with probability 𝑟,

𝑓
𝑗,𝑘
, with probability 1 − 𝑟,

(3)

where 𝑑
𝑗,𝑘

are uniformly distributed random numbers in
[𝑑min, 𝑑max] and 𝑟 is the noise ratio which defines the level
of the random-valued noise.

It is obvious that it ismore difficult to remove the random-
valued impulse noise than salt-and-pepper noise since the
random-valued impulse noise can be arbitrary number in
[𝑑min, 𝑑max]. As is well known, recovering 𝑓 form 𝑔 is an
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ill-conditioned problem. A general approach to compute
a meaningful approximation is the regularization method.
Recently, variational models have attracted a lot of interest in
cleaning mixed noise [3–9]. The key idea of these methods is
based on a two-approach: detect the location of the impulse
corrupted pixels then proceed with the filtering phase. For
example, Cai et al. [4] proposed a two-phase approach for (1).
In the first phase, they identify the location of the impulse
noise and remove them from the data set through median
filter. In the second phase, they minimize a functional of the
form

∑
(𝑗,𝑘)∈U

󵄨󵄨󵄨󵄨󵄨󵄨
[𝐻𝑓 − 𝑔]

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝛽Φ (𝑥) , 𝑝 = 1, 2, (4)

where U is the set of data samples that are likely to be
uncorrupted with impulse noise and Φ(𝑥) is the Mumford-
Shah regularization term [10]:

Φ (𝑥) = ∫
Ω\Γ

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨
2

+
𝛼

𝛽
∫
Γ

𝑑𝜎, (5)

where Γ is the edge set. Due to nonconvexity of Mumford-
Shah regularizer, there exist numerous local minimums of
(4). It is difficult to handle the Mumford-Shah functional. To
overcome this difficulty, the Γ-convergence functional for Φ
is used in [4].The reconstruction performance is competitive;
however the choice of 𝑝 = 1 or 𝑝 = 2 in (4) is depending on
noise level and the computational performance is poor. In [5],
Cai et al. accelerate the method in [4] and the computational
time is much less than that in [4], although it is still highly
depending on noise level. Recently, Li et al. [9] considered a
functional with a content-dependent fidelity term and then
proposed an iterative framelet-based approximation deblur-
ring algorithm IFASDA. The advantage of IFASDA is that
this algorithm is parameter free, which makes the proposed
method more practical. We note that the total variation (TV)
is not used in [4, 9]; however, the TV regularization is very
popular [11] as its superiority of preserving sharp edges or
object boundaries in the recovered images. The modified
total variation minimization scheme is proposed in [3] to
restore the images and an alternatingminimization algorithm
is employed to solve the proposed problem. In [8], a cost
functional consisting of TV regularization term and 𝑙

2
and

𝑙
1
data fidelity terms is proposed to remove mixed Gaussian

plus impulsive noise. Their numerical experiments showed
that their method was very efficient and the reconstruction
performance was quite competitive. However, as we know the
TV norm transforms the smooth area to piecewise constants,
the so-called staircase effect. In order to overcome this
spurious effect, many high-order PDEs have been proposed
[12–14] to solve this problem. Motivated by this, we propose
a new model combining total variation and high-order total
variation to restore the blurred images corrupted byGaussian
plus impulse noise. Our numerical experiments show the
effectiveness of the proposed approach.

The outline of this paper is as follows. In Section 2, we
briefly introduce the work of Huang et al. in [3] and the
alternating direction method of multipliers (ADMM). In

Section 3, we present the proposed algorithm. To demon-
strate the effectiveness of the proposed method, we will show
some numerical results on several test images in Section 4.
Finally, some conclusion remarks are drawn in Section 5.

2. Brief Review of Related Methods

2.1. Review of Current Methods. In [3], Huang et al. proposed
the following modified total variation minimization scheme
to restore the blurred images corrupted by Gaussian plus
impulse noise:

min
𝑓,𝑢

∑
(𝑗,𝑘)∈U

󵄨󵄨󵄨󵄨󵄨󵄨
(𝐻𝑓 − 𝑔)

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝛼
1

󵄩󵄩󵄩󵄩𝑓 − 𝑢
󵄩󵄩󵄩󵄩
2

2
+ 𝛼
2
‖𝑢‖TV, (6)

where U is the set of data samples that are likely to be
uncorrupted by impulse noise, 𝑝 = 1 (or 2), 𝛼

1
and 𝛼
2
are two

positive regularization parameters, and ‖ ⋅ ‖TV is the discrete
total variation (TV) regularization term. The discrete TV of
𝑓 is defined by ‖𝑓‖TV = ∑1≤𝑗,𝑘≤𝑛√|(∇𝑓)

𝑥

𝑗,𝑘
|2 + |(∇𝑓)

𝑦

𝑗,𝑘
|2. The

discrete gradient operator ∇ : 𝑅𝑛
2

→ 𝑅𝑛
2
×2 is defined by

(∇𝑓)
𝑗,𝑘
= ((∇𝑓)𝑥

𝑗,𝑘
, (∇𝑓)
𝑦

𝑗,𝑘
) with

(∇𝑓)
𝑥

𝑗,𝑘
= {

𝑓
𝑗+1,𝑘

− 𝑓
𝑗,𝑘

if 𝑗 < 𝑛,
0 if 𝑗 = 𝑛,

(∇𝑓)
𝑦

𝑗,𝑘
= {

𝑓
𝑗,𝑘+1

− 𝑓
𝑗,𝑘

if 𝑘 < 𝑛,
0 if 𝑘 = 𝑛,

(7)

for 𝑗, 𝑘 = 1, . . . , 𝑛. Here 𝑓
𝑗,𝑘

refers to the ((𝑘 − 1)𝑛 + 𝑗)th
entry of the vector 𝑓 (it is the (𝑗, 𝑘)th pixel location of the
image). In [3], the median-type filter was used to identify the
location of the possible noisy pixels in the first phase; then
problem (6) was solved by alternating minimization method
with respect to 𝑓 and 𝑢. As reported in [3], they used the 𝐿

1

norm in the experiment, and the restoration results by using
𝐿
2
norm were about the same as those by using the 𝐿

1
norm

for impulse plus Gaussian noise condition.

2.2. The Alternating Direction Method of Multipliers
(ADMM). In this section, we present the alternating
direction method of multipliers (ADMM) [15–17] which
belongs to the family of augmented Lagrangian methods.
Consider the following linearly constrained separable convex
minimization problem of the form:

min 𝜃
1
(𝑥
1
) + 𝜃
2
(𝑥
2
) , 𝐴

1
𝑥
1
+ 𝐴
2
𝑥
2
= 𝑏,

𝑥
1
∈ Ω
1
, 𝑥
2
∈ Ω
2
,

(8)

where 𝜃
1
: R𝑛1 → R and 𝜃

2
: R𝑛2 → R are closed proper

convex functions, Ω
1
⊆ R𝑛1 and Ω

2
⊆ R𝑛2 are closed convex

sets, 𝐴
1
∈ R𝑙×𝑛1 and 𝐴

2
∈ R𝑙×𝑛2 are given matrices, and

𝑏 ∈ R𝑙 is a given vector. Specifically, the iterative scheme of
ADMM for solving (8) is as follows.
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Figure 1: Top: the original images. Middle: Blurred and noisy images by using an out-of-focus kernel with radius 3 and corrupted by salt-
and-pepper noise with noise level 𝑠 = 70%. Bottom: blurred and noisy images by using an out-of-focus kernel with radius 3 and corrupted
by random-valued noise with noise level 𝑟 = 55%.

Algorithm ADMM

(1) Set 𝑘 = 0 and choose 𝛽 > 0, 𝑥0
2
, and 𝑑0

(2) repeat

(3) 𝑥𝑘+1
1

= argmin{𝜃
1
(𝑥
1
) + (𝛽/2)‖(𝐴

1
𝑥
1
+ 𝐴
2
𝑥𝑘
2
− 𝑏) −

𝑑𝑘‖2 | 𝑥
1
∈ Ω
1
},

(4) 𝑥𝑘+1
2

= argmin{𝜃
2
(𝑥
2
) + (𝛽/2)‖(𝐴

1
𝑥𝑘+1
1

+𝐴
2
𝑥
2
− 𝑏) −

𝑑𝑘‖2 | 𝑥
2
∈ Ω
2
},

(5) 𝑑𝑘+1 = 𝑑𝑘 − (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

− 𝑏),

(6) 𝑘 ← 𝑘 + 1,

(7) until stopping criterion is satisfied.

As reported in [18], the penalty parameter 𝛽 can be
substituted by a symmetric positive definite (spd) matrix 𝑄
and the extension of ADMM is still convergent. This leads to
the following extension of algorithm ADMM.

Extension of Algorithm ADMM

(1) Set 𝑘 = 0 and choose 𝛽 > 0, 𝑥0
2
, and 𝑑0,

(2) repeat
(3) 𝑥𝑘+1
1

= argmin{𝜃
1
(𝑥
1
) + (1/2)‖(𝐴

1
𝑥
1
+ 𝐴
2
𝑥𝑘
2
− 𝑏) −

𝑑𝑘‖2
𝑄
| 𝑥
1
∈ Ω
1
},

(4) 𝑥𝑘+1
2

= argmin{𝜃
2
(𝑥
2
) + (1/2)‖(𝐴

1
𝑥𝑘+1
1

+𝐴
2
𝑥
2
− 𝑏) −

𝑑𝑘‖2
𝑄
| 𝑥
2
∈ Ω
2
},

(5) 𝑑𝑘+1 = 𝑑𝑘 − (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

− 𝑏),
(6) 𝑘 ← 𝑘 + 1,
(7) until stopping criterion is satisfied.

3. The Proposed Approach

Throughout this paper, we will assume that the set of outlier
(pixels corrupted with impulse noise) is known. Actually, we
can use the adaptive median filter (AMF) [19] to detect salt-
and-pepper noise and the adaptive center-weighted median
filter (ACWMF) [20] for random-valued impulse noise case.
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Figure 2: Images blurred with out-of-focus kernel of radius 3 and then corrupted by salt-and-pepper noise with noise level 𝑠 = 70%. Top:
the restored images by MNID-ADMM and the parameters we used are [𝛼

1
= 0.01, 𝛼

2
= 0.005, 𝛽

1
= 𝛽
2
= 0.01, 𝛽

3
= 5𝑒 − 6]. Middle: the

restored images by Cai-TP. Bottom: the restored images by HADMM.

Using the set U represents the data samples that are likely
to be uncorrupted by impulse noise; then we proposed the
following objective function;

min
𝑓

󵄩󵄩󵄩󵄩Λ (𝐻𝑓 − 𝑔)
󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛼
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩TV + 𝛼2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩HTV, (9)

where Λ = diag(I
[𝑓∈U]), I[⋅] is the indicator function, 𝑝 = 1

(or 2), and ‖𝑓‖HTV = ∫Ω(𝑓
2

𝑥𝑥
+ 𝑓2
𝑥𝑦
+ 𝑓2
𝑦𝑥
+ 𝑓2
𝑦𝑦
)1/2𝑑𝑥 𝑑𝑦 [12].

For simplicity we introduce the notation |𝐷2𝑓| = (𝑓2
𝑥𝑥
+𝑓2
𝑥𝑦
+

𝑓2
𝑦𝑥
+𝑓2
𝑦𝑦
)1/2.Thenwe will discuss the details of the algorithm

to solve the model (9). For convenience we introduce three
new variables and rewrite (9) in the constrained optimization
problem as follows:

min
V
1
,V
2
,V
3
,𝑓,𝑑

{
󵄩󵄩󵄩󵄩ΛV1

󵄩󵄩󵄩󵄩
𝑝

𝑝
+ 𝛼
1

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩TV + 𝛼2

󵄩󵄩󵄩󵄩V3
󵄩󵄩󵄩󵄩1 |

V
1
= 𝐻𝑓 − 𝑔, V

2
= 𝑓, V
3
= 𝐷2𝑓} .

(10)

We apply the extension of ADMM algorithm to the
constrained problem (10), which we call mixed noise image
deblurring by extension of ADMM (MNID-ADMM). In the
following algorithm, we can simply choose positive matrix𝑄

as diag (𝛽
1
𝐼, 𝛽
2
𝐼, 𝛽
3
𝐼), where 𝐼 is the identity matrix. If we set

𝑄 = 𝛽𝐼, it is known as ADMM algorithm.

Algorithm of MNID-ADMM

(1) Set 𝑘 = 0, 𝑑0
1
, 𝑑0
2
, 𝑑0
3
= 0, and choose 𝛼

1
> 0, 𝛼

2
> 0

and positive matrix𝐻,

(2) repeat

(3) V𝑘+1
1

= argminV
1

‖ΛV
1
‖𝑝
𝑝
+(𝛽
1
/2)‖V
1
−(𝐻𝑓𝑘−𝑔)−𝑑𝑘

1
‖2,

(4) V𝑘+1
2

= argminV
2

(𝛽
2
/2)‖V
2
− 𝑓𝑘 − 𝑑𝑘

2
‖
2

2
+ 𝛼
1
‖V
2
‖TV,

(5) V𝑘+1
3

= argminV
3

𝛼
2
‖V
3
‖
1
+ (𝛽
3
/2)‖V
3
− 𝐷2𝑓𝑘 − 𝑑𝑘

3
‖
2

2
,

(6) 𝑓𝑘+1 = argmin
𝑓
(𝛽
1
/2)‖𝐻𝑓 − 𝑔 + 𝑑𝑘

1
− V𝑘+1
1
‖
2

2
+

(𝛽
2
/2)‖𝑓 + 𝑑𝑘

2
− V𝑘+1
2
‖
2

2
+ (𝛽
3
/2)‖𝐷2𝑓 + 𝑑𝑘

3
− V𝑘+1
3
‖
2

2
,

(7) 𝑑𝑘+1
1

← 𝑑𝑘
1
− (V𝑘+1
1

− (𝐻𝑓𝑘+1 − 𝑔)),

𝑑𝑘+1
2

← 𝑑𝑘
2
− (V𝑘+1
2

− 𝑓𝑘+1),

𝑑𝑘+1
3

← 𝑑𝑘
3
− (V𝑘+1
3

− 𝐷2𝑓),
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Figure 3: Images blurred with out-of-focus kernel of radius 3 and then corrupted by random-valued noise with noise level 𝑟 = 55%. Top:
the restored images by MNID-ADMM and the parameters we used are [𝛼

1
= 0.002, 𝛼

2
= 0.005, 𝛽

1
= 𝛽
2
= 0.02, 𝛽

3
= 5𝑒 − 6]. Middle: the

restored images by Cai-TP. Bottom: the restored images by HADMM.

Table 1: The PSNR (dB) and computing time (seconds) for the restoration results by MNID-ADMM, Cai-TP, and HADMM for blurred
images contaminated by impulse noise only. The blurring kernel is the out-of-focus kernel of radius 3.

Type Image Level MNID-ADMM Cai-TP HADMM
PSNR Time PSNR Time PSNR Time

Lena 30.6 15.8 30.2 117.6 30.5 7.9

Salt and pepper Einstein 70% 31.9 15.1 29.7 111.9 31.7 7.9
Cameraman 27.7 14.0 26.7 132.6 27.4 7.8

Boat 28.8 14.8 28.0 111.9 28.6 7.6
Lena 33.0 27.1 28.0 158.9 32.4 6.2

Random valued noise Einstein 55% 34.5 26.2 27.4 132.4 34.2 5.5
Cameraman 30.5 24.8 24.8 172.7 30.2 5.9

Boat 31.7 24.6 26.1 128.3 31.0 5.8

(8) 𝑘 ← 𝑘 + 1,
(9) until stopping criterion is satisfied.

Cai et al. [4] considered to use 𝑙
𝑝
(𝑝 = 1 or 𝑝 = 2) as

the data-fidelity term and discussed how to choose 𝑙
1
or 𝑙
2

norm. It is known that 𝑙
1
data-fidelity term is more suitable

than 𝑙
2
data-fidelity when applying to remove impulse noise

[21, 22]. From an experimental point of view, we find that it
is faster to use 𝑙

2
norm than 𝑙

1
norm. Considering this, we

use 𝑙
2
data-fidelity term when the images are corrupted by

mixed Gaussian plus impulse noise and we use 𝑙
1
data-fidelity

term when the images are corrupted by impulse noise only.
Then, we will discuss the details of solving the V

1
, V
2
, V
3
, and

𝑓 subproblems, respectively. For V
1
subproblem, when 𝑝 = 1,
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Figure 4: Top: Lena image blurred with out-of-focus kernel of radius 3 and then corrupted by Gaussian noise with 𝜎 = 5 and salt-and-pepper
noise with 𝑠 = 30%, 50%, 70%, and 90%, respectively. The second line: results restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05).

The third line: Lena image blurred with out-of-focus kernel of radius 3 and then corrupted by Gaussian noise with 𝜎 = 5 and random-valued
noise with 𝑟 = 25%, 40%, 55%, and 70%, respectively. Bottom: results restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05).

it is easy to solve the V
1
subproblem through shrinkage and

the minimizer V
1
is given by

(V𝑘+1
1
)
𝑖

=

{{{{
{{{{
{

(𝐻𝑓𝑘 − 𝑔 + 𝑑𝑘
1
)
𝑖

if Λ (𝑖, 𝑖) = 0,

max{󵄨󵄨󵄨󵄨󵄨(𝐻𝑓
𝑘 − 𝑔 + 𝑑𝑘

1
)
𝑖

󵄨󵄨󵄨󵄨󵄨 −
1

𝛽
1

, 0}

× sgn ((𝐻𝑓𝑘 − 𝑔 + 𝑑𝑘
1
)
𝑖

) if Λ (𝑖, 𝑖) = 1.
(11)

When 𝑝 = 2, the minimizer V
1
is given by V𝑘+1

1
= (2Λ +

𝛽
1
𝐼)−1𝛽
1
(𝐻𝑓𝑘 − 𝑔 + 𝑑𝑘

1
). There are numerous algorithms

to solve the V
2
subproblem [11, 23–25]; here, we consider

adopting Chambolle’s algorithm [25]. The minimizer V
3
is

given by

V
𝑘+1

3
= shrink

𝛼
2
/𝛽
3

(𝑑𝑘
3
+ 𝐷2𝑓𝑘) , (12)
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Table 2:The PSNR (dB) and computing time (seconds) for the restoration results byMNID-ADMM, Cai-TP, and HADMM for blurred Lena
contaminated by Gaussian noise (𝜎 = 5) plus impulse noise. The blurring kernel is the out-of-focus kernel of radius 3.

Type Level MNID-ADMM Cai-TP HADMM
PSNR Time PSNR Time PSNR Time

30% 27.7 9.3 27.2 22.1 27.5 3.3

Gaussian + salt and pepper 50% 27.4 9.8 26.9 21.5 27.2 4.1
70% 26.9 10.4 26.4 21.0 26.6 5.4
90% 25.5 12.4 24.9 27.7 25.2 12.5
25% 27.8 8.7 27.0 198.6 27.6 3.3

Gaussian + random valued 40% 27.6 9.6 26.7 195.3 27.4 3.6
55% 27.3 9.7 25.7 204.3 27.0 4.1
70% 26.9 9.8 23.0 227.7 26.6 5.4

where shrink
𝛾
(𝑝) = max{0, 1 − (𝛾/‖𝑝‖

1
)}𝑝. In order to get

𝑓𝑘+1, we need to solve the following problem:

(𝛽
1
𝐻𝑇𝐻 + 𝛽

2
𝐼 + 𝛽
3
(𝐷2)
𝑇

𝐷2)𝑓

= 𝛽
1
𝐻𝑇 (𝑔 + V

𝑘+1

1
− 𝑑𝑘
1
) + 𝛽
2
(V𝑘+1
2

− 𝑑𝑘
2
)

+ 𝛽
3
(𝐷2)
𝑇

(V𝑘+1
3

− 𝑑𝑘
3
) .

(13)

In image restoration, 𝐻 is usually a matrix of special
structure. For example, 𝐻 is a block-circulant with circulant
block (BCCB) matrix when periodic boundary conditions
are applied to the image boundary. The matrix 𝐻 can be
diagonalized by the discrete fast Fourier transform (FFT)
matrix. There are some fast algorithms to solve the problem
(13) for different boundary conditions. In this paper, we
use periodic boundary conditions. Then the solution of
subproblem (13) can be exactly and efficiently calculated via
fast Fourier transform.

4. Numerical Results

In this section, numerical experiments are presented to
demonstrate the performance of our proposed MNID-
ADMM for test images “Lena,” “Einstein,” “Cameraman,” and
“Boat.” All test images are 256 × 256 gray level images. The
results are compared with those obtained by the two-phase
method denoted by “Cai-TP” [4] and the fast restoration
method proposed in [3]. The splitting-and-penalty method
is employed to solve the modified total variation scheme in
[3]. As we know, the ADMM approach is more efficient and
stable than the splitting-and-penalty method [26, 27]. For
a fair comparison, we solve the total variation scheme (just
set 𝛼
2
= 0 in (9)) by ADMM rather than the splitting-

and-penalty method used in [3]. For simplicity, we call this
method “HADMM”hereafter. In order tomeasure the quality
of the restored images by different methods, we introduce the

mean squared error (MSE), and the peak signal-to-noise ratio
(PSNR):

MSE = 1

𝑛2

𝑛
2

∑
𝑗=1

[𝑓 (𝑗) − 𝑔 (𝑗)]
2

,

PSNR = 20 log
10

MAX
𝑓

√MSE
,

(14)

where 𝑓, 𝑔, 𝑛2 and MAX
𝑓
are the original image, the blurred

image, the number of pixels of image, and the maximum
possible pixel value of the image, respectively. The higher
PSNR, the better quality of the restoration. All the experi-
ments are performed using MATLAB 7.10.0 on a computer
equipped with an Intel(R) Pentium(R) 2.80GHz processor,
with 4.00GB of RAM, and running Windows 7. The stop
criterion of all methods is set to be ‖𝑓𝑘+1 − 𝑓𝑘‖

2

2
/‖𝑓𝑘‖

2

2
<

5 × 10−4. In order to reduce the computational time in the
search for good regularization parameters, we set 𝛽

1
= 𝛽
2
for

impulse noise only situation. It is reasonable to set 𝛼
1
+𝛼
2
= 1;

for further details, see [12]. Moreover, we find that we can
get good restoration result by just setting 𝛽

1
= 𝛽
2
= 𝛽
3

for impulse plus Gaussian noise situation. An out-of-focus
kernel with radius 3 is used to blur the original images in
the following examples. The parameters were hand tuned to
give the best PSNR improvement. Similarly as in [4], we also
use the same parameters for different images for the same
convolution kernel and noise level.

Example 1. We restore images contaminated by impulse
noise only. In this example, we consider the images cor-
rupted by salt-and-pepper noise with level of 70% and
random-valued noise with level of 55% separately. The
four original images and the blurred images are shown
in Figure 1. The comparisons of MNID-ADMM, Cai-TP,
and HADMM methods are shown in Figures 2 and 3
and Table 1. From the restoration results, we get that the
MNID-ADMM method performs better than Cai-TP both
in restoration quality and computation times and we get
a little higher PSNR than HADMM method for various
images.

Example 2. We restore “Lena” contaminated by Gaussian
noise of variance 𝜎2 = 25 plus impulse noise with different
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Figure 5: Top: images blurred with out-of-focus kernel of radius 3 and then corrupted by Gaussian noise with 𝜎 = 5 and salt-and-pepper
noise with 𝑠 = 50%. The second line: results restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05). The third line: Images blurred with

out-of-focus kernel of radius 3, and then corrupted by Gaussian noise with 𝜎 = 5 and salt-and-pepper noise with 𝑠 = 70%. Bottom: results
restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05).

level. The blurred and restored images by MNID-ADMM
are shown in Figure 4 and the results are shown in Table 2.
These results show that our proposed method can restore
corrupted image with various noise level efficiently and the
restore quality is quite well.

Example 3. We restore different images contaminated by
Gaussian noise of variance 𝜎2 = 25 plus impulse noise with
different level. The blurred and restored images by MNID-
ADMM are shown in Figures 5 and 6, and the results are

shown in Tables 3 and 4. From the experiments results, we
conclude that the proposed method can restore different
images with various noise level quite well with the same
parameters.

5. Conclusion

In this paper, a high-order total variation scheme is pro-
posed to restore blurred images corrupted by Gaussian
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Figure 6: Top: images blurred with out-of-focus kernel of radius 3 and then corrupted by Gaussian noise with 𝜎 = 5 and random-valued
noise with 𝑟 = 55%.The second line: results restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05). The third line: images blurred with

out-of-focus kernel of radius 3, and then corrupted by Gaussian noise with 𝜎 = 5 and random-valued noise with 𝑟 = 70%. Bottom: results
restored by MNID-ADMM (𝛼

1
= 0.9, 𝛽

1
= 𝛽
2
= 𝛽
3
= 0.05).

plus impulse noise. The alternating direction method of
multipliers (ADMM) is employed to solve the proposed
problem. Numerical examples demonstrate that the pro-
posed model efficiently removes the mixed Gaussian plus
impulse noise meanwhile avoids staircase effect. The pro-
posed method can be extended to solve blind convolution
problems. One of the difficulties in this paper is how to
choose appropriate parameters and an adaptive parameter

chosen method may be used in this method.These are future
works.
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Table 3: The PSNR (dB) and computing time (seconds) for the restoration results by MNID-ADMM, Cai-TP, and HADMM for blurred
images contaminated by Gaussian noise (𝜎 = 5) plus salt-and-pepper noise. The blurring kernel is the out-of-focus kernel of radius 3.

Type Image Level MNID-ADMM Cai-TP HADMM
PSNR Time PSNR Time PSNR Time

Gaussian + salt and pepper
Einstein 27.4 12.4 26.8 29.6 27.2 4.1

Cameraman 50% 25.1 12.5 24.6 24.6 25.1 3.4
Boat 25.7 12.9 25.4 18.4 25.5 3.4

Gaussian + salt and pepper
Einstein 26.6 13.8 26.1 29.8 26.2 4.7

Cameraman 70% 24.5 13.8 24.0 22.6 24.4 4.1
Boat 25.1 13.4 24.9 19.2 25.0 4.3

Table 4: The PSNR (dB) and computing time (seconds) for the restoration results by MNID-ADMM, Cai-TP, and HADMM method for
blurred images contaminated by random-valued noise plus Gaussian noise (𝜎 = 5). The blurring kernel is the out-of-focus kernel of radius 3.

Type Image Level MNID-ADMM Cai-TP HADMM
PSNR Time PSNR Time PSNR Time

Gaussian + random valued
Einstein 27.2 8.3 25.5 144.6 26.9 4.3

Cameraman 55% 24.9 8.6 23.2 196.1 24.9 3.7
Boat 25.5 8.3 24.4 142.1 25.4 3.5

Gaussian + random valued
Einstein 26.5 9.0 24.2 178.8 26.2 5.2

Cameraman 70% 24.5 9.1 20.1 213.9 24.4 4.5
Boat 25.1 8.6 22.7 161.7 25.0 4.1
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