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We investigate robustness of exponential dissipation for the following general nonlinear evolutionary equation with small time
delay: 𝜕

𝑡
𝑢 + 𝐴𝑢 = 𝑓(𝑢(𝑡), 𝑢(𝑡 − 𝜏)).We firstly obtain a converse Lyapunov theorem. With the help of it, we establish an important

result on robustness of exponential dissipation to small time delay assuming that the nonlinearity is globally Lipschitz.

1. Introduction

As iswell known, time delays are usually encountered in prac-
tical control systems.The stability analysis has received atten-
tions over the last several decades. Mathematically, it is also
very important to understand the sensitivity of the dynamical
behavior of the system to the introduction of small time
delays. For linear systems, we well understand this problem,
including both finite dimensional and infinite dimensional
situations, see [1–5]. However, for nonlinear systems, the pro-
blem is much more difficult, but there are some very nice
results in [6–10].

This paper is devoted to the following general nonlinear
evolutionary equation with small delay:

𝜕
𝑡
𝑢 + 𝐴𝑢 = 𝑓 (𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏)) , (1)

where the nonlinearity 𝑓 : 𝑋
𝛼
× 𝑋
𝛼
→ 𝑋 is assumed to be

globally Lipschitz. Here,𝐴 is a sectorial operator on a Banach
space 𝑋. 𝑋𝛼 is a fractional power space. Here, we investigate
the effects of small time delay on the exponential dissipation
of the corresponding evolutionary equation without delay:

𝜕
𝑡
𝑢 + 𝐴𝑢 = 𝐹 (𝑢) , (2)

where 𝐹(𝑢) = 𝑓(𝑢, 𝑢).
In [11], Lyapunov introduced his famous sufficient con-

ditions for asymptotic stability of the following nonautono-
mous dynamical system:

𝑥
󸀠
(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑥 (𝑡) ∈ 𝑅

𝑛
. (3)

There, we can also find the first contribution to the converse
question, known as converse Lyapunov theorems. In recent
years, the answers have proved instrumental in establishing
robustness of various stability notions and have served as the
starting point formanynonlinear control systems design con-
cepts.

In 2005, Li and Kloeden [8] presented a converse Lya-
punov theorem for exponential dissipation of the following
general nonlinear differential equations with multiple small
time delays:

𝑥
󸀠
(𝑡) = 𝑓 (𝑥 (𝑡 − 𝜏

1
) , 𝑥 (𝑡 − 𝜏

2
) , . . . , 𝑥 (𝑡 − 𝜏

𝑛
)) , (4)

where 𝑓 is assumed to be globally Lipschitz. They also prove
that exponential dissipation remains under small time delays.
This result can be seen as a generalization of some classical
ones on global exponential asymptotic stability (e.g., [12]) and
was used by the authors to study robustness of exponential
dissipation with respect to small time delays.

Recently, Guo and Li [13] gave a nonautonomous analog
of the result.They not only present a converse Lyapunov theo-
rembut also prove robustness of the uniform exponential dis-
sipation with respect to unbounded external perturbations.

In the dynamical theory, a basic problem concerns the
robustness of global attractors under perturbations [14]. It is
known that if a nonlinear system with a global attractorA is
perturbed, then the perturbed one also has an attractor A󸀠
near A, provided that the perturbation is sufficiently small
[7, 15]. However, in general, we only know that A󸀠 is a local
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attractor. Whether the global feature can be preserved is still
an open problem.To our great joy, a dissipative systemusually
implies the existence of the global attractor. So, if one wants
to settle the above problem, he only needs to examine the
robustness of dissipation under perturbations. In this present
work, we will investigate the infinite dimensional situations
which are more difficult than the finite ones. With the
nonlinearity being globally Lipschitz, we obtain a converse
Lyapunov theorem andprove that exponential dissipation has
nice robustness properties under small time delay.

2. Preliminaries

In this paper, we study the following delayed initial value
problem:

𝑢
𝑡
+ 𝐴𝑢 = 𝑓 (𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏)) , 𝑡 > 0,

𝑢|
[−𝜏,0]

= 𝑢
0
(𝑡) .

(5)

For simplicity, we use ‖ ⋅ ‖ and ‖ ⋅ ‖
𝛼
to denote the norm on

𝑋 and𝑋𝛼, respectively. We writeC = 𝐶([−𝜏, 0], 𝑋
𝛼
)with the

norm |‖ ⋅ ‖|
𝛼
defined by

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 = max
𝑡∈[−𝜏,0]

󵄩󵄩󵄩󵄩𝑢0 (𝑡)
󵄩󵄩󵄩󵄩𝛼, ∀𝑢

0
∈ C. (6)

Next, we will recall some basic definitions and facts.
The upper right Dini derivative of a function 𝑦 ∈ 𝐶((𝛼,

𝛽), 𝑋
𝛼
) is defined as

𝑑
+

𝑑𝑡
𝑦 (𝑡) := lim sup

ℎ→0+

𝑦 (𝑡 + ℎ) − 𝑦 (𝑡)

ℎ
. (7)

Let 𝑥 ∈ 𝑋
𝛼 and N be an open neighborhood of 𝑥. For 𝑉 ∈

𝐶(N, 𝑅
1
) and V ∈ 𝑋𝛼, we define

𝐷
+

V𝑉 (𝑥) := lim sup
ℎ→0+

𝑉 (𝑥 + ℎV) − 𝑉 (𝑥)

ℎ
. (8)

We will denote by 𝑢(𝑡, 𝑥) the solution of (2), where
𝑢(0, 𝑥) = 𝑥.

Definition 1. The system (2) is said to be exponentially
dissipative, if there exist positive numbers 𝐵, 𝜆, and 𝜌 such
that

‖𝑢 (𝑡, 𝑥)‖
𝛼
≤ 𝐵𝑒
−𝜆𝑡
‖𝑥‖
𝛼
+ 𝜌, ∀𝑡 ≥ 0, 𝑥 ∈ 𝑋

𝛼
. (9)

Lemma 2. Let N be an open subset of 𝑋𝛼. Assume that the
function𝑉 : N → 𝑅

+ is Lipschitz; that is, there exists a𝐿
𝑉
> 0

such that
󵄨󵄨󵄨󵄨𝑉 (𝑥) − 𝑉 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝐿𝑉
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝛼, ∀𝑥, 𝑦 ∈ 𝑋
𝛼
. (10)

Let 𝑢(𝑡) be a solution of (2). Then,

𝑑
+

𝑑𝑡
𝑉 (𝑢 (𝑡)) = 𝐷

+

𝑔(𝑢)
𝑉 (𝑢 (𝑡)) , where 𝑔 (𝑢) = 𝐹 (𝑢) − 𝐴𝑢.

(11)

Proof. The detailed proof is contained in [12, 16]. Here, we
give a simple proof for the reader’s convenience. Making use
of Taylor formula, we observe that

𝑉 (𝑢 (𝑡 + ℎ)) − 𝑉 (𝑢 (𝑡))

= 𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ + 𝑜 (ℎ)) − 𝑉 (𝑢 (𝑡))

= 𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ + 𝑜 (ℎ)) − 𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ)

+ 𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ) − 𝑉 (𝑢 (𝑡)) .

(12)

Since 𝑉(𝑥) is Lipschitz, one easily sees that

𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ + 𝑜 (ℎ)) − 𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ) = 𝑜 (ℎ) . (13)

Therefore, by definition (7), we immediately deduce that

𝑑
+

𝑑𝑡
𝑉 (𝑢 (𝑡))

= lim sup
ℎ→0+

𝑉 (𝑢 (𝑡 + ℎ)) − 𝑉 (𝑢 (𝑡))

ℎ

= lim sup
ℎ→0+

𝑉 (𝑢 (𝑡) + 𝑔 (𝑢) ℎ) − 𝑉 (𝑢 (𝑡))

ℎ

= 𝐷
+

𝑔(𝑢)
𝑉 (𝑢 (𝑡)) .

(14)

The proof is finished.

At last, we come to the main theorem on analytic
semigroup which is extremely important in the study of the
dynamics of nonlinear evolutionary equations [17].

Theorem 3 (fundamental theorem on sectorial operators).
Let𝐴 be a positive, sectorial operator on a Banach space𝑋 and
let 𝑒−𝐴𝑡 be the analytic semigroup generated by −𝐴. Then, the
following statements hold.

(1) For any 𝛼 ≥ 0, there is a constant 𝐶
𝛼
> 0 such that for

all 𝑡 > 0
󵄩󵄩󵄩󵄩󵄩
𝐴
𝛼
𝑒
−𝐴𝑡󵄩󵄩󵄩󵄩󵄩𝐿(𝑋)

≤ 𝐶
𝛼
𝑡
−𝛼
𝑒
−𝑎𝑡

(𝑎 > 0) . (15)

(2) For 0 < 𝛼 ≤ 1, there is a constant 𝐶
𝛼
> 0 such that for

𝑡 ≥ 0 and 𝑥 ∈ 𝐷(𝐴𝛼)
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝐴𝑡

𝑥 − 𝑥
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
𝛼
𝑡
𝛼 󵄩󵄩󵄩󵄩𝐴
𝛼
𝑥
󵄩󵄩󵄩󵄩 . (16)

(3) For every 𝛼 ≥ 0, there is a constant 𝐶
𝛼
> 0 such that

for all 𝑡 > 0 and 𝑥 ∈ 𝑋

󵄩󵄩󵄩󵄩󵄩
(𝑒
−𝐴(𝑡+ℎ)

− 𝑒
−𝐴𝑡

) 𝑥
󵄩󵄩󵄩󵄩󵄩𝛼
≤ 𝐶
𝛼
|ℎ| 𝑡
−(1+𝛼)

‖𝑥‖ . (17)

3. Main Results

In this section, we will prove our two main results: one is
converse Lyapunov theorem, and the other is robustness of
exponential dissipation to small time delay.
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Theorem 4 (converse Lyapunov theorem). Suppose that 𝐹 :

𝑋
𝛼
→ 𝑋 in (2) is globally Lipschitz with Lipschitz constant 𝐿.

Suppose that the system without delay (2) is exponentially dis-
sipative. Then, there exists a function 𝑉 : 𝑋𝛼 → 𝑅

+ satisfying

‖𝑥‖
2

𝛼
− 𝑎 ≤ 𝑉 (𝑥) ≤ 𝑏‖𝑥‖

2

𝛼
+ 𝑐, (18)

𝐷
+

𝑔(𝑥)
𝑉 (𝑥) ≤ −𝑑‖𝑥‖

2

𝛼
+ 𝜎, (19)

󵄨󵄨󵄨󵄨𝑉 (𝑥) − 𝑉 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐿𝑉 (‖𝑥‖𝛼 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼 + 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝛼 (20)

for all 𝑥, 𝑦 ∈ 𝑋𝛼, where 𝑔(𝑥) = 𝐹(𝑥)−𝐴𝑥, 𝑎, 𝑏, 𝑐, 𝑑, 𝜎, and 𝐿
𝑉

are appropriate positive constants.

Proof. Since the system (2) is exponentially dissipative, there
exist positive constants 𝐵, 𝜆, and 𝜌 such that

‖𝑢 (𝑡, 𝑥)‖
𝛼
≤ 𝐵𝑒
−𝜆𝑡
‖𝑥‖
𝛼
+ 𝜌, ∀𝑡 ≥ 0, 𝑥 ∈ 𝑋

𝛼
. (21)

Let 𝑇 = ln(2𝐵)/𝜆, and define 𝑉
1
as follows:

𝑉
1
(𝑥) := ∫

𝑇

0

‖𝑢 (𝑠, 𝑥)‖
2

𝛼
𝑑𝑠, 𝑥 ∈ 𝑋

𝛼
. (22)

By (21) and the elementary inequality, it is easy to check that

0 ≤ 𝑉
1
(𝑥) ≤ ∫

𝑇

0

(𝐵𝑒
−𝜆𝑠
‖𝑥‖
𝛼
+ 𝜌)
2

𝑑𝑠

≤ 2∫

𝑇

0

(𝐵
2
𝑒
−2𝜆𝑠

‖𝑥‖
2

𝛼
+ 𝜌
2
) 𝑑𝑠

≤
𝐵
2

𝜆
‖𝑥‖
2

𝛼
+ 2𝑇𝜌

2
.

(23)

So, 𝑉
1
(𝑥) satisfies the right inequality of (18).

Next, by the Lipschitz continuity of 𝐹, it is easy to verify
that there exists a constant 𝐶(𝑇) > 0 such that

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑦)
󵄩󵄩󵄩󵄩𝛼 ≤ 𝐶 (𝑇)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝛼,

∀𝑥, 𝑦 ∈ 𝑋
𝛼
, 𝑡 ∈ [0, 𝑇] .

(24)

Considering (21) and (23), for any 𝑥, 𝑦 ∈ 𝑋𝛼, we have
󵄨󵄨󵄨󵄨𝑉1 (𝑥) − 𝑉1 (𝑦)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

(‖𝑢 (𝑠, 𝑥)‖
2

𝛼
−
󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)

󵄩󵄩󵄩󵄩
2

𝛼
) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (𝑇)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝛼 ∫

𝑇

0

(‖𝑢 (𝑠, 𝑥)‖
𝛼
+
󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)

󵄩󵄩󵄩󵄩𝛼) 𝑑𝑠

≤ 𝐶 (𝑇)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝛼 ∫

𝑇

0

[𝐵𝑒
−𝜆𝑠

(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼) + 2𝜌] 𝑑𝑠

≤ 𝐶 (𝑇)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝛼 [
𝐵

𝜆
(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼) + 2𝜌𝑇] 𝑑𝑠

≤ 𝐿
1
(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼 + 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝛼.

(25)

So, 𝑉
1
(𝑥) satisfies (20).

Since

𝑉
1
(𝑢 (𝑡, 𝑥)) = ∫

𝑇

0

‖𝑢 (𝑠, 𝑢 (𝑡, 𝑥))‖
2

𝛼
𝑑𝑠

= ∫

𝑇

0

‖𝑢 (𝑡 + 𝑠, 𝑥)‖
2

𝛼
𝑑𝑠

= ∫

𝑡+𝑇

𝑡

‖𝑢 (𝑠, 𝑥)‖
2

𝛼
𝑑𝑠,

(26)

by the choice of 𝑇 and (21), we have that

𝑑

𝑑𝑡
𝑉
1
(𝑢 (𝑡, 𝑥))

= ‖𝑢 (𝑡 + 𝑇, 𝑥)‖
2

𝛼
− ‖𝑢 (𝑡, 𝑥)‖

2

𝛼

= ‖𝑢 (𝑇, 𝑢 (𝑡, 𝑥))‖
2

𝛼
− ‖𝑢 (𝑡, 𝑥)‖

2

𝛼

≤ −‖𝑢 (𝑡, 𝑥)‖
2

𝛼
+ (𝐵𝑒

−𝜆𝑇
‖𝑢 (𝑡, 𝑥)‖

𝛼
+ 𝜌)
2

≤ −‖𝑢 (𝑡, 𝑥)‖
2

𝛼
+ 2𝐵
2
𝑒
−2𝜆𝑇

‖𝑢 (𝑡, 𝑥)‖
2

𝛼
+ 2𝜌
2

≤ −
1

2
‖𝑢 (𝑡, 𝑥)‖

2

𝛼
+ 2𝜌
2
.

(27)

Consequently, by Lemma 2,

𝐷
+

𝑔(𝑢(𝑡,𝑥))
𝑉
1
(𝑢 (𝑡, 𝑥)) =

𝑑
+

𝑑𝑡
𝑉
1
(𝑢 (𝑡, 𝑥)) =

𝑑

𝑑𝑡
𝑉
1
(𝑢 (𝑡, 𝑥)) .

(28)

In particular, setting 𝑡 = 0, one obtains that

𝐷
+

𝑔(𝑥)
𝑉
1
(𝑥) =

𝑑

𝑑𝑡
𝑉
1
(𝑢 (𝑡, 𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
≤ −

1

2
‖𝑥‖
2

𝛼
+ 2𝜌
2
, (29)

which indicates that 𝑉
1
satisfies (19).

Now, let us define another Lyapunov function 𝑉
2
. We

firstly take a nonnegative function 𝛾(𝑠) as

𝛾 (𝑠) = max {𝑠2 − 𝜌2
0
, 0} , 𝑠 ≥ 0, (30)

where 𝜌
0
= (2𝐵 + 1)𝜌. It is easy to check that 𝛾(𝑠) satisfies

󵄨󵄨󵄨󵄨𝛾 (𝑠) − 𝛾 (𝑟)
󵄨󵄨󵄨󵄨 ≤ (𝑠 + 𝑟) |𝑠 − 𝑟| , ∀𝑠, 𝑟 ≥ 0. (31)

Now, we let

𝑉
2
(𝑥) = sup

𝑠≥0

𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
) , ∀𝑥 ∈ 𝑋

𝛼
. (32)

We firstly verify the following fact:

𝑉
2
(𝑥) = sup

0≤𝑠≤𝑇

𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
) , ∀𝑥 ∈ 𝑋

𝛼
. (33)

Indeed, if ‖𝑥‖
𝛼
≤ 2𝜌, then by (21)

‖𝑢 (𝑡, 𝑥)‖
𝛼
≤ 𝐵𝑒
−𝜆𝑡
‖𝑥‖
𝛼
+ 𝜌 ≤ 2𝜌𝐵 + 𝜌 = 𝜌

0
. (34)
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According to the definition of 𝛾(𝑠), we know that
𝛾(‖𝑢(𝑠, 𝑥)‖

𝛼
) = 0. Therefore, in case of ‖𝑥‖

𝛼
≤ 2𝜌, one tri-

vially has

𝑉
2
(𝑥) = 0 = sup

0≤𝑠≤𝑇

𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
) . (35)

If ‖𝑥‖
𝛼
≥ 2𝜌, then by the choice of 𝑇 we find that

‖𝑢 (𝑠, 𝑥)‖
𝛼
≤ 𝐵𝑒
−𝜆𝑇

‖𝑥‖
𝛼
+ 𝜌 =

‖𝑥‖
𝛼

2
+ 𝜌 < ‖𝑥‖

𝛼
, ∀𝑠 ≥ 𝑇.

(36)

Since 𝑢(0, 𝑥) = 𝑥 and 𝛾(𝑠) is nondecreasing in 𝑠, one can
deduce the correctness of (33).

Next, we will check that𝑉
2
also satisfies (20). By (33), (31),

(24), and (21)

𝑉
2
(𝑥)

= sup
0≤𝑠≤𝑇

𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
)

= sup
0≤𝑠≤𝑇

[(𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
) − 𝛾 (

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)
󵄩󵄩󵄩󵄩𝛼)) + 𝛾 (

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)
󵄩󵄩󵄩󵄩𝛼 ]

≤ sup
0≤𝑠≤𝑇

[𝛾 (‖𝑢 (𝑠, 𝑥)‖
𝛼
) − 𝛾 (

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)
󵄩󵄩󵄩󵄩𝛼)] + 𝑉2 (𝑦)

≤ sup
0≤𝑠≤𝑇

(‖𝑢 (𝑠, 𝑥)‖
𝛼
+
󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)

󵄩󵄩󵄩󵄩𝛼)

×
󵄨󵄨󵄨󵄨‖𝑢 (𝑠, 𝑥)‖𝛼 −

󵄩󵄩󵄩󵄩𝑢 (𝑠, 𝑦)
󵄩󵄩󵄩󵄩𝛼
󵄨󵄨󵄨󵄨 + 𝑉2 (𝑦)

≤ 𝐶 (𝑇)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝛼

× sup
0≤𝑠≤𝑇

[𝐵𝑒
−𝜆𝑠

(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼) + 2𝜌] + 𝑉2 (𝑦)

≤ 𝐶 (𝑇) [𝐵 (‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼) + 2𝜌]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝛼 + 𝑉2 (𝑦)

≤ 𝐿
2
(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼 + 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝛼 + 𝑉2 (𝑦) .

(37)

Next, we will check that for arbitrary 𝑥 ∈ 𝑋
𝛼, 𝑉
2
(𝑥) is

bounded by

‖𝑥‖
2

𝛼
− 𝜌
2

0
≤ 𝑉
2
(𝑥) ≤ 2𝐵

2
‖𝑥‖
2

𝛼
+ 2𝜌
2
. (38)

Firstly, according to the definition of 𝛾(𝑠), it is obvious to see
that

𝑠
2
− 𝜌
2

0
≤ 𝛾 (𝑠) ≤ 𝑠

2
, ∀𝑠 ≥ 0. (39)

So, it follows that

𝑉
2
(𝑥) = sup

𝑠≥0

𝛾 (‖𝑢 (𝑡, 𝑥)‖
𝛼
) ≥ 𝛾 (‖𝑢 (0, 𝑥)‖

𝛼
)

= 𝛾 (‖𝑥‖
𝛼
) ≥ ‖𝑥‖

2

𝛼
− 𝜌
2

0
.

(40)

Recalling (21), we infer

‖𝑢(𝑠, 𝑥)‖
𝛼
≤ 𝐵𝑒
−𝜆𝑠
‖𝑥‖
𝛼
+ 𝜌 ≤ 𝐵‖𝑥‖

𝛼
, ∀𝑠 ≥ 0. (41)

Frequently, by the definition of 𝑉
2
and the monotonicity

property of 𝛾(𝑠), we get

𝑉
2
(𝑥) ≤ 𝛾 (𝐵‖𝑥‖

𝛼
+ 𝜌)

≤ (𝐵‖𝑥‖
𝛼
+ 𝜌)
2

≤ 2𝐵
2
‖𝑥‖
2

𝛼
+ 2𝜌
2
.

(42)

So, we verify the correctness of (38).
Lastly we need to check that 𝑉

2
(𝑢(𝑡, 𝑥)) is nonincreasing

in 𝑡. Note that

𝑉
2
(𝑢 (𝑡, 𝑥)) = sup

𝑠≥0

𝛾 (‖𝑢 (𝑠, 𝑢 (𝑡, 𝑥))‖
𝛼
)

= sup
𝑠≥0

𝛾 (‖𝑢 (𝑠 + 𝑡, 𝑥)‖
𝛼
)

= sup
𝑠≥𝑡

𝛾 (‖𝑢(𝑠, 𝑥)‖
𝛼
) .

(43)

It is easy to see the validity of our checking.
Now, let

𝑉 (𝑥) = 𝑉
1
(𝑥) + 𝑉

2
(𝑥) . (44)

Considering (23), (38), (25), (37), and (31), we can get the
validity of (18), (19), and (20). The proof is complete.

In order to prove the second result, we need to verify the
following lemma.

Lemma 5. Suppose that 𝑓 is globally Lipschitz with Lipschitz
constant 𝐿 > 0, that is,
󵄩󵄩󵄩󵄩𝑓 (𝑥1, 𝑥2) − 𝑓 (𝑦1, 𝑦2)

󵄩󵄩󵄩󵄩 ≤ 𝐿 (
󵄩󵄩󵄩󵄩𝑥1 − 𝑦1

󵄩󵄩󵄩󵄩𝛼 +
󵄩󵄩󵄩󵄩𝑥2 − 𝑦2

󵄩󵄩󵄩󵄩𝛼) ,

(45)

for any 𝑥
𝑖
, 𝑦
𝑖
∈ 𝑋
𝛼, and that the system (2) is exponentially dis-

sipative. Then, there exist 𝐵
0
> 1 and 𝜏

0
> 0 such that when

𝜏 ≤ 𝜏
0
, any solution of (1) with initial value 𝑢

0
∈ C =

𝐶([−𝜏, 0], 𝑋
𝛼
) satisfies

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑢0)
󵄩󵄩󵄩󵄩𝛼 < 𝐵0 (

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1) , ∀𝑡 ≥ 0, 𝑢

0
∈ C. (46)

Proof. According to (45), it is easy to see that there is an𝑀 >

0 such that
󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝑀(‖𝑥‖
𝛼
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝛼 + 1) , ∀𝑥, 𝑦 ∈ 𝑋

𝛼
. (47)

Firstly, we prove that for arbitrary 𝑡 ∈ [0, 𝜏], there exists 𝐵
1

such that any solution of (1) with initial value 𝑢
0
∈ C =

𝐶([−𝜏, 0], 𝑋
𝛼
) satisfies
󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑢0)

󵄩󵄩󵄩󵄩𝛼 < 𝐵1 (
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1) , (48)

because 𝑢(𝑡, 𝑢
0
) can be expressed as follows:

𝑢 (𝑡) = 𝑒
−𝑡𝐴

𝑢
0
(0) + ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠) , 𝑢 (𝑠 − 𝜏)) 𝑑𝑠

= 𝑒
−𝑡𝐴

𝑢
0
(0) + ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (𝑢 (𝑠) , 𝑢
0
(𝑠 − 𝜏)) 𝑑𝑠.

(49)
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By (47) and (15), we can obtain

‖𝑢 (𝑡)‖
𝛼
=
󵄩󵄩󵄩󵄩𝐴
𝛼
𝑢 (𝑡)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑡𝐴

𝐴
𝛼
𝑢
0
(0)
󵄩󵄩󵄩󵄩󵄩
+ ∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝐴
𝛼
𝑒
−(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

⋅ 𝑀 (‖𝑢 (𝑠)‖
𝛼
+
󵄩󵄩󵄩󵄩𝑢0 (𝑠 − 𝜏)

󵄩󵄩󵄩󵄩𝛼 + 1) 𝑑𝑠

≤ 𝐶
1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 +𝑀𝐶

𝛼
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
‖𝑢 (𝑠)‖

𝛼
𝑑𝑠

+𝑀𝐶
𝛼

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 ∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝑑𝑠

+𝑀
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 ∫

𝑡

0

(𝑡 − 𝑠)
−𝛼
𝑑𝑠

≤ 𝐶
2

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 +𝑀𝐶

𝛼
∫

𝑡

0

(𝑡 − 𝑠)
−𝛼󵄩󵄩󵄩󵄩𝑢0 (𝑠)

󵄩󵄩󵄩󵄩𝛼𝑑𝑠.

(50)

According to the Gronwall inequality, one easily sees that

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑢0)
󵄩󵄩󵄩󵄩𝛼 ≤ 𝐶3

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 < 𝐵1 (

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1) . (51)

Now, we choose and fix 𝐵
2
and 𝜏
0
with

𝐵
2
> √

3 (𝑏𝑑 + 𝑎𝑑 + 𝑐𝑑 + 𝑏𝜎 + 𝑐)

𝑑
, 𝜏

𝛿

0
<

𝑑

96𝑏𝑀
0
𝐿
𝑉
𝐿
.

(52)

Let V(𝑡) = 𝑢(𝑡, 𝑢
0
). We will show that

‖V(𝑡)‖
𝛼
< 𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) , ∀𝑡 ≥ 𝜏, (53)

where ‖V
𝜏
‖
𝛼
= max

[0,𝜏]
‖V(𝑠)‖

𝛼
.

We argue by contradiction and suppose that for some
solution V(𝑡) = 𝑢(𝑡, 𝑢

0
) of (1), it holds that

󵄩󵄩󵄩󵄩V(𝑡1)
󵄩󵄩󵄩󵄩𝛼 ≥ 𝐵2 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼 + 1) (54)

for some 𝑡
1
> 𝜏. Observing that 𝐵

2
> 1, we deduce that there

exists a 𝑡
0
> 𝜏 such that

‖V(𝑡)‖
𝛼
< 𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) , for 𝑡 ∈ [𝜏, 𝑡
0
) , (55)

󵄩󵄩󵄩󵄩V (𝑡0)
󵄩󵄩󵄩󵄩𝛼 = 𝐵2 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼 + 1) . (56)

Thanks to Theorem 4, there is a Lyapunov function 𝑉

satisfying (18)–(20). By Lemma 2, we find that

𝑑
+

𝑑𝑡
𝑉 (V (𝑡))

= lim sup
ℎ→0+

1

ℎ
[𝑉 (V (𝑡) + ℎ𝑓 (V (𝑡) , V (𝑡 − 𝜏)) − 𝐴V (𝑡))

−𝑉 (V (𝑡)) ]

≤ lim sup
ℎ→0+

1

ℎ
[𝑉 (V (𝑡) + ℎ𝐹 (V (𝑡)) − 𝐴V (𝑡)) − 𝑉 (V (𝑡))]

+ lim sup
ℎ→0+

1

ℎ
[𝑉 (V (𝑡) + ℎ𝑓 (V (𝑡) , V (𝑡 − 𝜏)))

−𝑉 (V (𝑡) + ℎ𝐹 (V (𝑡)) ]

= 𝐷
+

𝑔(V(𝑡))𝑉 (V (𝑡))

+ lim sup
ℎ→0+

1

ℎ
[𝑉 (V (𝑡) + ℎ𝑓 (V (𝑡) , V (𝑡 − 𝜏)))

−𝑉 (V (𝑡) + ℎ𝐹 (V (𝑡)) ] .

(57)

By (47) and (55), we see that for 𝑡 ∈ [𝜏, 𝑡
0
]

‖𝐹 (V (𝑡))‖ , 󵄩󵄩󵄩󵄩𝑓 (V (𝑡) , V (𝑡 − 𝜏))
󵄩󵄩󵄩󵄩

≤ 𝑀 [2𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) + 1] = 𝑅.

(58)

Denote by 𝐿
ℎ
the Lipschitz constant of 𝑉 on B(V(𝑡), ℎ𝑅).

Then, we infer from (20) that

lim sup
ℎ→0+

𝐿
ℎ
≤ 𝐿
𝑉
(2‖V (𝑡)‖

𝛼
+ 1) . (59)

At the same time, from Lemma 3.3.2 of [18], we can show that
V(𝑡) is locally Hölder. That is to say,

‖V (𝑡 − 𝜏) − V (𝑡)‖
𝛼
≤ 𝑀
0
𝜏
𝛿
, 𝛿 ∈ (0, 1 − 𝛼) . (60)

Therefore, on [𝜏, 𝑡
0
] we have that

𝑑
+

𝑑𝑡
𝑉 (V (𝑡))

≤ 𝐷
+

𝑔(V(𝑡))𝑉 (V (𝑡))

+ lim sup
ℎ→0+

𝐿
ℎ

󵄩󵄩󵄩󵄩𝑓 (V (𝑡) , V (𝑡 − 𝜏)) − 𝑓 (V (𝑡) , V (𝑡))
󵄩󵄩󵄩󵄩

≤ 𝐷
+

𝑔(V(𝑡))𝑉 (V (𝑡)) + lim sup
ℎ→0+

𝐿
ℎ
𝐿‖V (𝑡 − 𝜏) − V (𝑡)‖

𝛼

≤ −𝑑‖V (𝑡)‖2
𝛼
+ 𝜎 +𝑀

0
𝜏
𝛿
𝐿𝐿
𝑉
(2‖V (𝑡)‖

𝛼
+ 1)

≤ −𝑑‖V (𝑡)‖2
𝛼
+ 𝜎 +𝑀

0
𝜏
𝛿
𝐿𝐿
𝑉
[2𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) + 1] ,

(61)

because

[2𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) + 1]

≤ [2𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) + 1]
2

≤ [2𝐵
2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1) + 2𝐵2]
2

= 4𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 2)
2

≤ 16𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1)
2

.

(62)
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According to (18) and (61), we find that

𝑑
+

𝑑𝑡
𝑉 (V (𝑡)) ≤ −

𝑑

𝑏
𝑉 (V (𝑡)) +

𝑑𝑐

𝑏
+ 𝜎

+ 32𝑀
0
𝜏
𝛿
𝐿𝐿
𝑉
𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1)
2

, ∀𝑡 ∈ [𝜏, 𝑡
0
] .

(63)

If we denote that

𝜆
1
=
𝑑

𝑏
, 𝜎

1
=
𝑐𝑑

𝑏
,

𝐶 (
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼) = 32𝑀0𝜏
𝛿
𝐿𝐿
𝑉
𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1)
2

,

(64)

then by the Gronwall inequality

𝑉 (V (𝑡)) ≤ 𝑉 (V (𝜏)) 𝑒−𝜆1(𝑡−𝜏)

+
1

𝜆
1

[𝜎
1
+ 𝐶 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼)] (1 − 𝑒

−𝜆
1
(𝑡−𝜏)

)

≤ 𝑉 (V (𝜏)) +
1

𝜆
1

[𝜎
1
+ 𝐶 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼)] .

(65)

Utilizing (18) again, we conclude that for 𝑡 ∈ [𝜏, 𝑡
0
],

‖V (𝑡)‖2
𝛼
≤ 𝑏

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩
2

𝛼
+ (𝑎 + 𝑐 +

𝜎
1

𝜆
1

)

+
32

𝜆
1

𝑀
0
𝜏
𝛿
𝐿𝐿
𝑉
𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1)
2

.

(66)

By the choice of 𝐵
1
and 𝜏
0
, one easily checks that

𝑏 <
1

3
𝐵
2

2
, 𝑎 + 𝑐 +

𝜎
1

𝜆
1

<
1

3
𝐵
2

2
,

32

𝜆
1

𝑀
0
𝜏
𝛿
𝐿𝐿
𝑉
<
1

3
.

(67)

Hence, in particular, for 𝑡 = 𝑡
0
, we find that

󵄩󵄩󵄩󵄩V (𝑡0)
󵄩󵄩󵄩󵄩
2

𝛼
< 𝐵
2

2
(
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩𝛼 + 1)
2

. (68)

This contradicts (56).
Now, the conclusion of the theorem follows immediately

from (48) and (53). And the proof is complete.

Theorem6. Assume that𝑓 is globally Lipschitz and the system
(2) without delay is exponentially dissipative. Then, the system
(1) with time delay is also exponentially dissipative.

Proof. Let 𝑢
0
∈ C and V(𝑡) = 𝑢(𝑡, 𝑢

0
) be the solution of

(1). According to Lemma 5, ‖V(𝑡)‖
𝛼
≤ 𝐵
1
(‖V
𝜏
‖
𝛼
+ 1) for all

𝑡 ≥ 𝜏, repeating the same argument as in (65), one easily sees
that the first inequality in (65) remains valid for all 𝑡 ≥ 𝜏.
Furthermore, making use of (18), we deduce that

‖V (𝑡)‖2
𝛼
− 𝑎 ≤ 𝑉 (V (𝑡))

≤ 𝑉 (V (𝜏)) 𝑒−𝜆1(𝑡−𝜏) +
1

𝜆
1

[𝜎
1
+ 𝐶 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼)]

≤ (𝑏
󵄩󵄩󵄩󵄩V𝜏

󵄩󵄩󵄩󵄩
2

𝛼
+ 𝑐) 𝑒
−𝜆
1
(𝑡−𝜏)

+
1

𝜆
1

[𝜎
1
+ 𝐶 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼)] .

(69)

Frequently,

‖V (𝑡)‖2
𝛼
≤ (𝑏

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩
2

𝛼
+ 𝑐) 𝑒
−𝜆
1
(𝑡−𝜏)

+ 𝑎 +
1

𝜆
1

[𝜎
1
+ 𝐶 (

󵄩󵄩󵄩󵄩V𝜏
󵄩󵄩󵄩󵄩𝛼)] ,

∀𝑡 ≥ 𝜏.

(70)

By (46), it can be easily seen that

‖V (𝑡)‖2
𝛼

≤ 𝐶
1
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

𝑒
−𝜆
1 (𝑡 − 𝜏)

+ 𝜏
𝛿
𝐶
2
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

+ 𝐶
3

≤ 𝐶
1
𝑒
𝜆
1
𝜏
0(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

𝑒
−𝜆
1
𝑡

+ 𝜏
𝛿
𝐶
2
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

+ 𝐶
3
, ∀𝑡 ≥ 𝜏,

(71)

where 𝐶
𝑖
(𝑖 = 1, 2, 3) are appropriate positive constants inde-

pendent of 𝜏 and 𝑢
0
. For 𝑡 ∈ [0, 𝜏], we have by (46) that

‖V(𝑡)‖2
𝛼
≤ 𝐵
2

0
𝑒
𝜆
1
𝜏
0(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

𝑒
−𝜆
1
𝑡
. (72)

Therefore, taking 𝐶󸀠
1
= (𝐶
1
+ 𝐵
2

0
)𝑒
𝜆
1
𝜏
0 , one concludes that

‖V (𝑡)‖2
𝛼
≤ 𝐶
󸀠

1
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

𝑒
−𝜆
1
𝑡

+ 𝜏
𝛿
𝐶
2
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

+ 𝐶
3
, ∀𝑡 ≥ 0.

(73)

Now, we fix a 𝑇 > 0 and 𝜏 ≤ 𝜏
0
independent of 𝑢

0
such

that

𝐶
󸀠

1
𝑒
−𝜆
1
𝑇
<
1

8
, 𝜏

𝛿
𝐶
2
<
1

8
. (74)

So,

‖V(𝑡)‖2
𝛼
≤
1

4
(
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 1)

2

+ 𝐶
3

≤ (

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼

2
+
1

2
+ √𝐶

3
)

2

, ∀𝑡 ≥ 𝑇.

(75)

Setting 𝐶
0
= 1/2 + √𝐶

3
, we find that

‖V(𝑡)‖
𝛼
≤
1

2

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝐶0, ∀𝑡 ≥ 𝑇, 𝑢

0
∈ C. (76)

Next, we will use mathematical induction to prove that

‖V (𝑡)‖
𝛼
≤

1

2𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼

+ 𝐶
0
(1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑘−1
) , ∀𝑡 ≥ 𝑇

𝑘
, 𝑢
0
∈ C,

(77)

where 𝑇
𝑘
= 𝑘(𝑇 + 1).
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Indeed, let 𝑢
0
∈ C. If 𝑘 = 1, then (77) clearly holds true.

Suppose that (77) holds for 𝑘 = 𝑚; that is,

‖V (𝑡)‖
𝛼
≤

1

2𝑚
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼

+ 𝐶
0
(1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑚−1
) , ∀𝑡 ≥ 𝑇

𝑚
, 𝑢
0
∈ C.

(78)

Then, in particular,

‖V (𝑡)‖
𝛼
≤

1

2𝑚
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼

+ 𝐶
0
(1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑚−1
) , ∀𝑡 ∈ [𝑇

𝑚
, 𝑇
𝑚
+ 𝜏] .

(79)

From (76), we know that
󵄩󵄩󵄩󵄩V (𝑡 + 𝑇𝑚 + 𝜏)

󵄩󵄩󵄩󵄩𝛼

≤
1

2
max
𝑡∈[−𝜏,0]

󵄩󵄩󵄩󵄩V (𝑡 + 𝑇𝑚 + 𝜏)
󵄩󵄩󵄩󵄩𝛼 + 𝐶0, ∀𝑡 ≥ 𝑇.

(80)

If we consider 𝑡 + 𝑇
𝑚
+ 𝜏 as 𝑡, then the above can be rewritten

as

‖V (𝑡)‖
𝛼
≤
1

2
max

𝑡∈[𝑇𝑚,𝑇𝑚+𝜏]
‖V (𝑡)‖

𝛼
+ 𝐶
0
, ∀𝑡 ≥ 𝑇

𝑚
+ 𝜏 + 𝑇.

(81)

From (79),

‖V (𝑡)‖
𝛼

≤
1

2
[
1

2𝑚
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝐶0 (1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑚 − 1
)] + 𝜌

0

=
1

2𝑚+1
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝐶0 (1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑚
) ,

∀𝑡 ≥ 𝑇
𝑚
+ 𝜏 + 𝑇.

(82)

Choosing 𝜏 ≤ 1, we conclude that

‖V(𝑡)‖
𝛼
≤

1

2𝑚+1
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝐶0 (1 +

1

2
+ ⋅ ⋅ ⋅ +

1

2𝑚
) ,

∀𝑡 ≥ 𝑇
𝑚
+ 1 + 𝑇 = 𝑇

𝑚+1
.

(83)

Thus, we see that (77) holds for𝑚 + 1.
By (77), we know that

‖V (𝑡)‖
𝛼
≤

1

2𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 2𝐶0,

∀𝑡 ∈ [𝑇
𝑘
, 𝑇
𝑘+1

] , 𝑢
0
∈ C, 𝑘 = 1, 2, . . . .

(84)

Furthermore, by Lemma 5, we see that

‖V (𝑡)‖
𝛼
≤
𝐵
0

2𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝜌0,

∀𝑡 ∈ [𝑇
𝑘
, 𝑇
𝑘+1

] , 𝑢
0
∈ C, 𝑘 = 0, 1, 2, . . . ,

(85)

where 𝜌
0
= 2𝐶
0
+ 1.

We observe that 𝑡/(𝑇+ 1) ∈ [𝑘, 𝑘 + 1]when 𝑡 ∈ [𝑇
𝑘
, 𝑇
𝑘+1

],
so we infer from (85) that

‖V (𝑡)‖
𝛼
≤
𝐵
0

2𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝜌0

=
2𝐵
0

2𝑘+1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝜌0

≤ 2𝐵
0
2
−𝛼𝑡󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝜌0,

∀𝑡 ∈ [𝑇
𝑘
, 𝑇
𝑘+1

] , 𝑢
0
∈ C, 𝑘 = 0, 1, 2, . . . ,

(86)

where 𝛼 = 1/(𝑇 + 1). So, we easily see that

‖V(𝑡)‖
𝛼
≤ 2𝐵
0
2
−𝛼𝑡󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝛼 + 𝜌0, ∀𝑡 ≥ 0, 𝑢

0
∈ C. (87)

This completes the proof of the theorem.
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