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We obtain some common fixed point results for single as well as set valued mappings involving certain rational expressions in
complete partial metric spaces. In the process, we generalize various results of the literature. Two examples are also included to
illustrate the fact that our results cannot be obtained from the corresponding results in metric spaces.

1. Introduction and Preliminaries

In 1994, Matthews [1] introduced the concept of a partial
metric space and obtained a Banach type fixed point theorem
on a complete partial metric space. Later on, several authors
(see, e.g., [1–28]) proved fixed point theorems in partial
metric spaces. After the definition of the Partial Hausdorff
metric, Aydi et al. [9] proved Banach type fixed point result
for set valued mappings in complete partial metric space.
Here, we prove some common fixed point results for single
as well as set valued mappings involving certain rational
expressions in complete partial metric spaces and show by
examples that the results proved in this paper cannot be
deduced from the corresponding results inmetric spaces (see
Example 10, Remark 13).

We start with recalling some basic definitions and lemmas
on partial metric space. The definition of a partial metric
space is given by Matthews (see [1]) as follows.

Definition 1. A partial metric on a nonempty set 𝑋 is a
function 𝑝 : 𝑋 × 𝑋 → [0,∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(P
1
) 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) = 𝑝(𝑥, 𝑦) if and only if 𝑥 = 𝑦,

(P
2
) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),

(P
3
) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),

(P
4
) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦).

The pair (𝑋, 𝑝) is then called a partial metric space.
If (𝑋, 𝑝) is a partial metric space, then the function 𝑝

𝑠
:

𝑋×𝑋 → R+ given by 𝑝
𝑠
(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦)−𝑝(𝑥, 𝑥)−𝑝(𝑦, 𝑦),

𝑥, 𝑦 ∈ 𝑋, is a metric on𝑋.
A basic example of a partial metric space is the pair

(𝑅
+
, 𝑝), where 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑅

+.

Lemma 2 (see [1]). Let (𝑋, 𝑝) be a partial metric space; then
one has the following.

(1) A sequence {𝑥
𝑛
} in a partial metric space (𝑋, 𝑝)

converges to a point 𝑥 ∈ 𝑋 if and only if
lim
𝑛→∞

𝑝(𝑥, 𝑥
𝑛
) = 𝑝(𝑥, 𝑥).

(2) A sequence {𝑥
𝑛
} in a partialmetric space (𝑋, 𝑝) is called

a Cauchy sequence if the lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists

and is finite.

(3) A partial metric space (𝑋, 𝑝) is said to be complete if
every Cauchy sequence {𝑥

𝑛
} in 𝑋 converges to a point

𝑥 ∈ 𝑋; that is, 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

(4) A partial metric space (𝑋, 𝑝) is complete if and only
if the metric space (𝑋, 𝑝

𝑠
) is complete. Furthermore,

lim
𝑛→∞

𝑝
𝑠
(𝑥
𝑛
, 𝑧) = 0 if and only if 𝑝(𝑧, 𝑧) =

lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑧) = lim

𝑛,𝑚→∞
𝑝(𝑥
𝑛
, 𝑥
𝑚
).
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Remark 3 (see [1]). Let (𝑋, 𝑝) be a partial metric space and
let 𝐴 be a nonempty set in (𝑋, 𝑝); then 𝑎 ∈ 𝐴 if and only if

𝑝 (𝑎, 𝐴) = 𝑝 (𝑎, 𝑎) , (1)

where 𝐴 denotes the closure of 𝐴 with respect to the partial
metric 𝑝. Note 𝐴 is closed in (𝑋, 𝑝) if and only if 𝐴 = 𝐴.

Definition 4 (see [24]). Two families of self-mappings {𝑇
𝑖
}
𝑚

1

and {𝑆
𝑖
}
𝑛

1
are said to be pairwise commuting if

(1) 𝑇
𝑖
𝑇
𝑗
= 𝑇
𝑗
𝑇
𝑖
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚};

(2) 𝑆
𝑘
𝑆
𝑙
= 𝑆
𝑙
𝑆
𝑘
, 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑛};

(3) 𝑇
𝑖
𝑆
𝑘
= 𝑆
𝑘
𝑇
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑘 ∈ {1, 2, . . . , 𝑛}.

Now we recall the following definitions and results from
[9].

Let 𝐶𝐵
𝑝
(𝑋) be the collection of all nonempty, closed, and

bounded subsets of𝑋with respect to the partial metric𝑝. For
𝐴 ∈ 𝐶𝐵

𝑝
(𝑋), we define

𝑝 (𝑎, 𝐴) = inf {𝑝 (𝑎, 𝑥) : 𝑥 ∈ 𝐴} . (2)

For 𝐴, 𝐵 ∈ 𝐶𝐵
𝑝
(𝑋),

𝛿
𝑝
(𝐴, 𝐵) = sup {𝑝 (𝑎, 𝐵) : 𝑎 ∈ 𝐴} ,

𝛿
𝑝
(𝐵, 𝐴) = sup {𝑝 (𝑏, 𝐴) : 𝑏 ∈ 𝐵} .

(3)

For 𝐴, 𝐵 ∈ 𝐶𝐵
𝑝
(𝑋),

𝐻
𝑝
(𝐴, 𝐵) = max {𝛿

𝑝
(𝐴, 𝐵) , 𝛿

𝑝
(𝐵, 𝐴)} . (4)

Proposition 5 (see [9]). Let (𝑋, 𝑝) be a partial metric space.
For any 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵

𝑝
(𝑋), one has

(i) 𝛿
𝑝
(𝐴, 𝐴) = sup{𝑝(𝑎, 𝑎) : 𝑎 ∈ 𝐴};

(ii) 𝛿
𝑝
(𝐴, 𝐴) ≤ 𝛿

𝑝
(𝐴, 𝐵);

(iii) 𝛿
𝑝
(𝐴, 𝐵) = 0 implies that 𝐴 ⊆ 𝐵;

(iv) 𝛿
𝑝
(𝐴, 𝐵) ≤ 𝛿

𝑝
(𝐴, 𝐶) + 𝛿

𝑝
(𝐶, 𝐵) − inf

𝑐∈𝐶
𝑝(𝑐, 𝑐).

Proposition 6 (see [9]). Let (𝑋, 𝑝) be a partial metric space.
For any 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵

𝑝
(𝑋), one has

(h
1
) 𝐻
𝑝
(𝐴, 𝐴) ≤ 𝐻

𝑝
(𝐴, 𝐵);

(h
2
) 𝐻
𝑝
(𝐴, 𝐵) = 𝐻

𝑝
(𝐵, 𝐴);

(h
3
) 𝐻
𝑝
(𝐴, 𝐵) ≤ 𝐻

𝑝
(𝐴, 𝐶) + 𝐻

𝑝
(𝐶, 𝐵) − inf

𝑐∈𝐶
𝑝(𝑐, 𝑐).

Lemma 7 (see [9]). Let 𝐴 and 𝐵 be nonempty, closed, and
bounded subsets of a partial metric space (𝑋, 𝑝) and ℎ > 1.
Then, for every 𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐵 such that 𝑝(𝑎, 𝑏) ≤

ℎ𝐻
𝑝
(𝐴, 𝐵).

Lemma 8 (see [10]). Let 𝐴 and 𝐵 be nonempty, closed, and
bounded subsets of a partialmetric space (𝑋, 𝑝) and 0 < ℎ ∈ R.
Then, for every 𝑎 ∈ 𝐴, there exists 𝑏 ∈ 𝐵 such that 𝑝(𝑎, 𝑏) ≤

𝐻
𝑝
(𝐴, 𝐵) + ℎ.

2. Results for Single Valued Mappings

The following result, regarding the existence of the common
fixed point of themappings satisfying a contractive condition
on the closed ball, is very useful in the sense that it requires
the contractiveness of the mappings only on the closed ball
instead of the whole space.

Theorem 9. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be mappings on a complete
PMS (𝑋, 𝑝) and 𝑥

0
, 𝑥, 𝑦 ∈ 𝑋 and 𝑟 > 0. Suppose that there

exist nonnegative reals 𝛼, 𝛽, and 𝛾 such that 𝛼 + 𝛽 + 2𝛾 < 1. If
𝑆 and 𝑇 satisfy

𝑝 (𝑆𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑆𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑆𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)

(5)

for all 𝑥, 𝑦 ∈ 𝐵
𝑝
(𝑥
0
, 𝑟),

𝑝 (𝑥
0
, 𝑆𝑥
0
) ≤ (1 − 𝜆) (𝑟 + 𝑝 (𝑥

0
, 𝑥
0
)) , (6)

where 𝜆 = (𝛼+ 𝛾)/(1 −𝛽− 𝛾). Then there exists a unique point
𝑢 ∈ 𝐵
𝑝
(𝑥
0
, 𝑟) such that 𝑢 = 𝑆𝑢 = 𝑇𝑢. Also 𝑝(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
be an arbitrary point in𝑋 and define

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, where 𝑘 = 0, 1, 2, . . . .

(7)

We will prove that 𝑥
𝑛

∈ (𝐵(𝑥
0
, 𝑟)) for all 𝑛 ∈ N by

mathematical induction. Using inequality (6) and the fact
that 𝜆 = (𝛼 + 𝛾)/(1 − 𝛽 − 𝛾) < 1, we have

𝑝 (𝑥
0
, 𝑆𝑥
0
) ≤ 𝑟 + 𝑝 (𝑥

0
, 𝑥
0
) . (8)

It implies that 𝑥
1

∈ (𝐵(𝑥
0
, 𝑟)). Let 𝑥

2
, . . . , 𝑥

𝑗
∈ 𝐵(𝑥

0
, 𝑟) for

some 𝑗 ∈ 𝑁. If 𝑗 = 2𝑘 + 1, where 𝑘 = 0, 1, 2, . . . (𝑗 − 1)/2, so
using inequality (5), we obtain

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

= 𝑝 (𝑆𝑥
2𝑘
, 𝑇𝑥
2𝑘+1

)

≤ 𝛼𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

)

+ (𝛽𝑝 (𝑥
2𝑘
, 𝑆𝑥
2𝑘
) 𝑝 (𝑥

2𝑘+1
, 𝑇𝑥
2𝑘+1

)

+𝛾𝑝 (𝑥
2𝑘+1

, 𝑆𝑥
2𝑘
) 𝑝 (𝑥

2𝑘
, 𝑇𝑥
2𝑘+1

))

× (1 + 𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

))
−1

≤ 𝛼𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

)

+ (𝛽𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

+𝛾𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+2

))

× (1 + 𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

))
−1
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≤ 𝛼𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

)

+ (𝛽𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

+𝛾𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+2

))

× (1 + 𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

))
−1

≤ 𝛼𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

) + 𝛽𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) + 𝛾𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+2

) ,

(9)

as 1 + 𝑝(𝑥
2𝑘
, 𝑥
2𝑘+1

) > 𝑝(𝑥
2𝑘
, 𝑥
2𝑘+1

), and so

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) ≤ (
𝛼 + 𝛾

1 − 𝛽 − 𝛾
)𝑝 (𝑥

2𝑘
, 𝑥
2𝑘+1

) (10)

which implies that

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) ≤ 𝜆𝑝 (𝑥
2𝑘
, 𝑥
2𝑘+1

) ≤ ⋅ ⋅ ⋅ ≤ 𝜆
2𝑘+1

𝑝 (𝑥
0
, 𝑥
1
) .

(11)

If 𝑗 = 2𝑘 + 2 where 𝑘 = 0, 1, 2, . . . , (𝑗 − 2)/2, one can easily
prove that

𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

) ≤ 𝜆
2𝑘+2

𝑝 (𝑥
0
, 𝑥
1
) . (12)

Thus from inequality (11) and (12), we have

𝑝 (𝑥
𝑗
, 𝑥
𝑗+1

) ≤ 𝜆
𝑗
𝑝 (𝑥
0
, 𝑥
1
) for some 𝑗 ∈ 𝑁. (13)

Now

𝑝 (𝑥
0
, 𝑥
𝑗+1

) ≤ 𝑝 (𝑥
0
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝑝 (𝑥

𝑗
, 𝑥
𝑗+1

)

− [𝑝 (𝑥
1
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝑝 (𝑥

𝑗
, 𝑥
𝑗
)]

≤ 𝑝 (𝑥
0
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝜆

𝑗
𝑝 (𝑥
0
, 𝑥
1
)

= 𝑝 (𝑥
0
, 𝑥
1
) [1 + ⋅ ⋅ ⋅ + 𝜆

𝑗−1
+ 𝜆
𝑗
]

≤ (1 − 𝜆) [𝑟 + 𝑝 (𝑥
0
, 𝑥
0
)]

(1 − 𝜆
𝑗+1

)

1 − 𝜆

≤ 𝑟 + 𝑝 (𝑥
0
, 𝑥
0
)

(14)

gives 𝑥
𝑗+1

∈ 𝐵(𝑥
0
, 𝑟). Hence 𝑥

𝑛
∈ 𝐵(𝑥

0
, 𝑟) for all 𝑛 ∈ N. One

can easily prove that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜆
𝑛
𝑝 (𝑥
0
, 𝑥
1
) (13

∗
)

for all 𝑛 ∈ N. We now show that {𝑥
𝑛
} is a Cauchy sequence.

Without loss of generality assume that 𝑚 > 𝑛. Then, using
(13
∗
) and the triangle inequality for partial metrics (P

4
) we

have
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑚
) − 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛+1

)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑚
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + 𝑝 (𝑥
𝑛+2

, 𝑥
𝑚
)

− 𝑝 (𝑥
𝑛+2

, 𝑥
𝑛+2

)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + 𝑝 (𝑥
𝑛+2

, 𝑥
𝑚
) .

(15)

Inductively, we have

0 ≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
)

≤ 𝜆
𝑛
𝑝 (𝑥
0
, 𝑥
1
) + 𝜆
𝑛+1

𝑝 (𝑥
0
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝜆

𝑚−1
𝑝 (𝑥
0
, 𝑥
1
)

≤ (𝜆
𝑛
+ 𝜆
𝑛+1

+ ⋅ ⋅ ⋅ + 𝜆
𝑚−1

) 𝑝 (𝑥
0
, 𝑥
1
)

≤ (
𝜆
𝑛

1 − 𝜆
)𝑝 (𝑥

0
, 𝑥
1
)

→ 0 as 𝑛 → ∞ (since 0 < 𝜆 < 1) .

(16)

Thus,

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (17)

By the definition of 𝑝𝑠, we get for any𝑚 ∈ N∗,

𝑝
𝑠
(𝑥
𝑛
, 𝑥
𝑚
) ≤ 2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) → 0 as 𝑛 → +∞. (18)

Hence the sequence {𝑥
𝑛
} is a Cauchy sequence in

(𝐵(𝑥
0
, 𝑟), 𝑝
𝑠
). By Lemma 2(4), {𝑥

𝑛
} is a Cauchy sequence in

(𝐵(𝑥
0
, 𝑟), 𝑝). Therefore there exists a point 𝑢 ∈ 𝐵(𝑥

0
, 𝑟) with

lim
𝑛→∞

𝑥
𝑛

= 𝑢. Also lim
𝑛→∞

𝑝
𝑠
(𝑥
𝑛
, 𝑢) = 0. Again from

Lemma 2(4), we have

𝑝 (𝑢, 𝑢) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛→+∞
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0.

(19)

By the triangle inequality (P
4
), we have

𝑝 (𝑢, 𝑆𝑢) ≤ 𝑝 (𝑢, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑆𝑢) − 𝑝 (𝑥
2𝑛+2

, 𝑥
2𝑛+2

)

≤ 𝑝 (𝑢, 𝑥
2𝑛+2

) + 𝑝 (𝑇𝑥
2𝑛+1

, 𝑆𝑢)

≤ 𝑝 (𝑢, 𝑥
2𝑛+2

) + 𝛼𝑝 (𝑥
2𝑛+1

, 𝑢)

+ (𝛽𝑝 (𝑥
2𝑛+1

, 𝑇𝑥
2𝑛+1

) 𝑝 (𝑢, 𝑆𝑢)

+𝛾𝑝 (𝑢, 𝑇𝑥
2𝑛+1

) 𝑝 (𝑥
2𝑛+1

, 𝑆𝑢))

× (1 + 𝑝 (𝑥
2𝑛+1

, 𝑢))
−1

≤ 𝑝 (𝑢, 𝑥
2𝑛+2

) + 𝛼𝑝 (𝑥
2𝑛+1

, 𝑢)

+ (𝛽𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) 𝑝 (𝑢, 𝑆𝑢)

+𝛾𝑝 (𝑢, 𝑥
2𝑛+2

) 𝑝 (𝑥
2𝑛+1

, 𝑆𝑢))

× (1 + 𝑝 (𝑥
2𝑛+1

, 𝑢))
−1

.

(20)

Letting 𝑛 → +∞ and using (19), we obtain

𝑝 (𝑢, 𝑆𝑢) = 0. (21)

By (P
1
), we concluded that 𝑢 = 𝑆𝑢. It follows similarly that

𝑢 = 𝑇𝑢. To prove the uniqueness of common fixed point, let
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𝑢
∗
∈ 𝐵(𝑥

0
, 𝑟) be another common fixed point of 𝑆 and𝑇, that,

is 𝑢∗ = 𝑆𝑢
∗
= 𝑇𝑢
∗. Then

𝑝 (𝑢, 𝑢
∗
) = 𝑝 (𝑆𝑢, 𝑇𝑢

∗
)

≤ 𝛼𝑝 (𝑢, 𝑢
∗
)

+
𝛽𝑝 (𝑢, 𝑆𝑢) 𝑝 (𝑢

∗
, 𝑇𝑢
∗
)+𝛾𝑝 (𝑢

∗
, 𝑆𝑢) 𝑝 (𝑢, 𝑇𝑢

∗
)

1+𝑝 (𝑢, 𝑢
∗
)

= 𝛼𝑝 (𝑢, 𝑢
∗
) +

𝛾𝑝 (𝑢
∗
, 𝑢) 𝑝 (𝑢, 𝑢

∗
)

1 + 𝑝 (𝑢, 𝑢
∗
)

(22)

so that𝑝(𝑢, 𝑢∗) ≤ 𝛼𝑝(𝑢, 𝑢
∗
)+𝛾𝑝(𝑢, 𝑢

∗
) because 1+𝑝(𝑢, 𝑢

∗
) >

𝑝(𝑢, 𝑢
∗
). Therefore 𝑝(𝑢, 𝑢

∗
) ≤ (𝛼 + 𝛾)𝑝(𝑢, 𝑢

∗
) which is a

contradiction so that 𝑢 = 𝑢
∗ (as 𝛼 + 𝛾 < 1). Hence 𝑆 and

𝑇 have a unique common fixed point in 𝐵(𝑥
0
, 𝑟).

Example 10. Let𝑋 = [0, +∞) endowed with the usual partial
metric 𝑝 defined by 𝑝 : 𝑋 × 𝑋 → R+ with 𝑝(𝑥, 𝑦) =

max{𝑥, 𝑦}. Clearly, (𝑋, 𝑝) is a partial metric space. Now we
define 𝑆, 𝑇 : 𝑋 → 𝑋 as

𝑆 (𝑥) =

{{{

{{{

{

𝑥

16
if 0 ≤ 𝑥 ≤ 1

𝑥 −
1

6
if 𝑥 > 1

𝑇 (𝑥) =

{{{

{{{

{

5𝑥

17
if 0 ≤ 𝑥 ≤ 1

𝑥 −
1

7
if 𝑥 > 1

(23)

for all 𝑥 ∈ 𝑋. Taking 𝛼 = 1/5, 𝛽 = 1/6, 𝛾 = 1/8, 𝑥
0
= 1/2,

and 𝑟 = 1/2, then 𝐵
𝑝
(𝑥
0
, 𝑟) = [0, 1]. Also, we have 𝑝(𝑥

0
, 𝑥
0
) =

max{1/2, 1/2} = 1/2, 𝜆 = (𝛼 + 𝛾)/(1 − 𝛽 − 𝛾) = 39/85 with

(1 − 𝜆) (𝑟 + 𝑝 (𝑥
0
, 𝑥
0
)) =

46

85
,

𝑝 (𝑥
0
, 𝑆𝑥
0
) = 𝑝 (

1

2
,
1

32
) =

1

2
< (1 − 𝜆) (𝑟 + 𝑝 (𝑥

0
, 𝑥
0
)) .

(24)

Also if 𝑥, 𝑦 ∈ (1, +∞), then

𝑝 (𝑆𝑥, 𝑇𝑦) = max {𝑥 −
1

6
, 𝑥 −

1

7
} ≥

1

5
max {𝑥, 𝑦}

+ (
1

6
max {𝑥, 𝑥 −

1

6
}max {𝑦, 𝑦 −

1

7
}

+
1

8
max {𝑦, 𝑥 −

1

6
}max {𝑥, 𝑦 −

1

7
})

× (1 +max {𝑥, 𝑦})
−1

= 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑆𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑆𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)
.

(25)

So the contractive condition does not hold on whole of 𝑋.
Now if 𝑥, 𝑦 ∈ 𝐵

𝑝
(𝑥
0
, 𝑟), then

𝑝 (𝑆𝑥, 𝑇𝑦) = max {
𝑥

16
,
5𝑦

17
} ≤

1

5
max {𝑥, 𝑦}

+ (
1

6
max {𝑥, 𝑥 −

1

6
}max {𝑦, 𝑦 −

1

7
}

+
1

8
max {𝑦, 𝑥 −

1

6
}max {𝑥, 𝑦 −

1

7
})

× (1 +max {𝑥, 𝑦})
−1

.

(26)

Therefore, all the conditions of Theorem 9 are satisfied. Thus
0 is the common fixed point of 𝑆 and 𝑇 and 𝑝(0, 0) = 0.
Moreover, note that for any metric 𝑑 on𝑋

𝑑 (𝑆1, 𝑇1) = 𝑑 (
1

16
,
5

17
) >

1

5
𝑑 (1, 1)

+ (
1

6
𝑑 (1,

1

16
) 𝑑 (1,

5

17
)

+
1

8
𝑑 (1,

1

16
) 𝑑 (1,

5

17
))

× (1 + 𝑑 (1, 1))
−1

.

(27)

Therefore commonfixed points of 𝑆 and𝑇 cannot be obtained
from a metric fixed point theorem.

Corollary 11. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be mappings on a complete
PMS (𝑋, 𝑝). Suppose that there exist nonnegative reals 𝛼, 𝛽,
and 𝛾 such that 𝛼 + 𝛽 + 2𝛾 < 1. If 𝑆 and 𝑇 satisfy

𝑝 (𝑆𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑆𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑆𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)

(28)

for all 𝑥, 𝑦 ∈ 𝑋. Then there exists a unique point 𝑢 ∈ 𝑋 such
that 𝑢 = 𝑆𝑢 = 𝑇𝑢. Also 𝑝(𝑢, 𝑢) = 0. Further 𝑆 and 𝑇 have no
fixed point other than 𝑢.

By choosing 𝛽 = 𝛾 = 0 in Corollary 11, we get the
following corollary.

Corollary 12. Let 𝑆, 𝑇 : 𝑋 → 𝑋 be a mappings on complete
PMS (𝑋, 𝑝). If 𝑆 and 𝑇 satisfy

𝑝 (𝑆𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦) (29)

for all 𝑥, 𝑦 ∈ 𝑋, 𝛼 < 1 (𝛼 is a nonnegative real). Then 𝑆 and 𝑇

have a common fixed point 𝑢 ∈ 𝑋 and 𝑝(𝑢, 𝑢) = 0.

Remark 13. If we impose Banach type contractive condition
for a pair 𝑆, 𝑇 : 𝑋 → 𝑋 of mappings on a metric space
(𝑋, 𝑑); that is, 𝑑(𝑆𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋, and
then it follows that 𝑆𝑥 = 𝑇𝑥, for all 𝑥 ∈ 𝑋 (i.e., 𝑆 and 𝑇 are
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equal). Therefore the above condition fails to find common
fixed points of 𝑆 and 𝑇. This can be seen as

𝑑 (𝑆1, 𝑇1) = 𝑑 ((
1

16
) , (

5

17
)) > 𝛼𝑑 (1, 1) = 0. (30)

However the same condition in partial metric space does not
assert that 𝑆 = 𝑇. This can be seen as by taking the partial
metric same as in Example 10,

𝑝 (𝑆1, 𝑇1) = 𝑝 ((
1

16
) , (

5

17
)) =

5

17
≤ 𝛼𝑝 (1, 1) = 𝛼 (1) .

(31)

for any 𝛼 ≥ 1/3. Hence Corollary 12 cannot be obtained from
a metric fixed point theorem.

Remark 14. By equating 𝛼, 𝛽, 𝛾 to 0 in all possible combi-
nations, one can derive a host of corollaries which include
Matthews theorem for mappings defined on a complete
partial metric space.

By taking 𝑆 = 𝑇 in the Theorem 9, we get the following
corollary.

Corollary 15. Let 𝑇 : 𝑋 → 𝑋 be a mapping on a complete
PMS (𝑋, 𝑝) and 𝑥

0
, 𝑥, 𝑦 ∈ 𝑋 and 𝑟 > 0. Suppose that there

exist nonnegative reals 𝛼, 𝛽, and 𝛾 such that 𝛼 + 𝛽 + 2𝛾 < 1. If
𝑇 satisfies

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑇𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑇𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)

(32)

for all 𝑥, 𝑦 ∈ 𝐵
𝑝
(𝑥
0
, 𝑟),

𝑝 (𝑥
0
, 𝑇𝑥
0
) ≤ (1 − 𝜆) (𝑟 + 𝑝 (𝑥

0
, 𝑥
0
)) , (33)

where 𝜆 = (𝛼+ 𝛾)/(1 −𝛽− 𝛾). Then there exists a unique point
𝑢 ∈ 𝐵

𝑝
(𝑥
0
, 𝑟) such that 𝑢 = 𝑇𝑢. Also 𝑝(𝑢, 𝑢) = 0. Further 𝑇

has no fixed point other than 𝑢.

By taking 𝑆 = 𝑇 in Corollary 11, we get the following
corollary.

Corollary 16. Let 𝑇 : 𝑋 → 𝑋 be a mapping on a complete
PMS (𝑋, 𝑝). Suppose that there exist nonnegative reals 𝛼, 𝛽,
and 𝛾 such that 𝛼 + 𝛽 + 2𝛾 < 1. If 𝑇 satisfies

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑇𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑇𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)

(34)

for all 𝑥, 𝑦 ∈ 𝑋. Then there exists a unique point 𝑢 ∈ 𝑋 such
that 𝑢 = 𝑇𝑢. Also 𝑝(𝑢, 𝑢) = 0. Further 𝑇 has no fixed point
other than 𝑢.

Now we give an example in favour of Corollary 16.

Example 17. Let 𝑋 = [0, 4] endowed with the usual partial
metric 𝑝 defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. Clearly, (𝑋, 𝑝) is a
complete partial metric space. Now we define 𝐹 : 𝑋 → 𝑋 as
follows:

𝐹 (𝑥) =

{{

{{

{

𝑥

3
if 0 ≤ 𝑥 < 2

𝑥

1 + 𝑥
if 2 ≤ 𝑥 ≤ 4

(35)

for all 𝑥 ∈ 𝑋. Now, let 𝑦 ≤ 𝑥. If 𝑥 ∈ [0, 2) (and so 𝑦 ∈ [0, 2)).
Then 𝑝(𝐹𝑥, 𝐹𝑦) = 𝑥/3, 𝑝(𝑥, 𝑦) = 𝑥, 𝑝(𝑥, 𝐹𝑥) = 𝑥, 𝑝(𝑦, 𝐹𝑦) =

𝑦, 𝑝(𝑦, 𝐹𝑥) = 𝑥/3, 𝑝(𝑥, 𝐹𝑦) = 𝑥. Taking 𝛼 = 1/3, 𝛽 = 1/15,
𝛾 = 2/15, we can prove that all the conditions of Corollary 16
are satisfied. Now if 𝑥 ∈ [2, 4], then 𝑝(𝐹𝑥, 𝐹𝑦) = 𝑥/(1 + 𝑥),
𝑝(𝑥, 𝑦) = 𝑥, 𝑝(𝑥, 𝐹𝑥) = 𝑥, 𝑝(𝑦, 𝐹𝑦) = 𝑦, 𝑝(𝑦, 𝐹𝑥) = 𝑥/(1+𝑥),
𝑝(𝑥, 𝐹𝑦) = 𝑥 and taking 𝛼 = 1/3, 𝛽 = 1/15, 𝛾 = 2/15, one
can verify the condition of the above corollary. Thus all the
conditions of Corollary 16 are satisfied and 𝑢 = 0 is a fixed
point of the mapping 𝐹.

As an application of Theorem 9, we prove the following
theorem for two finite families of mappings.

Theorem 18. If {𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
are two pairwise commuting

finite families of self-mapping defined on a complete partial
metric space (𝑋, 𝑝) such that the mappings 𝑆 and 𝑇 (with
𝑇 = 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑚
and 𝑆 = 𝑆

1
𝑆
2
⋅ ⋅ ⋅ 𝑆
𝑛
) satisfy the contractive

condition (5), then the component maps of the two families
{𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
have a unique common fixed point.

Proof. FromTheorem 9, we can say that the mappings 𝑇 and
𝑆 have a unique common fixed point 𝑧; that is, 𝑇𝑧 = 𝑆𝑧 = 𝑧.
Now our requirement is to show that 𝑧 is a common fixed
point of all the component mappings of both the families. In
viewof pairwise commutativity of the families {𝑇

𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
,

(for every 1 ≤ 𝑘 ≤ 𝑚) we can write 𝑇
𝑘
𝑧 = 𝑇

𝑘
𝑇𝑧 = 𝑇𝑇

𝑘
𝑧 and

𝑇
𝑘
𝑧 = 𝑇
𝑘
𝑆𝑧 = 𝑆𝑇

𝑘
𝑧 which show that 𝑇

𝑘
𝑧 (for every 𝑘) is also

a common fixed point of 𝑇 and 𝑆. By using the uniqueness of
commonfixed point, we canwrite𝑇

𝑘
𝑧 = 𝑧 (for every 𝑘) which

shows that 𝑧 is a common fixed point of the family {𝑇
𝑖
}
𝑚

1
.

Using the same argument one can also show that (for every
1 ≤ 𝑘 ≤ 𝑛) 𝑆

𝑘
𝑧 = 𝑧.Thus componentmaps of the two families

{𝑇
𝑖
}
𝑚

1
and {𝑆

𝑖
}
𝑛

1
have a unique common fixed point.

By setting 𝑇
1
= 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑚
= 𝐹 and 𝑆

1
= 𝑆
2
= ⋅ ⋅ ⋅ =

𝑆
𝑛
= 𝐺, in Theorem 18, we get the following corollary.

Corollary 19. Let 𝐹, 𝐺 : 𝑋 → 𝑋 be two commuting self-
mappings defined on a complete PMS (𝑋, 𝑝) satisfying the
condition

𝑝 (𝐹
𝑚
𝑥, 𝐺
𝑛
𝑦)

≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝐹

𝑚
𝑥) 𝑝 (𝑦, 𝐺

𝑛
𝑦) + 𝛾𝑝 (𝑦, 𝐹

𝑚
𝑥) 𝑝 (𝑥, 𝐺

𝑛
𝑦)

1 + 𝑝 (𝑥, 𝑦)

(36)
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for all 𝑥, 𝑦 ∈ 𝑋, 𝛼 + 𝛽 + 2𝛾 < 1 (𝛼, 𝛽, and 𝛾 are nonnegative
reals). Then F and G have a unique common fixed point.

By setting 𝑚 = 𝑛 and 𝐹 = 𝐺 = 𝑇 in Corollary 19, we
deduce the following corollary.

Corollary 20. Let 𝑇 : 𝑋 → 𝑋 be a mapping defined on a
complete PMS (𝑋, 𝑝) satisfying the condition

𝑝 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦)

≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑇

𝑛
𝑥) 𝑝 (𝑦, 𝑇

𝑛
𝑦) + 𝛾𝑝 (𝑦, 𝑇

𝑛
𝑥) 𝑝 (𝑥, 𝑇

𝑛
𝑦)

1 + 𝑝 (𝑥, 𝑦)

(37)

for all 𝑥, 𝑦 ∈ 𝑋, 𝛼 + 𝛽 + 2𝛾 < 1 (𝛼, 𝛽, and 𝛾 are nonnegative
reals). Then F has a unique fixed point.

By setting 𝛽 = 𝛾 = 0, we draw following corollary which
can be viewed as an extension of Bryant’s theorem [15] for a
mapping on a complete PMS (𝑋, 𝑝).

Corollary 21. Let 𝐹 : 𝑋 → 𝑋 be a mapping on a complete
PMS (𝑋, 𝑝). If 𝐹 satisfies

𝑝 (𝐹
𝑛
𝑥, 𝐹
𝑛
𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦) (38)

for all 𝑥, 𝑦 ∈ 𝑋, 𝛼 < 1. Then 𝐹 has a unique fixed point.

The following example demonstrates the superiority of
Bryant’s theorem overMatthews theorem on complete partial
metric space.

Example 22. Let𝑋 = [0, 4]. Define the partial metric 𝑝 : 𝑋 ×

𝑋 → R by

𝑝 (𝑥, 𝑦) = max {𝑥, 𝑦} . (39)

Then (𝑋, 𝑝) is a complete partial metric space. Let 𝐹 : 𝑋 →

𝑋 be defined as follows:

𝐹 (𝑥) =

{{

{{

{

𝑥
2 if 𝑥 ∈ [0, 1 [

2 if 𝑥 ∈ [1, 2 [

0 if 𝑥 ∈ [2, 4] .

(40)

Then for 𝑥 = 0 and 𝑦 = 1, we get

𝑝 (𝐹 (0) , 𝐹 (1)) = 𝑝 (0, 2) = 2 > 𝛼𝑝 (0, 1) = 𝛼 (1) , (41)

because 0 ≤ 𝛼 < 1. However, 𝐹2 satisfies the requirement of
Bryant’s theorem and 𝑧 = 0 is the unique fixed point of 𝐹.

3. Results for Set Valued Mappings

Theorem23. Let (𝑋, 𝑝) be a complete partial metric space and
let 𝑆, 𝑇 : 𝑋 → 𝐶𝐵

𝑝
(𝑋) be mappings such that

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) ≤ 𝛼𝑝 (𝑥, 𝑦)

+
𝛽𝑝 (𝑥, 𝑆𝑥) 𝑝 (𝑦, 𝑇𝑦) + 𝛾𝑝 (𝑦, 𝑆𝑥) 𝑝 (𝑥, 𝑇𝑦)

1 + 𝑝 (𝑥, 𝑦)

(42)

for all 𝑥, 𝑦 ∈ 𝑋, 0 ≤ 𝛼, 𝛽, 𝛾 with 𝛼 + 𝛽 + 2𝛾 < 1. Then 𝑆 and 𝑇

have a common fixed point.

Proof. Assume that𝑀 = ((𝛼 + 𝛾)/(1 − 𝛽 − 𝛾)). Let 𝑥
0
∈ 𝑋 be

arbitrary but fixed element of 𝑋 and choose 𝑥
1

∈ 𝑆(𝑥
0
). By

Lemma 8 we can choose 𝑥
2
∈ 𝑇(𝑥

1
) such that

𝑝 (𝑥
1
, 𝑥
2
) ≤ 𝐻

𝑝
(𝑆 (𝑥
0
) , 𝑇 (𝑥

1
)) + (𝛼 + 𝛾)

≤ 𝛼𝑝 (𝑥
0
, 𝑥
1
) + 𝛽

𝑝 (𝑥
0
, 𝑆𝑥
0
) 𝑝 (𝑥

1
, 𝑇𝑥
1
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ 𝛾
𝑝 (𝑥
1
, 𝑆𝑥
0
) 𝑝 (𝑥

0
, 𝑇𝑥
1
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ (𝛼 + 𝛾)

≤ 𝛼𝑝 (𝑥
0
, 𝑥
1
) + 𝛽

𝑝 (𝑥
0
, 𝑥
1
) 𝑝 (𝑥

1
, 𝑥
2
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ 𝛾
𝑝 (𝑥
1
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
2
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ (𝛼 + 𝛾)

≤ 𝛼𝑝 (𝑥
0
, 𝑥
1
) + 𝛽

𝑝 (𝑥
0
, 𝑥
1
) 𝑝 (𝑥

1
, 𝑥
2
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ 𝛾
𝑝 (𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
2
)

1 + 𝑝 (𝑥
0
, 𝑥
1
)

+ (𝛼 + 𝛾)

≤ 𝛼𝑝 (𝑥
0
, 𝑥
1
) + 𝛽𝑝 (𝑥

1
, 𝑥
2
) + 𝛾𝑝 (𝑥

0
, 𝑥
2
)

+ (𝛼 + 𝛾) .

(43)

So we get

𝑝 (𝑥
1
, 𝑥
2
) ≤ (

𝛼 + 𝛾

1 − 𝛽 − 𝛾
)𝑝 (𝑥

0
, 𝑥
1
) + (

𝛼 + 𝛾

1 − 𝛽 − 𝛾
) . (44)

Since𝑀 = ((𝛼 + 𝛾)/(1 − 𝛽 − 𝛾)), so it further implies that
𝑝 (𝑥
1
, 𝑥
2
) ≤ 𝑀𝑝 (𝑥

0
, 𝑥
1
) + 𝑀. (45)

By Lemma 8 we can choose 𝑥
3
∈ 𝑆(𝑥
2
) such that

𝑝 (𝑥
2
, 𝑥
3
) ≤ 𝐻

𝑝
(𝑇 (𝑥
1
) , 𝑆 (𝑥

2
)) +

(𝛼 + 𝛾)
2

1 − 𝛽 − 𝛾

≤ 𝛼𝑝 (𝑥
1
, 𝑥
2
) + 𝛽

𝑝 (𝑥
1
, 𝑇𝑥
1
) 𝑝 (𝑥

2
, 𝑆𝑥
2
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+ 𝛾
𝑝 (𝑥
2
, 𝑇𝑥
1
) 𝑝 (𝑥

1
, 𝑆𝑥
2
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+
(𝛼 + 𝛾)

2

1 − 𝛽 − 𝛾

≤ 𝛼𝑝 (𝑥
1
, 𝑥
2
) + 𝛽

𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

2
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+ 𝛾
𝑝 (𝑥
2
, 𝑥
2
) 𝑝 (𝑥

1
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+
(𝛼 + 𝛾)

2

1 − 𝛽 − 𝛾

≤ 𝛼𝑝 (𝑥
1
, 𝑥
2
) + 𝛽

𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

2
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+ 𝛾
𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

1
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+
(𝛼 + 𝛾)

2

1 − 𝛽 − 𝛾



Abstract and Applied Analysis 7

≤ 𝛼𝑝 (𝑥
1
, 𝑥
2
) + 𝛽

𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

2
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+ 𝛾
𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

1
, 𝑥
3
)

1 + 𝑝 (𝑥
1
, 𝑥
2
)

+
(𝛼 + 𝛾)

2

1 − 𝛽 − 𝛾

≤ 𝛼𝑝 (𝑥
1
, 𝑥
2
) + 𝛽𝑝 (𝑥

2
, 𝑥
3
) + 𝛾𝑝 (𝑥

1
, 𝑥
3
)

+
(𝛼 + 𝛾)

2

1 − 𝛽 − 𝛾
.

(46)

So we get

𝑝 (𝑥
2
, 𝑥
3
) ≤ (

𝛼 + 𝛾

1 − 𝛽 − 𝛾
)

2

𝑝 (𝑥
0
, 𝑥
1
) + 2(

𝛼 + 𝛾

1 − 𝛽 − 𝛾
)

2

.

(47)

Continuing in this manner, one can obtain a sequence {𝑥
𝑛
} in

𝑋 as 𝑥
2𝑛+1

∈ 𝑆(𝑥
2𝑛
) and 𝑥

2𝑛+2
∈ 𝑇(𝑥

2𝑛+1
) such that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑀𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑀

≤ ⋅ ⋅ ⋅ ≤ 𝑀
𝑛
𝑝 (𝑥
0
, 𝑥
1
) + 𝑛𝑀

𝑛
,

(48)

where 𝑀 = ((𝛼 + 𝛽)/(1 − 𝛼)) < 1 for all 𝑛 ≥ 0. Without loss
of generality assume that 𝑛 > 𝑚. Then, using (48) and the
triangle inequality for partial metrics (P

4
), we have

𝑝 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
)

≤ 𝑀
𝑛
𝑝 (𝑥
0
, 𝑥
1
) + 𝑛𝑀

𝑛
+ 𝑀
𝑛+1

𝑝 (𝑥
0
, 𝑥
1
)

+ (𝑛 + 1)𝑀
𝑛+1

+ ⋅ ⋅ ⋅ + 𝑀
𝑚−1

𝑝 (𝑥
0
, 𝑥
1
)

+ (𝑚 − 1)𝑀
𝑚−1

≤

𝑚−1

∑

𝑖=𝑛

𝑀
𝑖
𝑝 (𝑥
0
, 𝑥
1
)

+

𝑚−1

∑

𝑖=𝑛

𝑖𝑀
𝑖
→ 0 as 𝑛 → +∞ (since 0 < 𝑀 < 1) .

(49)

By the definition of 𝑝𝑠, we get,

𝑝
𝑠
(𝑥
𝑛
, 𝑥
𝑚
) ≤ 2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) → 0 as 𝑛 → +∞. (50)

This yields that {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝

𝑠
). Since

(𝑋, 𝑝) is complete, then from Lemma 2(4), (𝑋, 𝑝
𝑠
) is a com-

plete metric space. Therefore, the sequence {𝑥
𝑛
} converges

to some 𝑥
∗

∈ 𝑋 with respect to the metric 𝑝
𝑠; that is,

lim
𝑛→+∞

𝑝
𝑠
(𝑥
𝑛
, 𝑥
∗
) = 0. Again, from Lemma 2(4), we get

𝑝 (𝑥
∗
, 𝑥
∗
) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
∗
) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 0, (51)

𝐻
𝑝
(𝑇 (𝑥
2𝑛+2

) , 𝑆 (𝑥
∗
))

≤ 𝛼𝑝 (𝑥
2𝑛+2

, 𝑥
∗
)

+ 𝛽
𝑝 (𝑥
2𝑛+2

, 𝑇 (𝑥
2𝑛+2

)) 𝑝 (𝑥
∗
, 𝑆 (𝑥
∗
))

1 + 𝑝 (𝑥
2𝑛+2

, 𝑥∗)

+ 𝛾
𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥
∗
)) 𝑝 (𝑥

∗
, 𝑇 (𝑥
2𝑛+2

))

1 + 𝑝 (𝑥
2𝑛+2

, 𝑥∗)

≤ 𝛼𝑝 (𝑥
2𝑛+2

, 𝑥
∗
)

+ 𝛽
𝑝 (𝑥
2𝑛+2

, 𝑥
2𝑛+3

) 𝑝 (𝑥
∗
, 𝑆 (𝑥
∗
))

1 + 𝑝 (𝑥
2𝑛+2

, 𝑥∗)

+ 𝛾
𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥
∗
)) 𝑝 (𝑥

∗
, 𝑥
2𝑛+1

)

1 + 𝑝 (𝑥
2𝑛+2

, 𝑥∗)
,

(52)

taking limit as 𝑛 → ∞ and using (51), we get

lim
𝑛→+∞

𝐻
𝑝
(𝑇 (𝑥
2𝑛+2

) , 𝑆 (𝑥
∗
)) = 0. (53)

Now 𝑥
2𝑛+1

∈ 𝑇(𝑥
2𝑛+2

) gives that

𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥
∗
)) ≤ 𝐻

𝑝
(𝑇 (𝑥
2𝑛+2

) , 𝑆 (𝑥
∗
)) , (54)

which implies that

lim
𝑛→+∞

𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥
∗
)) = 0. (55)

On the other hand by (P
4
), we have

𝑝 (𝑥
∗
, 𝑆 (𝑥
∗
)) ≤ 𝑝 (𝑥

∗
, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥
∗
))

− 𝑝 (𝑥
2𝑛+2

, 𝑥
2𝑛+2

)

≤ 𝑝 (𝑥
∗
, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥
∗
)) .

(56)

Taking limit as 𝑛 → +∞ and using (51) and (55), we obtain
𝑝(𝑥
∗
, 𝑆(𝑥
∗
)) = 0. Therefore, from (51) (𝑝(𝑥∗, 𝑥∗) = 0), we

obtain

𝑝 (𝑥
∗
, 𝑆 (𝑥
∗
)) = 𝑝 (𝑥

∗
, 𝑥
∗
) (57)

which from Remark 14 implies that 𝑥
∗

∈ 𝑆(𝑥∗) = 𝑆(𝑥
∗
).

Similarly one can easily prove that 𝑥∗ ∈ 𝑇(𝑥
∗
). Thus 𝑆 and

𝑇 have a common fixed point.

Remark 24. For 𝛽 = 𝛾 = 0 and 𝑆 = 𝑇, Theorem 23 reduces to
the following result of Aydi et al. [9].

Corollary 25 (see [9, Theorem 3.2]). Let (𝑋, 𝑝) be a partial
metric space. If 𝑇 : 𝑋 → 𝐶𝐵

𝑝
(𝑋) is a multivalued mapping

such that for all 𝑥, 𝑦 ∈ 𝑋, one has

𝐻
𝑝
(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑎, 𝑏) , (58)

where 𝑘 ∈ (0, 1). Then 𝑇 has a fixed point.
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Theorem26. Let (𝑋, 𝑝) be a complete partialmetric space and
𝑆, 𝑇 : 𝑋 → 𝐶𝐵

𝑝
(𝑋) be multivalued mappings such that

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) ≤ 𝛼{

𝑝 (𝑥, 𝑆𝑥) 𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑦) 𝑝 (𝑦, 𝑆𝑥)

𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑆𝑥)
}

+ 𝛽𝑑 (𝑥, 𝑦)

(59)

for all 𝑥, 𝑦 ∈ 𝑋, 0 ≤ 𝛼, 𝛽 with 2𝛼 + 𝛽 < 1, and 𝑝(𝑥, 𝑇𝑦) +

𝑝(𝑦, 𝑆𝑥) ̸= 0. Then 𝑆 and 𝑇 have a common fixed point.

Proof. Assume that 𝑙 = (𝛼+𝛽)/(1−𝛼). Let 𝑥
0
∈ 𝑋 be arbitrary

but fixed element of𝑋 and choose 𝑥
1
∈ 𝑆(𝑥
0
).

When 𝑝(𝑥, 𝑇𝑦)+𝑝(𝑦, 𝑆𝑥) ̸= 0. By Lemma 8we can choose
𝑥
2
∈ 𝑇(𝑥

1
) such that

𝑝 (𝑥
1
, 𝑥
2
)

≤ 𝐻
𝑝
(𝑆 (𝑥
0
) , 𝑇 (𝑥

1
)) + (𝛼 + 𝛽)

≤ 𝛼{
𝑝 (𝑥
0
, 𝑆𝑥
0
) 𝑝 (𝑥

0
, 𝑇𝑥
1
) + 𝑝 (𝑥

1
, 𝑇𝑥
1
) 𝑝 (𝑥

1
, 𝑆𝑥
0
)

𝑝 (𝑥
0
, 𝑇𝑥
1
) + 𝑝 (𝑥

1
, 𝑆𝑥
0
)

}

+ 𝛽𝑝 (𝑥
0
, 𝑥
1
) + (𝛼 + 𝛽)

≤ 𝛼{
𝑝 (𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
2
) + 𝑝 (𝑥

1
, 𝑥
2
) 𝑝 (𝑥

1
, 𝑥
1
)

𝑝 (𝑥
0
, 𝑥
2
) + 𝑝 (𝑥

1
, 𝑥
1
)

}

+ 𝛽𝑝 (𝑥
0
, 𝑥
1
) + (𝛼 + 𝛽)

≤ 𝛼 {𝑝 (𝑥
0
, 𝑥
1
) + 𝑝 (𝑥

1
, 𝑥
2
)} + 𝛽𝑝 (𝑥

0
, 𝑥
1
) + (𝛼 + 𝛽)

(60)

because 𝑝(𝑥
0
, 𝑥
2
) < 𝑝(𝑥

0
, 𝑥
2
) + 𝑝(𝑥

1
, 𝑥
1
) and 𝑝(𝑥

1
, 𝑥
1
) <

𝑝(𝑥
1
, 𝑥
1
) + 𝑝(𝑥

0
, 𝑥
2
). Thus we get

𝑝 (𝑥
1
, 𝑥
2
) ≤ (

𝛼 + 𝛽

1 − 𝛼
)𝑝 (𝑥

0
, 𝑥
1
) + (

𝛼 + 𝛽

1 − 𝛼
) . (61)

It further implies that

𝑝 (𝑥
1
, 𝑥
2
) ≤ 𝑙𝑝 (𝑥

0
, 𝑥
1
) + 𝑙. (62)

By Lemma 8 we can choose 𝑥
3
∈ 𝑆(𝑥
2
) such that

𝑝 (𝑥
2
, 𝑥
3
)

≤ 𝐻
𝑝
(𝑇 (𝑥
1
) , 𝑆 (𝑥

2
)) +

(𝛼 + 𝛽)
2

1 − 𝛼

≤ 𝛼{
𝑝 (𝑥
1
, 𝑇𝑥
1
) 𝑝 (𝑥

1
, 𝑆𝑥
2
) + 𝑝 (𝑥

2
, 𝑆𝑥
2
) 𝑝 (𝑥

2
, 𝑇𝑥
1
)

𝑝 (𝑥
1
, 𝑆𝑥
2
) + 𝑝 (𝑥

2
, 𝑇𝑥
1
)

}

+ 𝛽𝑝 (𝑥
1
, 𝑥
2
) +

(𝛼 + 𝛽)
2

1 − 𝛼

≤ 𝛼{
𝑝 (𝑥
1
, 𝑥
2
) 𝑝 (𝑥

1
, 𝑥
3
) + 𝑝 (𝑥

2
, 𝑥
3
) 𝑝 (𝑥

2
, 𝑥
2
)

𝑝 (𝑥
1
, 𝑥
3
) + 𝑝 (𝑥

2
, 𝑥
2
)

}

+ 𝛽𝑝 (𝑥
1
, 𝑥
2
) +

(𝛼 + 𝛽)
2

1 − 𝛼

≤ 𝛼 {𝑝 (𝑥
1
, 𝑥
2
) + 𝑝 (𝑥

2
, 𝑥
3
)} + 𝛽𝑝 (𝑥

1
, 𝑥
2
) +

(𝛼 + 𝛽)
2

1 − 𝛼

(63)

because 𝑝(𝑥
1
, 𝑥
3
) < 𝑝(𝑥

1
, 𝑥
3
) + 𝑝(𝑥

2
, 𝑥
2
) and 𝑝(𝑥

2
, 𝑥
2
) <

𝑝(𝑥
2
, 𝑥
2
) + 𝑝(𝑥

1
, 𝑥
3
). Thus we get

𝑝 (𝑥
2
, 𝑥
3
) ≤ (

𝛼 + 𝛽

1 − 𝛼
)𝑝 (𝑥

1
, 𝑥
2
) + (

𝛼 + 𝛽

1 − 𝛼
)

2

. (64)

It further implies that

𝑝 (𝑥
2
, 𝑥
3
) ≤ 𝑙
2
𝑝 (𝑥
0
, 𝑥
0
) + 2𝑙
2
. (65)

Continuing in this manner, one can obtain a sequence {𝑥
𝑛
} in

𝑋 as 𝑥
2𝑛+1

∈ 𝑆(𝑥
2𝑛
) and 𝑥

2𝑛+2
∈ 𝑇(𝑥

2𝑛+1
) such that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑙𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑙 ≤ ⋅ ⋅ ⋅ ≤ 𝑙

𝑛
𝑝 (𝑥
0
, 𝑥
1
) + 𝑛𝑙
𝑛
,

(66)

where 𝑙 = ((𝛼 + 𝛽)/(1 − 𝛼)) < 1 for all 𝑛 ≥ 0. Without
loss of generality assume that 𝑚 > 𝑛. Then using (66) and
the triangle inequality for partial metrics (P

4
), one can easily

prove that

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑

𝑖=𝑛

𝑙
𝑖
𝑝 (𝑥
0
, 𝑥
1
) +

𝑚−1

∑

𝑖=𝑛

𝑖𝑙
𝑖

→ 0 as 𝑛 → +∞ (since 0 < 𝑙 < 1) .

(67)

By the definition of 𝑝𝑠,

𝑝
𝑠
(𝑥
𝑛
, 𝑥
𝑚
) ≤ 2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) → 0 as 𝑛 → +∞. (68)

This yields that {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝

𝑠
). Since

(𝑋, 𝑝) is complete, then from Lemma 2(4), (𝑋, 𝑝
𝑠
) is a com-

plete metric space. Therefore, the sequence {𝑥
𝑛
} converges

to some 𝑥


∈ 𝑋 with respect to the metric 𝑝
𝑠; that is,

lim
𝑛→+∞

𝑝
𝑠
(𝑥
𝑛
, 𝑥

) = 0. Again, from Lemma 2(4), we get

𝑝 (𝑥

, 𝑥

) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
/
) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 0

(69)
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𝐻
𝑝
(𝑇 (𝑥
2𝑛+1

) , 𝑆 (𝑥

))

≤ 𝛼 {(𝑝 (𝑥
2𝑛+1

, 𝑇 (𝑥
2𝑛+1

)) 𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥

))

+𝑝 (𝑥

, 𝑆 (𝑥

)) 𝑝 (𝑥


, 𝑇 (𝑥
2𝑛+1

)))

×(𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥

)) + 𝑝 (𝑥


, 𝑇 (𝑥
2𝑛+1

)))
−1

}

+ 𝛽𝑝 (𝑥
2𝑛+1

, 𝑥
/
)

≤ 𝛼 {(𝑝 ((𝑥
2𝑛+1

, 𝑥
2𝑛+2

) 𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥

))

+𝑝 (𝑥

, 𝑆 (𝑥

)) 𝑝 (𝑥


, 𝑥
2𝑛+2

)))

×(𝑝 (𝑥
2𝑛+1

, 𝑆 (𝑥

)) + 𝑝 (𝑥


, 𝑥
2𝑛+2

))
−1

}

+ 𝛽𝑝 (𝑥
2𝑛+1

, 𝑥
/
) ,

(70)

therefore

lim
𝑛→+∞

𝐻
𝑝
(𝑇 (𝑥
2𝑛+1

) , 𝑆 (𝑥

)) = 0. (71)

Now 𝑥
2𝑛+2

∈ 𝑇(𝑥
2𝑛+1

) gives that

𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥

)) ≤ 𝐻

𝑝
(𝑇 (𝑥
2𝑛+1

) , 𝑆 (𝑥

)) (72)

which implies that

lim
𝑛→+∞

𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥

)) = 0. (73)

On the other hand, we have

𝑝 (𝑥

, 𝑆 (𝑥

)) ≤ 𝑝 (𝑥


, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥

))

− 𝑝 (𝑥
2𝑛+2

, 𝑥
2𝑛+2

)

≤ 𝑝 (𝑥

, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑆 (𝑥

)) .

(74)

Taking limit as 𝑛 → +∞ and using (69) and (73), we obtain
𝑝(𝑥

, 𝑆(𝑥

)) = 0. Therefore, from (69) (𝑝(𝑥, 𝑥) = 0), we

obtain

𝑝 (𝑥

, 𝑆 (𝑥

)) = 𝑝 (𝑥


, 𝑥

) (75)

which from Remark 14 implies that 𝑥


∈ 𝑆(𝑥) = 𝑆(𝑥

).

It follows similarly that 𝑥


∈ 𝑇(𝑥

). Thus 𝑆 and 𝑇 have a

common fixed point.

Now we give an example which illustrates our Theo-
rem 26.

Example 27. Let 𝑋 = {1, 2, 3} be endowed with usual order
and let 𝑝 be a partial metric on𝑋 defined as

𝑝 (1, 1) = 𝑝 (2, 2) = 0, 𝑝 (3, 3) =
5

11
,

𝑝 (1, 2) = 𝑝 (2, 1) =
3

10
,

𝑝 (1, 3) = 𝑝 (3, 1) =
9

20
,

𝑝 (2, 3) = 𝑝 (3, 2) =
1

2
.

(76)

Define the mappings 𝑆, 𝑇 : 𝑋 → 𝐶𝐵
𝑝
(𝑋) by

𝑆𝑥 = {
{1} if 𝑥, 𝑦 ∈ {1, 2}

{1, 2} otherwise

𝑇𝑥 = {
{1} if 𝑥, 𝑦 ∈ {1, 2}

{2} otherwise.

(77)

Note that 𝑆𝑥 and 𝑇𝑥 are closed and bounded for all 𝑥 ∈ 𝑋

with respect to the partial metric 𝑝. To show that for all 𝑥, 𝑦
in𝑋, (59) is satisfied with 𝛼 = 1/11, 𝛽 = 4/5, we consider the
following cases: if 𝑥, 𝑦 ∈ {1, 2}, then,

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1} , {1}) = 0 (78)

and condition (59) is satisfied obviously.

If 𝑥 = 𝑦 = 3, then

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1, 2} , {2}) =

3

10
,

𝑝 (𝑥, 𝑆𝑥) = 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (3, {1, 2}) =
9

20
,

𝑝 (𝑥, 𝑇𝑦) = 𝑝 (𝑦, 𝑇𝑦) = 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (3, {2}) =
11

24
,

𝑝 (𝑥, 𝑦) = 𝑝 (3, 3) =
5

11
.

(79)

If 𝑥 = 3, 𝑦 = 1, then

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1, 2} , {1}) =

3

10
,

𝑝 (𝑥, 𝑆𝑥)=𝑝 (3, {1, 2})=
9

20
, 𝑝 (𝑥, 𝑇𝑦)=𝑝 (3, {1})=

9

20
,

𝑝 (𝑦, 𝑇𝑦) = 𝑝 (1, {1}) = 0, 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (1, {1, 2}) = 0,

𝑝 (𝑥, 𝑦) = 𝑝 (3, 1) =
9

20
.

(80)
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If 𝑥 = 3, 𝑦 = 2, then

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1, 2} , {1}) =

3

10
,

𝑝 (𝑥, 𝑆𝑥)=𝑝 (3, {1, 2})=
9

20
, 𝑝 (𝑥, 𝑇𝑦)=𝑝 (3, {1})=

9

20
,

𝑝 (𝑦, 𝑇𝑦) = 𝑝 (2, {1}) =
3

10
, 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (2, {1, 2}) = 0,

𝑝 (𝑥, 𝑦) = 𝑝 (3, 2) =
1

2
.

(81)

If 𝑥 = 1, 𝑦 = 3, then

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1} , {2}) =

3

10
,

𝑝 (𝑥, 𝑆𝑥) = 𝑝 (1, {1}) = 0, 𝑝 (𝑥, 𝑇𝑦) = 𝑝 (1, {2}) =
3

10
,

𝑝 (𝑦, 𝑇𝑦) = 𝑝 (3, {2}) =
1

2
, 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (3, {1}) =

9

20
,

𝑝 (𝑥, 𝑦) = 𝑝 (1, 3) =
9

20
.

(82)

If 𝑥 = 2, 𝑦 = 3, then

𝐻
𝑝
(𝑆𝑥, 𝑇𝑦) = 𝐻

𝑝
({1} , {2}) =

3

10
,

𝑝 (𝑥, 𝑆𝑥) = 𝑝 (2, {1}) =
3

10
, 𝑝 (𝑥, 𝑇𝑦) = 𝑝 (2, {2}) = 0,

𝑝 (𝑦, 𝑇𝑦) = 𝑝 (3, {2}) =
1

2
, 𝑝 (𝑦, 𝑆𝑥) = 𝑝 (3, {1}) =

9

20
,

𝑝 (𝑥, 𝑦) = 𝑝 (2, 3) =
1

2
.

(83)

Thus, all the conditions ofTheorem 26 are satisfied. Here 𝑥 =

1 is a common fixed point of 𝑆 and 𝑇.
On the other hand, the metric 𝑝

𝑠 induced by the partial
metric 𝑝 is given by

𝑝
𝑠
(1, 1) = 𝑝

𝑠
(2, 2) = 𝑝

𝑠
(3, 3) = 0,

𝑝
𝑠
(2, 1) = 𝑝

𝑠
(2, 1) =

3

4
,

𝑝
𝑠
(3, 2) = 𝑝

𝑠
(2, 3) =

4

7
,

𝑝
𝑠
(3, 1) = 𝑝

𝑠
(1, 3) =

14

29
.

(84)

Note that in case of ordinary Hausdorff metric, given map-
ping does not satisfy the condition. Indeed, for 𝑥 = 1 and
𝑦 = 3, we have

𝐻(𝑆𝑥, 𝑇𝑦) = 𝐻 ({1} , {2}) =
3

4
,

𝑝
𝑠
(𝑥, 𝑆𝑥) = 𝑝

𝑠
(1, {1}) = 0,

𝑝
𝑠
(𝑥, 𝑇𝑦) = 𝑝

𝑠
(1, {2}) =

3

4
,

𝑝
𝑠
(𝑦, 𝑇𝑦) = 𝑝

𝑠
(3, {2}) =

4

7
,

𝑝
𝑠
(𝑦, 𝑆𝑥) = 𝑝

𝑠
(3, {1}) =

14

29
,

(85)

for the values of 𝛼 = 1/11, 𝛽 = 4/5. By a routine calculation
one can easily verify that the mapping does not satisfy the
condition which involved ordinary Hausdorff metric.
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