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This paper is concerned with the design problem of robust𝐻
∞
switching rule for Boost converters with uncertain parameters and

disturbances. Firstly, the Boost converter is modeled as a switched affine linear systemwith uncertain parameters and disturbances.
Then, using common Lyapunov function approach and linearmatrix inequality (LMI) technique, a novel switching rule is proposed
such that the𝐻

∞
model reference tracking performance is satisfied. Finally, a simulation result is provided to show the validity of

the proposed method.

1. Introduction

The last years have witnessed the crescent interest of the sci-
entific community in the study of hybrid systems because of
their wide applications in many fields, such as chemical pro-
cessing, communication networks, traffic control, automotive
engine control, and aircraft control [1–4]. The stochastic
hybrid systems, also called Markov jump systems, represent
an important class of hybrid systems that are popular inmod-
elingmany practical systems, such asmanufacturing systems,
power systems, aerospace systems, and networked control
systems that may experience random abrupt changes in their
structures and parameters [5–8]. Recently, the problem of the
adaptive tracking for a class of stochastic nonlinear systems
with stationary Markovian switching was considered in [9].
The problem of robust mode-dependent delayed state feed-
back 𝐻

∞
control for a class of uncertain time-delay systems

with Markovian switching parameters and mixed discrete,
neutral, and distributed delays was investigated in [10].

As a specific type of hybrid systems, switched systems
have received a great attention in the last decades. Many
examples of such systems can be found in real world, such
as power electronics, networked control systems [11]. The
switching rule design is one of the key issues in the study of
switched systems. Based on the switching rule design, many
important problems, such as stability, model reduction, 𝐻

∞

control or filtering problem, and tracking control, have been
extensively investigated in [12–22]. For example, the prob-
lems of stability and stabilization of impulsive switched sys-
tems with time delays were considered in [12]. The problems
of finite-time stability analysis and stabilization for switched
nonlinear discrete-time systems were addressed in [13]. The
model reduction of switched systems was investigated in
[14, 15]. In [16–22], the𝐻

∞
control and filtering problems of

switched systems were studied. In [23], the tracking control
for switched linear systems with time delay was investigated,
and a tracking control law was designed such that the 𝐻

∞

model reference tracking performance is satisfied. There are
also many papers discussing the switching rule design for
switched affine systems; see, for instance, [24–26] and the
references therein.

On the other hand, the switch-mode DC-DC converters
are widely applied in DC motor drives and regulated DC
power supplies where the object is to convert the unregulated
DC input into a desired DC output voltage level [27]. Due
to the fact that the DC-DC converters operate in a switch
mode where an interaction between continuous and discrete
dynamics exists, they can be modeled as hybrid systems.
Recently, a unified method for fast modeling of DC-DC
switching converters in the continuous conductionmode and
discontinuous conductionmodewas proposed in [28]. A tris-
tate converter was modeled as a switched affine system, and
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Figure 1: A Boost converter with inductor ESR.

a controller was designed to ensure that the corresponding
closed-loop system is always stable in the safe set [29]. In
[27], a hybrid feedback switching rule based on the common
Lyapunov function approachwas applied to a Buck converter.
Themethod dealing with switched affine systems was used to
study DC-DC converters, and a set of equilibrium points and
a class of switching rules were determined in [30, 31]. In order
to improve the switching strategy, the clock delay control was
discussed in [32]. In addition, the method of state feedback
𝐻
∞

controller design for Monrovian switching systems with
mixed delays was applied to DC-DC converters in [33].
However, DC-DC converters with uncertain parameters and
disturbances have not yet gained sufficient research attention,
which motivates the present study.

In this paper, we are interested in investigating the robust
𝐻
∞
switching rule design for Boost converterswith uncertain

parameters and disturbances. Firstly, the Boost converter
under consideration is modeled as a switched affine system.
Then the common quadratic Lyapunov function approach is
utilized for the design of switching rule. By determining a
set of attainable equilibrium points, a class of switching rules
and the activation region of each subsystem are developed. A
sufficient condition for the existence of such switching rule
guaranteeing the𝐻

∞
model reference tracking performance

is formulated in terms of linear matrix inequality (LMI).
The rest of this paper is organized as follows. Section 2

presents the model of switched affine linear system for a
Boost converter with uncertain parameters and disturbances.
In Section 3, a switching rule is designed such that the 𝐻

∞

model reference tracking performance is satisfied. The sim-
ulation result is illustrated through a numerical example in
Section 4. Brief conclusion is discussed in Section 5.

Notations. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space,
and 𝑅𝑛×𝑛 is the set of 𝑛 × 𝑛 real matrices. For real matrices
or vectors, the superscript “𝑇” stands for the transpose. The
convex combination is given by 𝐴

𝜆
= ∑
𝑚

𝑖=1
𝜆
𝑖
𝐴
𝑖
, where 𝜆

belongs to the set of Λ composed by all nonnegative vectors
such that∑𝑚

𝑖=1
𝜆
𝑖
= 1.The space of square integrable functions

on [0,∞) is denoted by 𝐿
2
[0,∞).

2. Model of Boost Converter

A Boost converter with the inductor equivalent series resis-
tance (ESR), uncertain parameters, and disturbance is shown
in Figure 1.

Suppose that the converter operates in a continuous cur-
rent conduction mode. Let the inductor current 𝑖 and the
capacitance voltage 𝑢

𝑐
be the state variables, and denote that

𝑥 = [𝑥
1
𝑥
2
]

𝑇

= [𝑖 𝑢
𝑐
]

𝑇. From Figure 1, it can be seen that
the converter operates between two modes. Considering that
the output load resistance 𝑅 and its variation are bounded,
when the switch 𝑆 is closed, the system equation is

[

̇𝑖

𝑢̇
𝑐

] =
[

[

[

−

𝑅
0

𝐿

0

0 −

1

(𝑅 + Δ𝑅
1
) 𝐶

]

]

]

[

𝑖

𝑢
𝑐

] +
[

[

[

𝐸

𝐿

0

]

]

]

+
[

[

[

1

𝐿

0

]

]

]

𝜔,

𝑢
0
= [0 1] [

𝑖

𝑢
𝑐

] ,

(1)

when the switch 𝑆 is open, the system equation is

[

̇𝑖

𝑢̇
𝑐

] =

[

[

[

[

[

−

𝑅
0

𝐿

−

1

𝐿

1

𝐶

−

1

(𝑅 + Δ𝑅
2
) 𝐶

]

]

]

]

]

[

𝑖

𝑢
𝑐

] +
[

[

[

𝐸

𝐿

0

]

]

]

+
[

[

[

1

𝐿

0

]

]

]

𝜔,

𝑢
0
= [0 1] [

𝑖

𝑢
𝑐

] ,

(2)

where 𝜔 is the disturbance of the input voltage and Δ𝑅
1
and

Δ𝑅
2
are the variations of the load resistance.
In order to separate the uncertainties from the system

equation, we can use the first-order Taylor series expansion,
and the system equation can be written as when the switch 𝑆
is closed,

𝑥̇ (𝑡) = (𝐴
1
+ Δ𝐴
1
(𝑡)) 𝑥 (𝑡) + 𝑏

1
+ 𝐷
1
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) ,

(3)

when the switch 𝑆 is open,

𝑥̇ (𝑡) = (𝐴
2
+ Δ𝐴
2
(𝑡)) 𝑥 (𝑡) + 𝑏

2
+ 𝐷
2
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) ,

(4)

where

𝐴
1
=
[

[

[

−

𝑅
0

𝐿

0

0 −

1

𝑅𝐶

]

]

]

, 𝑏
1
=
[

[

[

𝐸

𝐿

0

]

]

]

,

𝐴
2
=

[

[

[

[

[

−

𝑅
0

𝐿

−

1

𝐿

1

𝐶

−

1

𝑅𝐶

]

]

]

]

]

, 𝑏
2
=
[

[

[

𝐸

𝐿

0

]

]

]

,

𝐷
1
=
[

[

[

1

𝐿

0

]

]

]

, 𝐷
2
=
[

[

[

1

𝐿

0

]

]

]

,

𝐶
1
= [0 1] , 𝐶

2
= [0 1] .

(5)
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The uncertainties can be written as

Δ𝐴
1
(𝑡) = 𝑀

1
𝐹
1
(𝑡)𝑁
1
, Δ𝐴

2
(𝑡) = 𝑀

2
𝐹
2
(𝑡)𝑁
2
, (6)

where 𝐹
𝑖

𝑇

(𝑡)𝐹
𝑖
(𝑡) ≤ 𝐼, 𝑀

1
= 𝑀
2
= [
1 0

0 1
] , 𝑁
1
= 𝑁
2
=

[
0 0

0 Δ𝑅max/𝑅
2
𝐶
], and Δ𝑅max is the upper bound of the variation

of the load resistance.

3. Switching Rule Design

Because the hybrid system model of the converter described
in Section 2 involves uncertain parameters and disturbance,
the model can be described by the following switched affine
systems:

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)
𝑥 (𝑡) + 𝑏

𝜎(𝑡)
+ 𝐷
𝜎(𝑡)
𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝜎(𝑡)
𝑥 (𝑡) ,

(7)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state, 𝑦(𝑡) ∈ 𝑅

𝑞 is the
output, 𝜔 ∈ 𝑅

𝑝 is the bounded exogenous disturbance of
the system, 𝜎(𝑡) : [0,∞) → 𝑚 = {1, 2, . . . , 𝑚} is a
piecewise constant function of time, so-called switching rule,
and 𝑚 is the number of system modes. The 𝑖th system mode
(𝐴
𝑖
, 𝑏
𝑖
, 𝐷
𝑖
, 𝐶
𝑖
) is active at time 𝑡when 𝜎(𝑡) = 𝑖.𝐴

𝑖
= 𝐴
𝑖
+Δ𝐴
𝑖
,

Δ𝐴
𝑖
represents the uncertainty, and 𝐴

𝑖
, 𝑏
𝑖
, 𝐷
𝑖
, and 𝐶

𝑖
are

constant matrices of appropriate dimensions.
The problem concerned here is to design a switching rule

𝜎(𝑡) and determine an equilibrium point 𝑥
𝑟
∈ 𝑅
𝑛 that is

attainable under such switching rule, that is, 𝑥(𝑡) → 𝑥
𝑟
as

𝑡 → ∞. Furthermore, the switching rule should guarantee
the𝐻

∞
model reference tracking performance.

Given the desired equilibrium point 𝑥
𝑟
and system (7),

the tracking error system is

̇𝑒
𝑟
(𝑡) = 𝐴

𝜎(𝑡)
𝑒
𝑟
(𝑡) + 𝑘

𝜎(𝑡)
+ 𝐷
𝜎(𝑡)
𝜔 (𝑡) ,

𝑘
𝑖
= 𝑏
𝑖
+ 𝐴
𝑖
𝑥
𝑟
, 𝑒

𝑟
(𝑡) = 𝑥 (𝑡) − 𝑥

𝑟
.

(8)

Consider the measurement vector 𝑦(𝑡) of system (7), and
define the output tracking error as follows:

𝜀 (𝑡) = 𝑦 (𝑡) − 𝐶
𝜎(𝑡)
𝑥
𝑟
= 𝐶
𝜎(𝑡)
𝑒
𝑟
(𝑡) . (9)

Given a performance index

𝐽 = ∫

∞

𝑡
0

𝜀
𝑇

(𝑡) 𝜀 (𝑡) 𝑑𝑡 − 𝛾
2

∫

∞

𝑡
0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡, (10)

then the problem under consideration can be transformed
to design a switching rule 𝜎(𝑡) such that error system (8) is
stabilizable with an𝐻

∞
disturbance attenuation 𝛾.

Assumption 1. The uncertainty Δ𝐴
𝑖
is given as follow:

Δ𝐴
𝑖
(𝑡) = 𝑀

𝑖
𝐹
𝑖
(𝑡)𝑁
𝑖
, (11)

where𝑀
𝑖
and𝑁

𝑖
are known constant matrices of the appro-

priate dimensions and𝐹
𝑖
(𝑡) is an unknown bounded function

which satisfies

𝐹
𝑖

𝑇

(𝑡) 𝐹
𝑖
(𝑡) ≤ 𝐼. (12)

Definition 2. Given a constant 𝛾 > 0, error switched system
(8) is said to be stabilizable with an 𝐻

∞
disturbance atten-

uation 𝛾 if there exists a switching rule 𝜎(𝑡) such that the
following conditions are satisfied:

(1) system (8) with 𝜔(𝑡) ≡ 0 is asymptotically stable for
all admissible uncertainties;

(2) under zero-initial condition, that is, 𝑥(0) = 0,

𝐽 = ∫

∞

𝑡
0

𝜀
𝑇

(𝑡) 𝜀 (𝑡) 𝑑𝑡 − 𝛾
2

∫

∞

𝑡
0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 < 0 (13)

holds for all admissible uncertainties and all nonzero 𝜔(𝑡) ∈
𝐿
2
[0,∞).

Lemma 3 (see [31]). Consider switched system (7) with 𝑏
𝜎(𝑡)

≡

0, if there exist 𝜆 ∈ Λ and a symmetric positive-definite matrix
𝑃 ∈ 𝑅

𝑛×𝑛 such that

𝐴
𝜆

𝑇

𝑃 + 𝑃𝐴
𝜆
< 0. (14)

Then the switching rule

𝜎 (𝑥) = argmin
𝑖∈𝑚

𝑥
𝑇

𝑃𝐴
𝑖
𝑥 (15)

makes the equilibrium point 𝑥
𝑟
= 0 globally asymptotically

stable.

Lemma 4 (see [24]). Consider switched affine linear system
(7) with 𝑚 = 2; the point 𝑥

𝑟
= 0 is a quadratic stabilizable

switched equilibrium if and only if there exists 𝛼 ∈ (0, 1) such
that

𝐴
𝜆
= 𝛼𝐴
1
+ (1 − 𝛼)𝐴

2
𝑖𝑠 𝐻𝑢𝑟𝑤𝑖𝑡𝑧,

𝑏
𝜆
= 𝛼𝑏
1
+ (1 − 𝛼) 𝑏

2
= 0.

(16)

Lemma 5 (see [34]). If 𝑋 and 𝑌 are constant matrices of
appropriate dimensions, then

𝑋
𝑇

𝑌 + 𝑌
𝑇

𝑋 ≤ 𝜉
−1

𝑋
𝑇

𝑋 + 𝜉𝑌
𝑇

𝑌, (17)

where 𝜉 is a positive scalar.

The following theorem provides an LMI condition for
designing the switching rule 𝜎(𝑡) such that error system (8)
is stabilizable with an𝐻

∞
disturbance attenuation 𝛾.

Theorem 6. Let 𝑥
𝑟
be a given constant vector representing the

desired equilibrium point of the system (7), and consider error
switched system (8). Given constants 𝛾 > 0 and 𝜀 > 0, if there
exist 𝜆 ∈ Λ and a symmetric positive definite matrix 𝑃 ∈ 𝑅𝑛×𝑛
such that

[

[

[

[

[

[

𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
𝜀
−1

𝑁
𝑖

𝑇

𝜀𝑃𝑀
𝑖
𝛾
−1

𝑃𝐷
𝑖
𝐶
𝑖

𝑇

𝜀
−1

𝑁
𝑖

−𝐼 0 0 0

𝜀𝑀
𝑖

𝑇

𝑃 0 −𝐼 0 0

𝛾
−1

𝐷
𝑖

𝑇

𝑃 0 0 −𝐼 0

𝐶
𝑖

0 0 0 −𝐼

]

]

]

]

]

]

< 0, (18)

𝐴
𝜆
𝑥
𝑟
+ 𝑏
𝜆
= 0, (19)
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for all 𝑖 ∈ 𝑚, then the following switching rule

𝜎 (𝑡)

= argmin
𝑖∈𝑚

{𝑒
𝑟

𝑇

(𝑡) (𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃 + 𝐶
𝑖

𝑇

𝐶
𝑖
) 𝑒
𝑟
(𝑡)}

(20)

canmake the error switched system (8) stabilizable with an𝐻
∞

disturbance attenuation 𝛾.

Proof. Choose the following Lyapunov function:

𝑉 (𝑒
𝑟
) = 𝑒
𝑟

𝑇

(𝑡) 𝑃𝑒
𝑟
(𝑡) . (21)

Along the trajectory of system (8), we obtain from (20) that

𝑉̇ (𝑒
𝑟
(𝑡))

= 𝑥̇
𝑇

(𝑡) 𝑃𝑒
𝑟
(𝑡) + 𝑒

𝑟

𝑇

(𝑡) 𝑃𝑥̇ (𝑡)

= 2𝑒
𝑟

𝑇

(𝑡) 𝑃𝑥̇ = 2𝑒
𝑟

𝑇

(𝑡) 𝑃 (𝐴
𝜎(𝑡)

+ Δ𝐴
𝜎(𝑡)

(𝑡)) 𝑥 (𝑡)

+ 2𝑒
𝑟

𝑇

(𝑡) 𝑃𝑏
𝜎(𝑡)

+ 2𝑒
𝑟

𝑇

(𝑡) 𝑃𝐷
𝜎(𝑡)
𝜔 (𝑡)

= min
𝑖∈𝑚

(2𝑒
𝑟

𝑇

(𝑡) 𝑃 (𝐴
𝑖
𝑥 (𝑡) + Δ𝐴

𝑖
(𝑡) 𝑥 (𝑡)

+𝑏
𝑖
+ 𝐷
𝑖
𝜔 (𝑡)))

= min
𝑖∈𝑚

(𝑒
𝑟

𝑇

(𝑡) (𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ Δ𝐴
𝑖

𝑇

(𝑡) 𝑃 + 𝑃Δ𝐴
𝑖
(𝑡)) 𝑒
𝑟
(𝑡)

+2𝑒
𝑟

𝑇

(𝑡) 𝑃 ((𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥
𝑟
+ 𝑏
𝑖
+ 𝐷
𝑖
𝜔 (𝑡)))

= min
𝑖∈𝑚

(𝑒
𝑟

𝑇

(𝑡) (𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝑁
𝑖

𝑇

𝐹
𝑖

𝑇

(𝑡)𝑀
𝑖

𝑇

𝑃

+ 𝑃𝑀
𝑖
𝐹
𝑖
(𝑡)𝑁
𝑖
) 𝑒
𝑟
(𝑡) + 2𝑒

𝑟

𝑇

(𝑡) 𝑃𝐷
𝑖
𝜔 (𝑡))

+min
𝜆∈Λ

(2𝑒
𝑟

𝑇

(𝑡) 𝑃 ((𝐴
𝜆
+ Δ𝐴
𝜆
(𝑡)) 𝑥
𝑟
+ 𝑏
𝜆
)) .

(22)

By Lemma 5, one obtains

𝑁
𝑖

𝑇

𝐹
𝑖

𝑇

(𝑡)𝑀
𝑖

𝑇

𝑃 + 𝑃𝑀
𝑖
𝐹
𝑖
(𝑡)𝑁
𝑖

≤ 𝜀
−2

𝑁
𝑖

𝑇

𝐹
𝑖

𝑇

(𝑡) 𝐹
𝑖
(𝑡)𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

≤ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃,

2𝑒
𝑟

𝑇

(𝑡) 𝑃𝐷
𝑖
𝜔 (𝑡) ≤ 𝛾

−2

𝑒
𝑟

𝑇

(𝑡) 𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃𝑒
𝑟
(𝑡) + 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) .

(23)

It follows from (19) and (23) that

𝑉̇ (𝑒
𝑟
(𝑡))

≤ min
𝑖∈𝑚

(𝑒
𝑟

𝑇

(𝑡) (𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃) 𝑒
𝑟
(𝑡) + 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)) .

(24)

For any 𝑡 ≥ 0, the feasibility of (18) implies 𝑉̇(𝑒
𝑟
(𝑡)) <

0, which ensures the asymptotic stability of system (8) with
𝜔(𝑡) ≡ 0.

On the other hand, denote that {(𝑡
𝑘
, 𝜎(𝑡
𝑘
)) | 𝑘 =

0, 1, . . . , 𝑠; 0 = 𝑡
0
≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑠
< 𝑡
𝑓
} as the switching

sequence of 𝜎(𝑡) on the interval [0, 𝑡
𝑓
). Under zero condition,

we have

∫

𝑡
𝑓

𝑡
0

[𝜀
𝑇

(𝑡) 𝜀 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡

=

𝑠−1

∑

𝑘=0

{∫

𝑡
𝑘+!

𝑡
𝑘

[𝜀
𝑇

(𝑡) 𝜀 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉̇ (𝑒
𝑟
(𝑡))] 𝑑𝑡

− [𝑉 (𝑒
𝑟
(𝑡
𝑘+1
)) − 𝑉 (𝑒

𝑟
(𝑡
𝑘
))] }

+ ∫

𝑡
𝑓

𝑡
𝑠

[𝜀
𝑇

(𝑡) 𝜀 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉̇ (𝑒
𝑟
(𝑡))] 𝑑𝑡

− [𝑉 (𝑒
𝑟
(𝑡
𝑓
)) − 𝑉 (𝑒

𝑟
(𝑡
𝑠
))]

=

𝑠−1

∑

𝑘=0

∫

𝑡
𝑘+!

𝑡
𝑘

[𝑒
𝑟

𝑇

(𝑡) 𝐶
𝑖

𝑇

𝐶
𝑖
𝑒
𝑟
(𝑡) − 𝛾

2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉̇ (𝑒
𝑟
(𝑡))] 𝑑𝑡

+ ∫

𝑡
𝑓

𝑡
𝑠

[𝜀
𝑇

(𝑡) 𝜀 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉̇ (𝑒
𝑟
(𝑡))] 𝑑𝑡

− 𝑉 (𝑒
𝑟
(𝑡
𝑓
))

≤

𝑠−1

∑

𝑘=0

∫

𝑡
𝑘+!

𝑡
𝑘

[𝑒
𝑟

𝑇

(𝑡) (𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃 + 𝐶
𝑖

𝑇

𝐶
𝑖
) 𝑒
𝑟
(𝑡)] 𝑑𝑡

+ ∫

𝑡
𝑓

𝑡
𝑠

[𝑒
𝑟

𝑇

(𝑡)(𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃 + 𝐶
𝑖

𝑇

𝐶
𝑖
) 𝑒
𝑟
(𝑡)] 𝑑𝑡.

(25)

According to Schur’s complement and the inequality (25), it
is easy to get

∫

𝑡
𝑓

𝑡
0

𝜀
𝑇

(𝑡) 𝜀 (𝑡) 𝑑𝑡 ≤ 𝛾
2

∫

𝑡
𝑓

𝑡
0

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡. (26)

Letting 𝑡
𝑓
= ∞, we get 𝐽 < 0.

This completes the proof.

FromTheorem 6, it can be seen that (18) is a LMI; thus we
can first get the matrix 𝑃 through LMI toolbox of MATLAB
[35]. Then the desired switching rule can be obtained from
(20) for any selected equilibrium point 𝑥

𝑟
.

According to the switched affine system model of the
Boost converter described in Section 3, if the converter
operates in a continuous current conduction mode, we can
get 𝑚 = 2. In the case of two subsystems, if we ignore the
uncertainties in the switching point average system, then we
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can obtain the convex combination as in Lemma 4 and in [8],
and the convex combination is given by

𝑥̇ (𝑡) = 𝐴
𝜆
𝑥 (𝑡) + 𝑏

𝜆
, (27)

where 𝐴
𝜆
= ∑
2

𝑖=1
𝜆
𝑖
𝐴
𝑖
, 𝑏
𝜆
= ∑
2

𝑖=1
𝜆
𝑖
𝑏
𝑖
with 0 < 𝜆

𝑖
< 1

and ∑2
𝑖=1
𝜆
𝑖
= 1. If the dwell time of the 𝑖th subsystem is

proportional to 𝜆
𝑖
, as the concept of “duty ratio” in DC-DC

converters, then (27) is an average model of switched system
(7). However, unlike time average control, the quadratic
stability of the switched equilibrium takes the state feedback
form. A necessary and sufficient condition for the quadratic
stability of the switched equilibrium is shown in Lemma 4.
In addition, the proposed switching rule depends on state
variables; hence rapid switching can be avoided.

Condition (19) is an expression of the desired equilibrium
point 𝑥

𝑟
for DC-DC converters. Notice that the inequality

(18) imposes that 𝐴
𝜆
= ∑
2

𝑖=1
𝜆
𝑖
𝐴
𝑖
is asymptotically stable,

where 𝜆
𝑖
can be regard as the concept of “duty ratio” in DC-

DC converters.Thenwe can calculate the desired equilibrium
point 𝑥

𝑟
for DC-DC converters by the following equation:

𝑥
𝑟
= −𝐴
𝜆

−1

𝑏
𝜆
, (28)

where 𝐴
𝜆
= ∑
2

𝑖=1
𝜆
𝑖
𝐴
𝑖
, 𝑏
𝜆
= ∑
2

𝑖=1
𝜆
𝑖
𝑏
𝑖
, 0 < 𝜆

𝑖
< 1, and

∑
2

𝑖=1
𝜆
𝑖
= 1.

The switching rule (20) can be expressed as

𝜎 (𝑡) = argmin
𝑖∈𝑚

{𝑒
𝑟

𝑇

(𝑡) 𝑇
𝑖
𝑒
𝑟
(𝑡)} , (29)

where

𝑇
𝑖
= 𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+ 𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃 + 𝐶
𝑖

𝑇

𝐶
𝑖
.

(30)

From (18), we can easily obtain

𝑇
𝑖
= 𝐴
𝑖

𝑇

𝑃 + 𝑃𝐴
𝑖
+ 𝜀
−2

𝑁
𝑖

𝑇

𝑁
𝑖
+ 𝜀
2

𝑃𝑀
𝑖
𝑀
𝑖

𝑇

𝑃

+ 𝛾
−2

𝑃𝐷
𝑖
𝐷
𝑖

𝑇

𝑃 + 𝐶
𝑖

𝑇

𝐶
𝑖
≤ 0.

(31)

Denote

𝑆 = {𝑥 ∈ 𝑅
𝑛

| (𝑥 − 𝑥
𝑟
)
𝑇

(𝑇
1
− 𝑇
2
) (𝑥 − 𝑥

𝑟
) = 0} . (32)

Then the activation regions of subsystems 1 and 2 can be
defined as follow:

Ψ
1
={𝑥 ∈ 𝑅

𝑛

| (𝑥 − 𝑥
𝑟
)
𝑇

𝑇
1
(𝑥 − 𝑥

𝑟
) <(𝑥 − 𝑥

𝑟
)
𝑇

𝑇
2
(𝑥 − 𝑥

𝑟
)},

Ψ
2
={𝑥 ∈ 𝑅

𝑛

| (𝑥 − 𝑥
𝑟
)
𝑇

𝑇
1
(𝑥 − 𝑥

𝑟
) >(𝑥 − 𝑥

𝑟
)
𝑇

𝑇
2
(𝑥 − 𝑥

𝑟
)}.

(33)

Therefore, the switching rule (20) in the case of two subsys-
tems can be rewritten as

𝜎 (𝑥) = {

1, if (𝑥 − 𝑥
𝑟
)
𝑇

(𝑇
1
− 𝑇
2
) (𝑥 − 𝑥

𝑟
) < 0,

2, if (𝑥 − 𝑥
𝑟
)
𝑇

(𝑇
1
− 𝑇
2
) (𝑥 − 𝑥

𝑟
) > 0,

(34)

where

𝑇
1
= 𝐴
1

𝑇

𝑃 + 𝑃𝐴
1
+ 𝜀
−2

𝑁
1

𝑇

𝑁
1
+ 𝜀
2

𝑃𝑀
1
𝑀
1

𝑇

𝑃

+ 𝛾
−2

𝑃𝐷
1
𝐷
1

𝑇

𝑃 + 𝐶
1

𝑇

𝐶
1
,

𝑇
2
= 𝐴
2

𝑇

𝑃 + 𝑃𝐴
2
+ 𝜀
−2

𝑁
2

𝑇

𝑁
2
+ 𝜀
2

𝑃𝑀
2
𝑀
2

𝑇

𝑃

+ 𝛾
−2

𝑃𝐷
2
𝐷
2

𝑇

𝑃 + 𝐶
2

𝑇

𝐶
2
,

(35)

with 𝐴
𝑖
,𝑀
𝑖
, 𝑁
𝑖
, 𝐶
𝑖
, and 𝐷

𝑖
, 𝑖 = 1, 2, have been given in (3),

(4), and (6).

Remark 7. In Theorem 6, a method of robust 𝐻
∞

switching
rule design is proposed for Boost converters. It is worth
pointing out that the proposed design method can also be
applied to other types of converters that can be described by
switched affine system models, such as Buck converters and
Buck-Boost converters.

Remark 8. It can be seen from (34) that the matrix 𝑃 is
necessary to the implementation of the switching rule (34);
because the matrix 𝑃 defined in Theorem 6 does not depend
on each 𝜆 ∈ Λ associated with 𝑥

𝑟
. Hence, for any equilibrium

point 𝑥
𝑟
= [𝑖
𝑟
𝑢
𝑐𝑟
]

𝑇 selected by the designer, the matrix 𝑃
can be derived from (18), and consequently, the switching rule
(34) can be implemented in practice.

4. Simulation Results

To illustrate the obtained result, consider the Boost converter
described in Section 2.The parameters of the Boost converter
are 𝐸 = 12V, 𝐿 = 10mH, 𝐶 = 100 𝜇F, 𝑅 = 30Ω, 𝑅

0
=

0.1Ω, Δ𝑅
1
= sin(𝜃𝑡)Ω, Δ𝑅

2
= cos(𝜃𝑡)Ω, 𝜃 = 100, and 𝜔 =

0.001𝑒
−100𝑡, and the steady-state duty ratio is 0.5. From (3),

(4), and (6), we can obtain

𝐴
1
= [

−10 0

0 −331.3
] , 𝐴

2
= [

−10 −100

10000 −331.3
] ,

𝑏
1
= [

1200

0
] , 𝑏

2
= [

1200

0
] ,

Δ𝐴
1
= [

1 0

0 1
] sin(100𝑡) [0 0

0 11.11
] ,

Δ𝐴
2
= [

1 0

0 1
] cos(100𝑡) [0 0

0 11.11
] ,

𝐶
1
= 𝐶
2
= [0 1] , 𝐷

1
= 𝐷
2
= [

100

0
] .

(36)

Let 𝜆
1
= 0.5, 𝜆

2
= 0.5, 𝜀 = 1, and 𝛾 = 1000; then we can

get 𝑥
𝑟
= [
1.5788

23.684
] by (28). Solving (18), the matrix 𝑃 can be

obtained as follows:

𝑃 = [

19.2121 −0.0031

−0.0031 0.1922
] . (37)

From (34), the desired switching rule can be derived. Fig-
ures 2–4 shows the response of the previous Boost converter,
where the initial state is given by 𝑥

0
= [0 0]

𝑇.
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Figure 2: Response of inductor current.
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Figure 3: Response of output voltage.

From Figures 2 and 3, it can be observed that the inductor
current and capacitance voltage 𝑢

𝑐
can track the reference

current and the reference voltage rapidly, respectively.There-
fore, the converter with the switching rule (34) has an 𝐻

∞

model reference tracking performance. This demonstrates
the effectiveness of the proposed result.

In addition, for this example, when the value of 𝛾 is
decreased to 393, the feasible solution of (18) cannot be found.
Thus, it can be obtained that a larger 𝛾 is favorable for the
feasibility of matrix inequality (18). On the other hand, we
can get from Remark 8 that the solution of (18) does not
dependent on the equilibrium point 𝑥

𝑟
. But the proposed

switching rule depends on the equilibrium point 𝑥
𝑟
, which

can be seen from (34).

78 79 80 81 82
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t (ms)

x2

x
2
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Figure 4: Response of output voltage in steady state.

5. Conclusions

The problem of robust 𝐻
∞

switching rule design for Boost
converters with uncertain parameters and disturbance has
been discussed in this paper. Firstly, a switched linear affine
system model for the Boost converter under consideration
is built. Then, the state-dependent switching rule is designed
for the switched linear affine systems by using common Lya-
punov function technique. The simulation result is given to
demonstrate that the proposed switching rule can guarantee
the 𝐻

∞
model reference tracking performance. Our further

work will focus on extending the proposed design method to
other types of converters.Wewill also consider the robust𝐻

∞

switching rule design based on min-projection strategy.
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