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An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The
spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction
is discretized by the explicit multistep method. The optimal error estimates in 𝐿

2 and 𝐻
1 norms for the scalar unknown 𝑢 and its

flux 𝑞 = 𝑢
𝑥
based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis

and illustrate the efficiency of our method.

1. Introduction

In this paper, we consider the following initial boundary
problem of RLW equation:

𝑢
𝑡
+ 𝛾𝑢
𝑥
+ 𝛿𝑢𝑢

𝑥
− 𝛽𝑢
𝑥𝑥𝑡

= 0, (𝑥, 𝑡) ∈ 𝐼 × 𝐽,

𝑢 (𝑎, 𝑡) = 𝑢 (𝑏, 𝑡) = 0, 𝑡 ∈ 𝐽,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐼,

(1)

where 𝐼 = (𝑎, 𝑏) is a bounded open interval, 𝐽 = (0, 𝑇] with
0 < 𝑇 < ∞. The initial value 𝑢

0
(𝑥) is given function, and the

coefficients 𝛽, 𝛾, 𝛿 are all positive constants.
In recent years, large nonlinear phenomena are found

in many research fields, for example, physics, biology, fluid
dynamics, and so forth. These phenomena can be described
by the mathematical model of some nonlinear evolution
equations. In particular, some attention has also been paid
to nonlinear RLW equations [1, 2] which play a very
important role in the study of nonlinear dispersive waves.
Solitary waves are wave packet or pulses, which propagate
in nonlinear dispersive media. Due to dynamical balance
between the nonlinear and dispersive effects, these waves
retain an unchanged waveform. A soliton is a very special
type of solitary wave, which also keeps its waveform after
collision with other solitons. The regularized long wave

(RLW) equation is an alternative description of nonlinear
dispersive waves to the more usual Korteweg-de Vries (KdV)
equation. Mathematical theories and numerical methods for
(1) were considered in [1–24]. The existence and uniqueness
of the solution of RLW equation are discussed in [5]. Their
analytical solutions were found under restricted initial and
boundary conditions, and therefore they got interest from a
numerical point of view. Several numerical methods for the
solution of the RLW equation have been introduced in the
literature.These include a variety of difference methods [5–8,
17], finite elementmethods based onGalerkin and collocation
principles [9–13], mixed finite element methods [14–16],
meshfree method [18], adomian decomposition method [19],
and so on.

In [25], Chatzipantelidis studied the explicit multistep
methods for some nonlinear partial differential equations
and discussed somemathematical theories. Akrivis et al. [26]
studied the multistep method for some nonlinear evolution
equations.Mei andChen [20] presented the explicitmultistep
method based on Galerkin method for regularized long wave
(RLW) equation. In this paper, our purpose is to propose and
study an explicit multistep mixed method, which combines
a mixed Galerkin method in the spatial direction and the
explicit multistep method in the time direction, for RLW
equation. We derive optimal error estimates in 𝐿

2 and 𝐻
1

norms for the scalar unknown 𝑢 and its flux 𝑞 = 𝑢
𝑥



2 Abstract and Applied Analysis

for the fully discrete explicit multistep mixed scheme and
compare our method’s accuracy with some other numerical
schemes. Compared to the numerical methods in [20, 25, 26],
we not only obtain the approximation solution for 𝑢, but also
get the approximation solution for 𝑞 = 𝑢

𝑥
.

The layout of the paper is as follows. In Section 2, an
explicit multistep mixed scheme and numerical process are
given. The optimal error estimates in 𝐿

2 and 𝐻
1 norms for

the scalar unknown 𝑢 and its flux 𝑞 = 𝑢
𝑥
for the fully discrete

explicit multistep mixed scheme are proved in Section 3.
In Section 4, some numerical results are shown to confirm
our theoretical analysis. Finally, some concluding remarks
are given in Section 5. Throughout this paper, 𝐶 will denote
a generic positive constant which does not depend on the
spatialmesh parameter ℎ or time discretization parameterΔ𝑡.

2. The Mixed Numerical Scheme

With the auxiliary variable 𝑞 = 𝑢
𝑥
, we reformulate (1) as the

following first-order coupled system:

𝑢
𝑥
= 𝑞,

𝑢
𝑡
+ 𝛾𝑞 + 𝛿𝑢𝑞 − 𝛽𝑞

𝑥𝑡
= 0.

(2)

We consider the following mixed weak formulation of (2).
Find {𝑢, 𝑞} : [0, 𝑇] → 𝐻

1

0
× 𝐻
1 satisfying:

(𝑢
𝑥
, V
𝑥
) = (𝑞, V

𝑥
) , ∀V ∈ 𝐻

1

0
, (3)

(𝑞
𝑡
, 𝑤) + 𝛽 (𝑞

𝑥𝑡
, 𝑤
𝑥
) = 𝛾 (𝑞, 𝑤

𝑥
) + 𝛿 (𝑢𝑞, 𝑤

𝑥
) , ∀𝑤 ∈ 𝐻

1
.

(4)

Noting theDirichlet boundary conditions𝑢
𝑡
(𝑎, 𝑡) = 𝑢

𝑡
(𝑏, 𝑡) =

0 and 𝑞
𝑡
= 𝑢
𝑥𝑡
, we can get (𝑢

𝑡
, −𝑤
𝑥
) = (𝑢

𝑥𝑡
, 𝑤) = (𝑞

𝑡
, 𝑤) easily

and then get the scheme (4).
Let 𝑉
ℎ
and𝑊

ℎ
be finite dimensional subspaces of𝐻1

0
and

𝐻
1, respectively, defined by

𝑉
ℎ
= {V
ℎ


V
ℎ
∈ 𝐶
0
(𝐼) , V

ℎ

𝐼𝑗
∈ 𝑃
𝑘
(𝐼
𝑗
) ,

∀𝐼
𝑗
∈ 𝑇
ℎ
, V
ℎ
(𝑎) = V

ℎ
(𝑏) = 0}

⊂ 𝐻
1

0
,

𝑊
ℎ
= {𝑤
ℎ


𝑤
ℎ
∈ 𝐶
0
(𝐼) , 𝑤

ℎ

𝐼𝑗
∈ 𝑃
𝑟
(𝐼
𝑗
) , ∀𝐼
𝑗
∈ 𝑇
ℎ
} ⊂ 𝐻

1
,

(5)

where 𝑇
ℎ
is a partition of 𝐼 = [𝑎, 𝑏] into 𝑁 subintervals

𝐼
𝑗

= [𝑥
𝑗
, 𝑥
𝑗+1

], 𝑗 = 0, 1, 2, . . . , (𝑁 − 1), ℎ
𝑗

= ℎ
𝑗+1

− ℎ
𝑗
,

ℎ = max
0≤𝑗≤𝑁−1

ℎ
𝑗
, and 𝑃

𝑚
(𝐼
𝑗
) denotes the polynomials of

degree less than or equal to𝑚 in 𝐼
𝑗
.

The semidiscretemixed finite elementmethod for (3) and
(4) consists in determining {𝑢

ℎ
, 𝑞
ℎ
} : [0, 𝑇] → 𝑉

ℎ
× 𝑊
ℎ
such

that

(𝑢
ℎ

𝑥
, Vℎ
𝑥
) = (𝑞

ℎ
, Vℎ
𝑥
) , ∀Vℎ ∈ 𝑉

ℎ
, (6)

(𝑞
ℎ

𝑡
, 𝑤
ℎ
) + 𝛽 (𝑞

ℎ

𝑥𝑡
, 𝑤
ℎ

𝑥
) = 𝛾 (𝑞

ℎ
, 𝑤
ℎ

𝑥
) + 𝛿 (𝑢

ℎ
𝑞
ℎ
, 𝑤
ℎ

𝑥
) ,

∀𝑤
ℎ
∈ 𝑊
ℎ
.

(7)

In the following discussion, we will give an explicit
multistep mixed scheme.We take linear finite element spaces
𝑉
ℎ

= span{𝜑
0
, 𝜑
1
, . . . , 𝜑

𝑁
} and 𝑊

ℎ
= span{𝜑

0
, 𝜑
1
, . . . , 𝜑

𝑁
},

and then 𝑢
ℎ
and 𝑞

ℎ
can be expressed as the following

formulation:

𝑢
ℎ
(𝑥, 𝑡) =

𝑁

∑

𝑖 = 0

𝑢
𝑖
(𝑡) 𝜑
𝑖
(𝑥) , (𝑥, 𝑡) ∈ Ω × 𝐽,

𝑞
ℎ
(𝑥, 𝑡) =

𝑁

∑

𝑖 = 0

𝑞
𝑖
(𝑡) 𝜑
𝑖
(𝑥) , (𝑥, 𝑡) ∈ Ω × 𝐽.

(8)

Substitute (8) into (6) and (7), and take Vℎ = 𝜑
𝑗
and 𝑤

ℎ
= 𝜑
𝑗

in (6) and (7), respectively, to obtain

𝑁

∑

𝑖 = 0

[(∫

𝑏

𝑎

𝜑
𝑖
⋅ 𝜑
𝑗
𝑑𝑥 + 𝛽∫

𝑏

𝑎

𝜑
𝑖𝑥
⋅ 𝜑
𝑗𝑥
𝑑𝑥)

𝜕𝑞
𝑖

𝜕𝑡

− (𝛾∫

𝑏

𝑎

𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥 + 𝛿∫

𝑏

𝑎

(

𝑁

∑

𝑖 = 0

𝑢
𝑖
𝜑
𝑖
)𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥)𝑞

𝑖
]

= 0,

𝑁

∑

𝑖 = 0

[(∫

𝑏

𝑎

𝜑
𝑖𝑥
⋅ 𝜑
𝑗𝑥
𝑑𝑥)𝑢

𝑖
− (∫

𝑏

𝑎

𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥) 𝑞

𝑖
] = 0,

(9)

where 𝑗 = 0, 1, 2, . . . , 𝑁.
We subdivide the space variable domain [𝑎, 𝑏] into uni-

form subintervals with 𝑁 + 1 grid points 𝑥
𝑘
, 𝑘 = 0, . . . , 𝑁,

such that 𝑎 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝑏, ℎ = 𝑥

𝑘+1
− 𝑥
𝑘
=

(𝑏 − 𝑎)/𝑁. Using the local coordinate transformation 𝑥 =

𝑥
𝑘
+ 𝜇ℎ, 0 ≤ 𝜇 ≤ 1, we transform a subinterval [𝑥

𝑘
, 𝑥
𝑘+1

]

into a standard interval [0, 1]. Furthemore, we have

𝑘+1

∑

𝑖 = 𝑘

[(∫

1

0

𝜑
𝑖
⋅ 𝜑
𝑗
𝑑𝑥 +

𝛽

ℎ2
∫

1

0

𝜑
𝑖𝑥
⋅ 𝜑
𝑗𝑥
𝑑𝑥)

𝜕𝑞
𝑖

𝜕𝑡

−
1

ℎ
(𝛾∫

1

0

𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥 + 𝛿∫

1

0

(

𝑁

∑

𝑖 = 0

𝑢
𝑖
𝜑
𝑖
)𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥)𝑞

𝑖
]

= 0,

𝑘+1

∑

𝑖 = 𝑘

[
1

ℎ2
(∫

1

0

𝜑
𝑖𝑥
⋅ 𝜑
𝑗𝑥
𝑑𝑥)𝑢

𝑖
−

1

ℎ
(∫

𝑏

𝑎

𝜑
𝑖
⋅ 𝜑
𝑗𝑥
𝑑𝑥) 𝑞

𝑖
] = 0.

(10)
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Table 1: Solitary wave Amp. 0.3 and the errors in 𝐿
2 and 𝐿

∞ norms for 𝑢, 𝑄
1
, 𝑄
2
, and 𝑄

3
at 𝑡 = 20, ℎ = 0.125, Δ𝑡 = 0.1, and −40 ≤ 𝑥 ≤ 60.

Method Time 𝑄
1

𝑄
2

𝑄
3

𝐿
2 for 𝑢 𝐿

∞ for 𝑢

Our method

0 3.9797 0.8104 2.5787 0 0
4 3.9797 0.8104 2.5786 3.6304𝑒 − 004 5.2892𝑒 − 005

8 3.9797 0.8104 2.5786 7.2873𝑒 − 004 5.8664𝑒 − 005

12 3.9797 0.8104 2.5787 1.0817𝑒 − 003 6.3283𝑒 − 005

16 3.9795 0.8104 2.5787 1.4186𝑒 − 003 6.8001𝑒 − 005

20 3.9790 0.8103 2.5785 1.7396𝑒 − 003 7.7154𝑒 − 005

[20] 20 3.9800 0.8104 2.5792 1.7569𝑒 − 003 6.8432𝑒 − 004

[21] 20 3.9820 0.8087 2.5730 4.688𝑒 − 003 1.755𝑒 − 003

[22] 20 3.9905 0.8235 2.6740 2.157𝑒 − 003 —
[23] 20 3.9616 0.8042 2.5583 0.018𝑒 − 003 1.566𝑒 − 003

[24] 20 3.9821 0.8112 2.5813 0.511𝑒 − 003 0.198𝑒 − 003

Table 2: Convergence order and error in 𝐿
2 norm for 𝑢 of time with ℎ = 0.125 and 𝑐 = 0.1.

Time Δ𝑡 = 0.4 Δ𝑡 = 0.2 Δ𝑡 = 0.1 Order (0.2/0.4) Order (0.1/0.2)
4 5.3805𝑒 − 003 1.4267𝑒 − 003 3.6304𝑒 − 004 1.9151 1.9745
8 1.1688𝑒 − 002 2.9411𝑒 − 003 7.2873𝑒 − 004 1.9906 2.0129
12 1.7830𝑒 − 002 4.3997𝑒 − 003 1.0817𝑒 − 003 2.0188 2.0241
16 2.3751𝑒 − 002 5.7916𝑒 − 003 1.4186𝑒 − 003 2.0360 2.0295
20 2.9434𝑒 − 002 7.1148𝑒 − 003 1.7396𝑒 − 003 2.0486 2.0321

We take linear basis functions defined as follows:

𝐿
1
= 1 − 𝜇, 𝐿

2
= 𝜇, (11)

and then the variables 𝑢 and 𝑞 over the element [𝑥
𝑘
, 𝑥
𝑘+1

] are
written as

𝑢
𝑒
=

2

∑

𝑗 = 1

𝐿
𝑗
𝑢
𝑗
, 𝑞

𝑒
=

2

∑

𝑗 = 1

𝐿
𝑗
𝑞
𝑗
. (12)

Then, we get the following equations:

2

∑

𝑖 = 1

[(∫

1

0

𝐿
𝑖
⋅ 𝐿
𝑗
𝑑𝜇 +

𝛽

ℎ2
∫

1

0

𝐿
𝑖𝜇
⋅ 𝐿
𝑗𝜇
𝑑𝜇)

𝜕𝑞
𝑖

𝜕𝑡

−
1

ℎ
(𝛾∫

1

0

𝐿
𝑖
⋅ 𝐿
𝑗𝜇
𝑑𝜇+ 𝛿∫

1

0

(

2

∑

𝑖 = 1

𝑢
𝑖
𝐿
𝑖
)𝐿
𝑖
⋅ 𝐿
𝑗𝜇
𝑑𝜇)𝑞

𝑖
]

= 0,

2

∑

𝑖 = 1

[
1

ℎ2
(∫

1

0

𝐿
𝑖𝜇
⋅ 𝐿
𝑗𝜇
𝑑𝜇)𝑢

𝑖
−

1

ℎ
(∫

𝑏

𝑎

𝐿
𝑖
⋅ 𝐿
𝑗𝜇
𝑑𝜇) 𝑞

𝑖
] = 0.

(13)

Then, the system (13) has the following matrix form:

(𝐴
𝑒

𝑖𝑗
+ 𝛽𝐵
𝑒

𝑖𝑗
)
𝜕q𝑒

𝜕𝑡
− (𝛾𝐶

𝑒

𝑖𝑗
+ 𝛿𝐷
𝑒

𝑖𝑗
(𝑢
𝑒
)) q𝑒 = 0,

𝐵
𝑒

𝑖𝑗
u𝑒 − 𝐶

𝑒

𝑖𝑗
q𝑒 = 0,

(14)

with the following element matrices:

u𝑒 = (𝑢
1
, 𝑢
2
)
𝑇

, q𝑒 = (𝑞
1
, 𝑞
2
)
𝑇

,

𝐴
𝑒

𝑖𝑗
= ∫

1

0

𝐿
𝑖
⋅ 𝐿
𝑗
𝑑𝜇, 𝐵

𝑒

𝑖𝑗
=

1

ℎ2
∫

1

0

𝐿
𝑖𝜇
⋅ 𝐿
𝑗𝜇
𝑑𝜇,

𝐶
𝑒

𝑖𝑗
=

1

ℎ
∫

1

0

𝐿
𝑖
⋅ 𝐿
𝑗𝜇
𝑑𝜇,

𝐷
𝑒

𝑗𝑘
=

𝛿

ℎ
∫

1

0

(

2

∑

𝑖 = 1

𝑢
𝑖
𝐿
𝑖
)𝐿
𝑖𝜇
⋅ 𝐿
𝑗
𝑑𝜇.

(15)

Assembling contributions from all elements, we obtain the
following coupled system of nonlinear matrix equations:

(𝐴 + 𝛽𝐵)
𝜕q
ℎ

𝜕𝑡
− (𝛾𝐶 + 𝛿𝐷 (u

ℎ
)) q
ℎ
= 0,

𝐵u
ℎ
− 𝐶q
ℎ
= 0.

(16)

To formulate a fully discrete scheme, we consider a uniform
partition of 𝐽 = [0, 𝑇] with time step length Δ𝑡 = 𝑇/𝑁,
𝑁 ∈ Z+, and time levels 𝑡

𝑛
= 𝑛Δ𝑡, 𝑛 = 0, . . . , 𝑁. We

now discuss a fully discrete scheme based on a linear explicit
multistep method. We now define 𝑈

𝑛
∈ 𝑉
ℎ
and 𝑍

𝑛
∈ 𝑊
ℎ
as

approximations to 𝑢(𝑡𝑛) and 𝑞(𝑡
𝑛
), respectively, and formulate

the following fully discrete linear explicit multistep mixed
scheme:

(𝐴 + 𝛽𝐵)

𝑝

∑

𝑖 = 0

𝛼
𝑖
𝑍
𝑛+𝑖

= Δ𝑡

𝑝−1

∑

𝑖 = 0

𝜎
𝑖
[(𝛾𝐶 + 𝛿𝐷 (𝑈

𝑛+𝑖
))𝑍
𝑛+𝑖

] ,

𝐵𝑈
𝑛+𝑝

= 𝐶𝑍
𝑛+𝑝

,

(17)
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Table 3: Convergence order and error in 𝐿
∞ norm for 𝑢 of time with ℎ = 0.125 and 𝑐 = 0.1.

Time Δ𝑡 = 0.4 Δ𝑡 = 0.2 Δ𝑡 = 0.1 Order (0.2/0.4) Order (0.1/0.2)
4 8.0743𝑒 − 004 2.0299𝑒 − 004 5.2892𝑒 − 005 1.9919 1.9403
8 9.1778𝑒 − 004 2.2908𝑒 − 004 5.8664𝑒 − 005 2.0023 1.9653
12 9.9866𝑒 − 004 2.4966𝑒 − 004 6.3283𝑒 − 005 2.0000 1.9801
16 1.0718𝑒 − 003 2.6685𝑒 − 004 6.8001𝑒 − 005 2.0059 1.9724
20 1.1277𝑒 − 003 2.8609𝑒 − 004 7.7154𝑒 − 005 1.9788 1.8907

Table 4: Convergence order and error in 𝐿
2 norm for 𝑞 of time with ℎ = 0.125 and 𝑐 = 0.1.

Time Δ𝑡 = 0.4 Δ𝑡 = 0.2 Δ𝑡 = 0.1 Order (0.2/0.4) Order (0.1/0.2)
4 2.4430𝑒 − 003 6.4427𝑒 − 004 1.6260𝑒 − 004 1.9229 1.9863
8 5.1823𝑒 − 003 1.2934𝑒 − 003 3.1976𝑒 − 004 2.0024 2.0161
12 7.6616𝑒 − 003 1.8713𝑒 − 003 4.5963𝑒 − 004 2.0336 2.0255
16 9.8719𝑒 − 003 2.3787𝑒 − 003 5.8232𝑒 − 004 2.0532 2.0303
20 1.1843𝑒 − 002 2.8251𝑒 − 003 6.8991𝑒 − 004 2.0677 2.0338

with given the initial approximations 𝑈
0
, . . . , 𝑈

𝑝−1 and
𝑍
0
, . . . , 𝑍

𝑝−1. In the explicit multistep mixed system (17), the
parameter variable 𝛼

𝑖
and 𝜎

𝑖
is described by the coefficients

of the term 𝜒
𝑖, for the following polynomials 𝛼(𝜒) and 𝜎(𝜒),

respectively:

𝛼 (𝜒) :=

𝑝

∑

𝑗 = 1

1

𝑗
𝜒
𝑝−𝑗

(𝜒 − 1)
𝑗

,

𝜎 (𝜒) := 𝜒
𝑝
− (𝜒 − 1)

𝑝

.

(18)

In this paper, we consider the explicit 2-step mixed
method for the RLW equation. For 𝑝 = 2, we obtained easily

𝛼
0
=

3

2
, 𝛼

1
= −2, 𝛼

2
=

1

2
,

𝜎
0
= −1, 𝜎

1
= 2.

(19)

Substituting (19) into (17), we obtain the following 2-step
mixed scheme:

(𝐴 + 𝛽𝐵) (
3

2
𝑍
𝑛+2

− 2𝑍
𝑛+1

+
1

2
𝑍
𝑛
)

= Δ𝑡 [𝛾𝐶 (2𝑍
𝑛+1

− 𝑍
𝑛
) + 𝛿 (2𝐷 (𝑈

𝑛+1
) 𝑍
𝑛+1

− 𝐷 (𝑈
𝑛
) 𝑍
𝑛
)] ,

𝐵𝑈
𝑛+2

= 𝐶𝑍
𝑛+2

.

(20)

Remark 1. There have been many numerical schemes for the
RLW equation, but we have not seen the related research on
explicit multistep mixed element method for RLW equation
in the literature. From the viewpoint of numerical theory,
we propose a mixed element scheme (6) and (7), which
is different from some other mixed finite element methods
in [14–16], for the RLW equation and derive some a priori
error estimates based on the explicit multistepmixed element
method. From the perspective of numerical calculation, our
method is efficient for RLW equation.

3. Two-Step Mixed Scheme and Optimal
Error Estimates

3.1. Two-Step Mixed Scheme and Some Lemmas. In this
section, we will discuss some a priori error estimates based
on explicit 2-step mixed finite element method for the RLW
equation. For the fully discrete procedure, let 0 = 𝑡

0
< 𝑡
1
<

⋅ ⋅ ⋅ < 𝑡
𝑁

= 𝑇 be a given partition of the time interval [0, 𝑇]
with step length Δ𝑡 = 𝑇/𝑁, for some positive integer 𝑁. For
a smooth function 𝜙 on [0, 𝑇], define 𝜙𝑛 = 𝜙(𝑡

𝑛
).

The system (3) and (4) has the following formulation at
𝑡 = 𝑡
𝑛+1

:

(𝑢
𝑛+1

𝑥
, V
𝑥
) = (𝑞

𝑛+1
, V
𝑥
) , ∀V ∈ 𝐻

1

0
,

(𝑞
𝑛+1

𝑡
, 𝑤) + 𝛽 (𝑞

𝑛+1

𝑥𝑡
, 𝑤
𝑥
) = 𝛾 (𝑞

𝑛+1
, 𝑤
𝑥
) + 𝛿 (𝑢

𝑛+1
𝑞
𝑛+1

, 𝑤
𝑥
) ,

∀𝑤 ∈ 𝐻
1
.

(21)

Based on system (17), we get an equivalent formulation for
system (21) as

(𝑢
𝑛+1

𝑥
, V
𝑥
) = (𝑞

𝑛+1
, V
𝑥
) , ∀V ∈ 𝐻

1

0
, (22)

(
3𝑞
𝑛+1

− 4𝑞
𝑛
+ 𝑞
𝑛−1

2Δ𝑡
, 𝑤) + 𝛽(

3𝑞
𝑛+1

𝑥
− 4𝑞
𝑛

𝑥
+ 𝑞
𝑛−1

𝑥

2Δ𝑡
, 𝑤
𝑥
)

= − (𝜏
𝑛+1

, 𝑤) − 𝛽 (𝜅
𝑛+1

1
, 𝑤
𝑥
) + 𝛾 (2𝑞

𝑛
− 𝑞
𝑛−1

, 𝑤
𝑥
)

+ 𝛿 (2𝑢
𝑛
𝑞
𝑛
− 𝑢
𝑛−1

𝑞
𝑛−1

, 𝑤
𝑥
) + 𝛾 (𝑅

𝑛+1

1
, 𝑤
𝑥
)

+ 𝛿 (𝑅
𝑛+1

2
, 𝑤
𝑥
) , ∀𝑤 ∈ 𝐻

1
,

(23)
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Table 5: Convergence order and error in 𝐿
∞ norm for 𝑞 of time with ℎ = 0.125 and 𝑐 = 0.1.

Time Δ𝑡 = 0.4 Δ𝑡 = 0.2 Δ𝑡 = 0.1 Order (0.2/0.4) Order (0.1/0.2)
4 1.1595𝑒 − 004 2.7265𝑒 − 005 6.3127𝑒 − 006 2.0884 2.1107
8 1.9712𝑒 − 004 4.6625𝑒 − 005 1.0725𝑒 − 005 2.0799 2.1201
12 2.5295𝑒 − 004 5.9837𝑒 − 005 1.3579𝑒 − 005 2.0797 2.1397
16 2.9012𝑒 − 004 6.8641𝑒 − 005 1.5594𝑒 − 005 2.0795 2.1381
20 3.1768𝑒 − 004 7.5864𝑒 − 005 1.7195𝑒 − 005 2.0661 2.1414

Table 6: Convergence order and error in 𝐿
2 norm for 𝑢 of space with Δ𝑡 = 0.01 and 𝑐 = 0.1.

Time ℎ = 0.8 ℎ = 0.4 ℎ = 0.2 Order (0.4/0.8) Order (0.2/0.4)
4 1.7109𝑒 − 003 4.2677𝑒 − 004 1.1449𝑒 − 004 1.9940 1.8982
8 1.8945𝑒 − 003 4.6862𝑒 − 004 1.1924𝑒 − 004 2.0195 1.9746
12 2.1232𝑒 − 003 5.2130𝑒 − 004 1.3025𝑒 − 004 2.0102 2.0008
16 2.3559𝑒 − 003 5.7598𝑒 − 004 1.4421𝑒 − 004 2.0589 1.9978
20 2.5778𝑒 − 003 6.3407𝑒 − 004 1.7877𝑒 − 004 2.0358 1.8265

where

𝜏
𝑛+1

= 𝑞
𝑛+1

𝑡
−

3𝑞
𝑛+1

− 4𝑞
𝑛
+ 𝑞
𝑛−1

2Δ𝑡
,

𝜅
𝑛+1

1
= 𝑞
𝑥𝑡
(𝑡
𝑛+1

) −
3𝑞
𝑛+1

𝑥
− 4𝑞
𝑛

𝑥
+ 𝑞
𝑛−1

𝑥

2Δ𝑡
,

𝑅
𝑛+1

1
= 𝑞
𝑛+1

− (2𝑞
𝑛
− 𝑞
𝑛−1

) ,

𝑅
𝑛+1

2
= 𝑢
𝑛+1

𝑞
𝑛+1

− (2𝑢
𝑛
𝑞
𝑛
− 𝑢
𝑛−1

𝑞
𝑛−1

) .

(24)

We now find a pair {𝑈𝑛+1, 𝑍𝑛+1} in 𝑉
ℎ
× 𝑊
ℎ
satisfying

(𝑈
𝑛+1

𝑥
, Vℎ
𝑥
) = (𝑍

𝑛+1
, Vℎ
𝑥
) , ∀Vℎ ∈ 𝑉

ℎ
, (25)

(
3𝑍
𝑛+1

− 4𝑍
𝑛
+ 𝑍
𝑛−1

2Δ𝑡
, 𝑤
ℎ
) + 𝛽(

3𝑍
𝑛+1

𝑥
− 4𝑍
𝑛

𝑥
+ 𝑍
𝑛−1

𝑥

2Δ𝑡
, 𝑤
ℎ

𝑥
)

= 𝛾 (2𝑍
𝑛
− 𝑍
𝑛−1

, 𝑤
ℎ

𝑥
) + 𝛿 (2𝑈

𝑛
𝑍
𝑛
− 𝑈
𝑛−1

𝑍
𝑛−1

, 𝑤
ℎ

𝑥
) ,

∀𝑤
ℎ
∈ 𝑊
ℎ
.

(26)

For the theoretical analysis of a priori error estimates, we
define the following projections.

Lemma 2 (see [15, 27, 28]). One defines the elliptic projection
�̃�
ℎ
∈ 𝑉
ℎ
by

(𝑢
𝑥
− �̃�
ℎ

𝑥
, Vℎ
𝑥
) = 0, Vℎ ∈ 𝑉

ℎ
. (27)

With 𝜂 = 𝑢 − �̃�
ℎ, the following estimates are well known for

𝑗 = 0, 1:
𝜂

𝑗
≤ 𝐶ℎ
𝑘+1−𝑗

‖𝑢‖𝑘+1. (28)

Lemma 3 (see [15, 27, 28]). Furthermore, one also defines a
Ritz projection 𝑞

ℎ
∈ 𝑊
ℎ
of 𝑞 as the solution of

𝐴(𝑞 − 𝑞
ℎ
, 𝑤
ℎ
) = 0, 𝑤

ℎ
∈ 𝑊
ℎ
, (29)

where 𝐴(𝑞, 𝑤) = (𝑞
𝑥
, 𝑤
𝑥
) + 𝜆(𝑞, 𝑤), and 𝜆 is taken appropri-

ately so that

𝐴 (𝑤,𝑤) ≥ 𝜇
0‖𝑤‖
2

1
, 𝑤 ∈ 𝐻

1
, (30)

where 𝜇
0
is a positive constant.Moreover, it is easy to verify that

𝐴(⋅, ⋅) is bounded.
With 𝜌 = 𝑞 − 𝑞

ℎ, the following estimates hold:


𝜕
𝑖
𝜌

𝜕𝑡𝑖

𝑗

≤ 𝐶ℎ
𝑟+1−𝑗



𝜕
𝑖
𝑞

𝜕𝑡𝑖

𝑟+1

, 𝑖 = 0, 1, 2, 3; 𝑗 = 0, 1. (31)

For fully discrete error estimates, we now write the errors
as

𝑢 (𝑡
𝑛
) − 𝑈
𝑛
= (𝑢 (𝑡

𝑛
) − �̃�
ℎ
(𝑡
𝑛
)) + (�̃�

ℎ
(𝑡
𝑛
) − 𝑈
𝑛
) = 𝜂
𝑛
+ 𝜍
𝑛
,

𝑞 (𝑡
𝑛
) − 𝑍
𝑛
= (𝑞 (𝑡

𝑛
) − 𝑞
ℎ
(𝑡
𝑛
))

+ (𝑞
ℎ
(𝑡
𝑛
) − 𝑍
𝑛
) = 𝜌
𝑛
+ 𝜉
𝑛
.

(32)

Combine (27), (29), (22), (23), (25), and (26) at 𝑡 = 𝑡
𝑛+1

to get
the following error equations:

(𝜍
𝑛+1

𝑥
, Vℎ
𝑥
) = (𝜌

𝑛+1
+ 𝜉
𝑛+1

, Vℎ
𝑥
) , ∀Vℎ ∈ 𝑉

ℎ
, (33)

(
3𝜉
𝑛+1

− 4𝜉
𝑛
+ 𝜉
𝑛−1

2Δ𝑡
, 𝑤
ℎ
) + 𝛽(

3𝜉
𝑛+1

𝑥
− 4𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2Δ𝑡
, 𝑤
ℎ

𝑥
)

= −((1 − 𝛽𝜆)
3𝜌
𝑛+1

− 4𝜌
𝑛
+ 𝜌
𝑛−1

2Δ𝑡
+ 𝜏
𝑛+1

, 𝑤
ℎ
)

− 𝛽 (𝜅
𝑛+1

2
, 𝑤
ℎ

𝑥
) + 𝛾 (2𝜉

𝑛
− 𝜉
𝑛−1

, 𝑤
ℎ

𝑥
)

+ 𝛿 (2 (𝑢 (𝑡
𝑛
) 𝑞 (𝑡
𝑛
) − 𝑈
𝑛
𝑍
𝑛
)

− (𝑢 (𝑡
𝑛−1

) 𝑞 (𝑡
𝑛−1

) − 𝑈
𝑛−1

𝑍
𝑛−1

) , 𝑤
ℎ

𝑥
)

+ 𝛾 (𝑅
𝑛+1

1
, 𝑤
ℎ

𝑥
) + 𝛿 (𝑅

𝑛+1

2
, 𝑤
ℎ

𝑥
) , ∀𝑤

ℎ
∈ 𝑊
ℎ
,

(34)
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Table 7: Convergence order and error in 𝐿
∞ norm for 𝑢 of space with Δ𝑡 = 0.01 and 𝑐 = 0.1.

Time ℎ = 0.8 ℎ = 0.4 ℎ = 0.2 Order (0.4/0.8) Order (0.2/0.4)
4 2.1763𝑒 − 003 5.8447𝑒 − 004 1.5502𝑒 − 004 1.8967 1.9147
8 4.7892𝑒 − 003 1.2098𝑒 − 003 3.0533𝑒 − 004 1.9850 1.9863
12 7.2371𝑒 − 003 1.7871𝑒 − 003 4.4434𝑒 − 004 2.0178 2.0079
16 9.4746𝑒 − 003 2.3084𝑒 − 003 5.7081𝑒 − 004 2.0372 2.0158
20 1.1534𝑒 − 002 2.7859𝑒 − 003 6.8980𝑒 − 004 2.0497 2.0139

Table 8: Convergence order and error in 𝐿
2 norm for 𝑞 of space with Δ𝑡 = 0.01 and 𝑐 = 0.1.

Time ℎ = 0.8 ℎ = 0.4 ℎ = 0.2 Order (0.4/0.8) Order (0.2/0.4)
4 2.3426𝑒 − 004 5.4759𝑒 − 005 1.2581𝑒 − 005 2.0969 2.1218
8 4.2831𝑒 − 004 1.0038𝑒 − 004 2.2853𝑒 − 005 2.0932 2.1350
12 5.7270𝑒 − 004 1.3452𝑒 − 004 3.0443𝑒 − 005 2.0900 2.1436
16 6.7812𝑒 − 004 1.5951𝑒 − 004 3.5927𝑒 − 005 2.0879 2.1505
20 7.5693𝑒 − 004 1.7832𝑒 − 004 4.0176𝑒 − 005 2.0857 2.1501

where

𝜅
𝑛+1

2
= 𝑞
ℎ

𝑥𝑡
(𝑡
𝑛+1

) −
3𝑞
ℎ,𝑛+1

𝑥
− 4𝑞
ℎ,𝑛

𝑥
+ 𝑞
ℎ,𝑛−1

𝑥

2Δ𝑡
. (35)

Lemma 4. For 𝜏
𝑛+1, 𝜅

𝑛+1

2
, 𝑅
𝑛+1

1
, and 𝑅

𝑛+1

2
, the following

estimates hold:

𝜏
𝑛+1

≤ 𝐶Δ𝑡
2𝑞𝑡𝑡𝑡

𝐿∞(𝐿2)
,


𝜅
𝑛+1

2


≤ 𝐶Δ𝑡

2
(ℎ
𝑟𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐻𝑟+1)
+
𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
) ,


𝑅
𝑛+1

1


≤ 𝐶Δ𝑡

2𝑞𝑡𝑡
𝐿∞(𝐿2)

,


𝑅
𝑛+1

2


≤ 𝐶Δ𝑡

2
(
𝑢𝑞𝑡𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑞𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑡𝑞

𝐿∞(𝐿2)
) .

(36)

Proof. Using the Taylor expansion, we have

𝑞 (𝑡
𝑛
) = 𝑞 (𝑡

𝑛+1
) + 𝑞
𝑡
(𝑡
𝑛+1

) (𝑡
𝑛
− 𝑡
𝑛+1

)

+
𝑞
𝑡𝑡
(𝑡
Δ1
)

2
(𝑡
𝑛
− 𝑡
𝑛+1

)
2

, 𝑡
𝑛
< 𝑡
Δ1

< 𝑡
𝑛+1

,

(37)

𝑞 (𝑡
𝑛−1

) = 𝑞 (𝑡
𝑛+1

) + 𝑞
𝑡
(𝑡
𝑛+1

) (𝑡
𝑛−1

− 𝑡
𝑛+1

)

+
𝑞
𝑡𝑡
(𝑡
Δ2
)

2
(𝑡
𝑛−1

− 𝑡
𝑛+1

)
2

, 𝑡
𝑛−1

< 𝑡
Δ2

< 𝑡
𝑛+1

.

(38)

Combining (37) and (38) and noting that −2Δ𝑡 = 2(𝑡
𝑛
−

𝑡
𝑛+1

) = 𝑡
𝑛−1

− 𝑡
𝑛+1

, we obtain

𝑞 (𝑡
𝑛+1

) = 2𝑞 (𝑡
𝑛
) − 𝑞 (𝑡

𝑛−1
) + (𝑞

𝑡𝑡
(𝑡
Δ1
) − 2𝑞

𝑡𝑡
(𝑡
Δ2
)) Δ𝑡
2
.

(39)

From (39), we have

𝑞 (𝑡𝑛+1) − (2𝑞 (𝑡
𝑛
) − 𝑞 (𝑡

𝑛−1
))
 ≤ 𝐶Δ𝑡

2𝑞𝑡𝑡
𝐿∞(𝐿2)

. (40)

Using a similar estimate as the one for ‖𝑅𝑛+1
1

‖, we have

𝑢 (𝑡
𝑛+1

) 𝑞 (𝑡
𝑛+1

) = 2𝑢 (𝑡
𝑛
) 𝑞 (𝑡
𝑛
) − 𝑢 (𝑡

𝑛−1
) 𝑞 (𝑡
𝑛−1

)

+ ((𝑢𝑞)
𝑡𝑡
(𝑡
Δ3
) − 2(𝑢𝑞)

𝑡𝑡
(𝑡
Δ4
)) Δ𝑡
2
,

(41)

where 𝑡
𝑛
< 𝑡
Δ3

< 𝑡
𝑛+1

, 𝑡
𝑛−1

< 𝑡
Δ4

< 𝑡
𝑛+1

.
From (41), we have

𝑢 (𝑡
𝑛+1

) 𝑞 (𝑡
𝑛+1

) − (2𝑢 (𝑡
𝑛
) 𝑞 (𝑡
𝑛
) − 𝑢 (𝑡

𝑛−1
) 𝑞 (𝑡
𝑛−1

))


≤ 𝐶Δ𝑡
2
(
𝑢𝑞𝑡𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑞𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑡𝑞

𝐿∞(𝐿2)
) .

(42)

Using the Taylor expansion and noting that −2Δ𝑡 = 2(𝑡
𝑛
−

𝑡
𝑛+1

) = 𝑡
𝑛−1

− 𝑡
𝑛+1

, we have

4𝑞 (𝑡
𝑛
) = 4𝑞 (𝑡

𝑛+1
) − 4𝑞

𝑡
(𝑡
𝑛+1

) Δ𝑡 + 2𝑞
𝑡𝑡
(𝑡
𝑛+1

) Δ𝑡
2

−
2𝑞
𝑡𝑡𝑡

(𝑡
Δ5
)

3
Δ𝑡
3
, 𝑡
𝑛
< 𝑡
Δ5

< 𝑡
𝑛+1

,

𝑞 (𝑡
𝑛−1

) = 𝑞 (𝑡
𝑛+1

) − 2𝑞
𝑡
(𝑡
𝑛+1

) Δ𝑡 + 2
𝑞
𝑡𝑡
(𝑡
𝑛+1

)

2
Δ𝑡
2

−
4𝑞
𝑡𝑡𝑡

(𝑡
Δ6
)

3
Δ𝑡
3
, 𝑡
𝑛−1

< 𝑡
Δ6

< 𝑡
𝑛+1

.

(43)

Using (43), we obtain

𝑞
𝑛+1

𝑡
=

3𝑞
𝑛+1

− 4𝑞
𝑛
+ 𝑞
𝑛−1

2Δ𝑡
− (

2𝑞
𝑡𝑡𝑡

(𝑡
Δ5
)

3
−

4𝑞
𝑡𝑡𝑡

(𝑡
Δ6
)

3
)Δ𝑡
2
.

(44)

By (44), we have


𝜏
𝑛+1

≤ 𝐶Δ𝑡
2𝑞𝑡𝑡𝑡 (𝑡)

𝐿∞(𝐿2)
. (45)
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Table 9: Convergence order and error in 𝐿
∞ norm for 𝑞 of space with Δ𝑡 = 0.01 and 𝑐 = 0.1.

Time ℎ = 0.8 ℎ = 0.4 ℎ = 0.2 Order (0.4/0.8) Order (0.2/0.4)
4 1.1957𝑒 − 003 3.1367𝑒 − 004 7.8812𝑒 − 005 1.9305 1.9928
8 2.4344𝑒 − 003 6.0206𝑒 − 004 1.4825𝑒 − 004 2.0156 2.0219
12 3.4768𝑒 − 003 8.3962𝑒 − 004 2.0540𝑒 − 004 2.0500 2.0313
16 4.3743𝑒 − 003 1.0402𝑒 − 003 2.5371𝑒 − 004 2.0722 2.0356
20 5.1677𝑒 − 003 1.2153𝑒 − 003 2.9544𝑒 − 004 2.0882 2.0404

Using the similar method to the estimate for ‖𝜏𝑛+1‖ and (31),
we obtain


𝜅
𝑛+1

2


≤ 𝐶Δ𝑡

2
𝑞
ℎ

𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)

≤ 𝐶Δ𝑡
2
(
𝜌𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
+
𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
)

≤ 𝐶Δ𝑡
2
(ℎ
𝑟𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐻𝑟+1)
+
𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
) .

(46)

3.2.Optimal Error Estimates. In this subsection,we derive the
fully discrete optimal error estimates and obtain the following
theorem.

Theorem 5. Assuming that 𝑈0, 𝑈1 ∈ 𝑉
ℎ
and 𝑍

0, 𝑍1 ∈ 𝑊
ℎ
are

given, then for 1 ≤ 𝐽 ≤ 𝑀, 𝑗 = 0, 1, one has


𝑢
𝐽+1

− 𝑈
𝐽+1𝑗

≤ 𝐶 (ℎ
min(𝑘+1−𝑗,𝑟+1)

+ Δ𝑡
2
) ,


𝑞
𝐽+1

− 𝑍
𝐽+1𝑗

+

2 (𝑞
𝐽+1

− 𝑍
𝐽+1

) − (𝑞
𝐽
− 𝑍
𝐽
)
𝑗

≤ 𝐶 (ℎ
min(𝑘+1,𝑟+1−𝑗)

+ Δ𝑡
2
) .

(47)

Proof. Taking Vℎ = 𝜍
𝑛+1 in (33) and using Cauchy-Schwarz’s

inequality and Poincaré’s inequality, we get


𝜍
𝑛+1

≤ 𝐶

𝜍
𝑛+1

𝑥


≤ 𝐶 (


𝜌
𝑛+1

+

𝜉
𝑛+1

) . (48)

Set 𝑤ℎ = 𝜉
𝑛+1 in (34) to obtain

(
3𝜉
𝑛+1

− 4𝜉
𝑛
+ 𝜉
𝑛−1

2Δ𝑡
, 𝜉
𝑛+1

) + 𝛽(
3𝜉
𝑛+1

𝑥
− 4𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2Δ𝑡
, 𝜉
𝑛+1

𝑥
)

= −((1 − 𝛽𝜆)
3𝜌
𝑛+1

− 4𝜌
𝑛
+ 𝜌
𝑛−1

2Δ𝑡
+ 𝜏
𝑛+1

, 𝜉
𝑛+1

)

− 𝛽 (𝜅
𝑛+1

, 𝜉
𝑛+1

𝑥
) + 𝛾 (2𝜌

𝑛
− 𝜌
𝑛−1

, 𝜉
𝑛+1

𝑥
)

+ 𝛾 (2𝜉
𝑛
− 𝜉
𝑛−1

, 𝜉
𝑛+1

𝑥
) + 𝛾 (𝑅

𝑛+1

1
, 𝜉
𝑛+1

𝑥
) + 𝛿 (𝑅

𝑛+1

2
, 𝜉
𝑛+1

𝑥
)

+ 𝛿 (2 (𝑢 (𝑡
𝑛
) 𝑞 (𝑡
𝑛
) − 𝑈
𝑛
𝑍
𝑛
)

− (𝑢 (𝑡
𝑛−1

) 𝑞 (𝑡
𝑛−1

) − 𝑈
𝑛−1

𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
) .

(49)

Use (48) as well as the Cauchy-Schwarz and Young’s inequal-
ities to obtain

(
3𝜉
𝑛+1

− 4𝜉
𝑛
+ 𝜉
𝑛−1

2Δ𝑡
, 𝜉
𝑛+1

) + 𝛽(
3𝜉
𝑛+1

𝑥
− 4𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2Δ𝑡
, 𝜉
𝑛+1

𝑥
)

≤ 𝐶(

𝜉
𝑛+1

2

+

𝜉
𝑛+1

𝑥



2

+
𝜉
𝑛

2

+

2𝜌
𝑛
− 𝜌
𝑛−1

2

+

2𝜉
𝑛
− 𝜉
𝑛−1

2

+



3𝜌
𝑛+1

− 4𝜌
𝑛
+ 𝜌
𝑛−1

2Δ𝑡



2

+

𝜏
𝑛+1

2

+

𝜅
𝑛+1

2

+

𝑅
𝑛+1

1



2

+

𝑅
𝑛+1

2



2

)

+ 𝛿

(2 (𝑢 (𝑡

𝑛
) 𝑞 (𝑡
𝑛
) − 𝑈
𝑛
𝑍
𝑛
)

− (𝑢 (𝑡
𝑛−1

) 𝑞 (𝑡
𝑛−1

) − 𝑈
𝑛−1

𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)

.

(50)

Note that

(a) (
3𝜉
𝑛+1

− 4𝜉
𝑛
+ 𝜉
𝑛−1

2Δ𝑡
, 𝜉
𝑛+1

)

=
1

4Δ𝑡
[(


𝜉
𝑛+1

2

+

2𝜉
𝑛+1

− 𝜉
𝑛

2

)

− (
𝜉
𝑛

2

+

2𝜉
𝑛
− 𝜉
𝑛−1

2

)

+

𝜉
𝑛+1

− 2𝜉
𝑛
+ 𝜉
𝑛−1

2

] ,

(b) 𝛽(
3𝜉
𝑛+1

𝑥
− 4𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥

2Δ𝑡
, 𝜉
𝑛+1

𝑥
)

=
1

4Δ𝑡
[(


𝜉
𝑛+1

𝑥



2

+

2𝜉
𝑛+1

𝑥
− 𝜉
𝑛

𝑥



2

)

− (
𝜉
𝑛

𝑥



2

+

2𝜉
𝑛

𝑥
− 𝜉
𝑛−1

𝑥



2

)

+

𝜉
𝑛+1

𝑥
− 2𝜉
𝑛

𝑥
+ 𝜉
𝑛−1

𝑥



2

] ,

(c)


3𝜌
𝑛+1

− 4𝜌
𝑛
+ 𝜌
𝑛−1

2Δ𝑡



2

≤
3

2Δ𝑡
∫

𝑡𝑛+1

𝑡𝑛

𝜌𝑡


2

𝑑𝑠

+
1

2Δ𝑡
∫

𝑡𝑛

𝑡𝑛−1

𝜌𝑡


2

𝑑𝑠,

(51)
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(2 (𝑢 (𝑡

𝑛
) 𝑞 (𝑡
𝑛
) − 𝑈
𝑛
𝑍
𝑛
)

− (𝑢 (𝑡
𝑛−1

) 𝑞 (𝑡
𝑛−1

) − 𝑈
𝑛−1

𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


≤

(2𝑢 (𝑡

𝑛
) (𝑞 (𝑡

𝑛
) − 𝑍
𝑛
) − 𝑢 (𝑡

𝑛
) (𝑞 (𝑡

𝑛−1
) − 𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


+

((𝑢 (𝑡

𝑛
) − 𝑢 (𝑡

𝑛−1
)) (𝑞 (𝑡

𝑛−1
) − 𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


+

(2 (𝑢 (𝑡

𝑛
) − 𝑈
𝑛
) 𝑍
𝑛
− (𝑢 (𝑡

𝑛−1
) − 𝑈
𝑛−1

)𝑍
𝑛
, 𝜉
𝑛+1

𝑥
)


+

((𝑢 (𝑡

𝑛−1
) − 𝑈
𝑛−1

) (𝑍
𝑛
− 𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


=̇ 𝑇
1
+ 𝑇
2
+ 𝑇
3
+ 𝑇
4
.

(52)

We now estimate 𝑇
1
, 𝑇
2
, 𝑇
3
, and 𝑇

4
as

𝑇
1
≤


(𝑢 (𝑡
𝑛
) (2𝜉
𝑛
− 𝜉
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


+

(𝑢 (𝑡
𝑛
) (2𝜌
𝑛
− 𝜌
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


≤
𝑢 (𝑡
𝑛
)
∞


2𝜉
𝑛
− 𝜉
𝑛−1


𝜉
𝑛+1

𝑥



+
𝑢 (𝑡
𝑛
)
∞


2𝜌
𝑛
− 𝜌
𝑛−1


𝜉
𝑛+1

𝑥


,

𝑇
2
=



(∫

𝑡𝑛

𝑡𝑛−1

𝑢
𝑡
𝑑𝑠 (𝜌
𝑛−1

+ 𝜉
𝑛−1

) , 𝜉
𝑛+1

𝑥
)



≤ Δ𝑡
𝑢𝑡

∞


𝜌
𝑛−1

+ 𝜉
𝑛−1


𝜉
𝑛+1

𝑥


,

𝑇
3
≤


(𝑍
𝑛
(2𝜍
𝑛
− 𝜍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


+

(𝑍
𝑛
(2𝜂
𝑛
− 𝜂
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


≤
𝑍
𝑛∞


2𝜍
𝑛
− 𝜍
𝑛−1


𝜉
𝑛+1

𝑥



+
𝑍
𝑛∞


2𝜂
𝑛
− 𝜂
𝑛−1


𝜉
𝑛+1

𝑥


,

𝑇
4
≤



(∫

𝑡𝑛

𝑡𝑛−1

𝑍
𝑡
𝑑𝑠 (𝜂
𝑛−1

+ 𝜍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)



≤ Δ𝑡
𝑍𝑡

∞


𝜂
𝑛−1

+ 𝜍
𝑛−1


𝜉
𝑛+1

𝑥


.

(53)

Substituting (53) into (52), we obtain


(2 (𝑢 (𝑡

𝑛
) 𝑞 (𝑡
𝑛
) − 𝑈
𝑛
𝑍
𝑛
)

− (𝑢 (𝑡
𝑛−1

) 𝑞 (𝑡
𝑛−1

) − 𝑈
𝑛−1

𝑍
𝑛−1

) , 𝜉
𝑛+1

𝑥
)


≤ 𝐶 (

2𝜉
𝑛
− 𝜉
𝑛−1

2

+

𝜉
𝑛−1

2

+
𝜌
𝑛

2

+

𝜌
𝑛−1

2

+
𝜍
𝑛

2

+

𝜍
𝑛−1

2

+
𝜂
𝑛

2

+

𝜂
𝑛−1

2

+

𝜉
𝑛+1

𝑥



2

) .

(54)

Substituting (36), (51), and (54) into (50), using (48), and
summing from 𝑛 = 1, 2, . . . , 𝐽, the resulting inequality
becomes

(1 − 𝐶Δ𝑡) (

𝜉
𝐽+1

2

+

2𝜉
𝐽+1

− 𝜉
𝐽

2

+

𝜉
𝐽+1

𝑥



2

+

2𝜉
𝐽+1

𝑥
− 𝜉
𝐽

𝑥



2

)

≤ 𝐶Δ𝑡

𝐽

∑

𝑛 = 1

(

𝜂
𝑛−1

2

+

𝜌
𝑛−1

2

) + 𝐶∫

𝑡𝐽+1

0

𝜌𝑡


2

𝑑𝑠

+ 𝐶Δ𝑡
4
(
𝑞𝑡𝑡



2

𝐿
∞
(𝐿
2
)
+
𝑞𝑡𝑡𝑡



2

𝐿
∞
(𝐿
2
)

+
𝑢𝑞𝑡𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑞𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑡𝑞

𝐿∞(𝐿2)

+ ℎ
𝑟𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐻𝑟+1)
+
𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
)

+ 𝐶Δ𝑡

𝐽

∑

𝑛 = 1

(
𝜉
𝑛

2

+
𝜉
𝑛

𝑥



2

+

2𝜉
𝑛
− 𝜉
𝑛−1

2

+

2𝜉
𝑛

𝑥
− 𝜉
𝑛−1

𝑥



2

) .

(55)

ChooseΔ𝑡
0
in such a way that for 0 < Δ𝑡 ≤ Δ𝑡

0
, (1−𝐶Δ𝑡) > 0.

Then, as an application of Gronwall’s lemma, we obtain


𝜉
𝐽+1

2

+

2𝜉
𝐽+1

− 𝜉
𝐽

2

+

𝜉
𝐽+1

𝑥



2

+

2𝜉
𝐽+1

𝑥
− 𝜉
𝐽

𝑥



2

≤ 𝐶Δ𝑡

𝐽

∑

𝑛 = 1

(

𝜂
𝑛−1

2

+

𝜌
𝑛−1

2

) + 𝐶∫

𝑡𝐽+1

0

𝜌𝑡


2

𝑑𝑠

+ 𝐶Δ𝑡
4
(
𝑞𝑡𝑡



2

𝐿
∞
(𝐿
2
)
+
𝑞𝑡𝑡𝑡



2

𝐿
∞
(𝐿
2
)
+
𝑢𝑞𝑡𝑡

𝐿∞(𝐿2)

+
𝑢𝑡𝑞𝑡

𝐿∞(𝐿2)
+
𝑢𝑡𝑡𝑞

𝐿∞(𝐿2)

+ ℎ
𝑟𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐻𝑟+1)
+
𝑞𝑥𝑡𝑡𝑡

𝐿∞(𝐿2)
) .

(56)

Combine (28), (31), and (56) with the triangle inequality to
complete the 𝐿

2 and 𝐻
1 error estimates for 𝑞. Furthermore,

use (48) and the triangle inequality to complete the optimal
error estimates for ‖𝑢(𝑡

𝑛
) − 𝑈
𝑛
‖ and ‖𝑢(𝑡

𝑛
) − 𝑈
𝑛
‖
1
.

Remark 6. Compared to a variety of difference methods in
[17], our method is studied based on mixed element scheme
(6) and (7).

Remark 7. Although some convergence proofs of multistep
methods for RLW/BBM are provided in [20, 25, 29], our
convergence results of multistep methods are proved based
on a mixed finite element scheme. Based on the current dis-
cussion, we have to provide the detailed proofs for multistep
mixed finite element methods in this paper.
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Figure 1: Surface for exact solution 𝑢.
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Figure 2: Surface for numerical solution 𝑢
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4. Numerical Results

In order to test the viability of the proposed method, we
consider a test problem. We write conservation laws as [3, 4]

𝑄
1
= ∫

𝑏

𝑎

𝑢 𝑑𝑥 ≃ ℎ

𝑁

∑

𝑗 = 1

𝑢
𝑛

𝑗
,

𝑄
2
= ∫

𝑏

𝑎

(𝑢
2
+ 𝜇(𝑢

𝑥
)
2

) 𝑑𝑥 ≃ ℎ

𝑁

∑

𝑗 = 1

[(𝑢
𝑛

𝑗
)
2

+ 𝜇[(𝑢
𝑥
)
𝑛

𝑗
]
2

] ,

𝑄
3
= ∫

𝑏

𝑎

(𝑢
3
+ 3𝑢
2
) 𝑑𝑥 ≃ ℎ

𝑁

∑

𝑗 = 1

[(𝑢
𝑛

𝑗
)
3

+ 3[(𝑢)
𝑛

𝑗
]
2

] ,

(57)

where 𝑄
1
, 𝑄
2
, and 𝑄

3
are usually called mass, momentum,

and energy, respectively, which are observed to check the
conservation of the numerical scheme.
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Figure 3: Surface for exact solution 𝑞.
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Figure 4: Surface for numerical solution 𝑞
ℎ
.

We consider RLW equation (1) and let, in (1), 𝛿 = 𝛾 = 𝛽 =

1. Then, the solitary wave solution of (1) is

𝑢 (𝑥, 𝑡) = 3𝑐sech2 (𝑘 [𝑥 − 𝑥
0
− V𝑡]) , (58)

where

𝑘 =
1

2
√

𝑐

1 + 𝑐
, V = 1 + 𝑐. (59)

We consider the motion of a single solitary wave and take
as initial condition, with 𝑐 = 0.1 and 𝑥

0
= 0,

𝑢 (𝑥, 0) = 0.3sech2 ( 𝑥

2√11

) . (60)

The corresponding exact solution with initial condition (60)
is

𝑢 (𝑥, 𝑡) = 0.3sech2 (𝑥 − 1.1𝑡

2√11

) . (61)

In this procedure, we take space-time domain as −40 ≤

𝑥 ≤ 60 and 0 ≤ 𝑡 ≤ 20.
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Figure 5: Comparison between 𝑢 and 𝑢
ℎ
at times 𝑡 = 4, 8, 12, 16,

and 20 with ℎ = 0.125 and Δ𝑡 = 0.2.

In Table 1, we take spatial mesh parameter ℎ = 0.125

and time discretization parameter Δ𝑡 = 0.1 and list the three
invariants 𝑄

1
, 𝑄
2
, and 𝑄

3
and the optimal error estimate in

𝐿
2 and 𝐿

∞ norms for 𝑢 at different times 𝑡 = 0, 4, 8, 12, 16,
and 20. At the same time, we show some numerical results at
time 𝑡 = 20 obtained by other numerical methods in Table 1.
From Table 1, we find that our method is more accurate than
the numerical methods in [17, 18, 28] but is less than the
numerical methods in [23, 24]. From the shown results in
Table 1, we can see that𝑄

1
,𝑄
2
and𝑄

3
keep almost constants,

so the conservation for our method is very well.
In Tables 2 and 3, we take spatial mesh parameter ℎ =

0.125 and obtain the optimal error results in𝐿
2 and𝐿

∞ norms
for 𝑢 at different times 𝑡 = 0, 4, 8, 12, 16, and 20with different
time discretization parameters Δ𝑡 = 0.1, 0.2, and 0.4. From
Tables 2 and 3, we see easily that the convergence rate for time
is close to order 2. Similarly, the results for 𝑞 are shown in
Tables 4 and 5.

In Tables 6 and 7, the optimal error results in 𝐿
2 and 𝐿

∞

norms for 𝑢 at different times 𝑡 = 0, 4, 8, 12, 16, and 20 with
different spatial mesh parameters ℎ = 0.2, 0.4, and 0.8 and
time discretization parameter Δ𝑡 = 0.01 are shown. It is easy
to see that the convergence rate for space is close to order 2.
The similar results for 𝑞 are listed in Tables 8 and 9.

Figure 1 shows the surface for the exact solution 𝑢 in
space-time domain ((𝑥, 𝑡) ∈ [−20, 60] × [0, 20]), and the
corresponding surface for the numerical solution 𝑢

ℎ
with

ℎ = 2 and Δ𝑡 = 0.4 is described in Figure 2. From Figures 1
and 2, we see easily that the exact solution 𝑢 is approximated
very well by the numerical solution 𝑢

ℎ
. In Figures 3 and 4, we

show the surface for the exact solution 𝑞 and the numerical
solution 𝑞

ℎ
, respectively, with ℎ = 2 and Δ𝑡 = 0.4 and obtain

a good approximation solution 𝑞
ℎ
for the exact solution 𝑞.

The comparison between the exact solution 𝑢 and
the numerical solution 𝑢

ℎ
is described at different times
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𝑡 = 12
𝑡 = 16

𝑡 = 20
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Numerical
Exact

−40 −20

𝑥

Figure 6: Comparison between 𝑞 and 𝑞
ℎ
at times 𝑡 = 48, 12, 16, and

20 with ℎ = 0.125 and Δ𝑡 = 0.2.

Numerical
Exact
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0.15
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0.35

0.1
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𝑡
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Figure 7: Comparison between 𝑢 and 𝑢
ℎ
at spaces 𝑥 = 0, 10, 20, and

30 with ℎ = 0.125 and Δ𝑡 = 0.2.

𝑡 = 4, 8, 12, 16, and 20 with ℎ = 0.125 and Δ𝑡 = 0.2 in
Figure 5.The similar comparison for the exact solution 𝑞 and
the numerical solution 𝑞

ℎ
is shown in Figure 6. Figures 5 and

6 show that the solitary wave for 𝑢 and 𝑞 moves to the right
with unchanged formand velocity, respectively. Furthermore,
the exact solutions 𝑢 and 𝑞 are approximated well by the
numerical solutions 𝑢

ℎ
and 𝑞
ℎ
, respectively.

In Figure 7, we show the comparison between 𝑢 and 𝑢
ℎ

at different spaces 𝑥 = 0, 10, 20, and 30 with ℎ = 0.125 and
Δ𝑡 = 0.2 to verify the efficiency for the proposed scheme in
this paper. Figure 8 describes a similar result for 𝑞.
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Figure 8: Comparison between 𝑞 and 𝑞
ℎ
at spaces 𝑥 = 0, 10, 20, and

30 with ℎ = 0.125 and Δ𝑡 = 0.2.

From the previous analysis in Tables 1–9 and Figures 1–8,
we can see that the numerical results confirm the theoretical
results of Theorem 5 and our method is efficient for RLW
equation.

5. Concluding Remarks

In this paper, we propose and analyze an explicit multistep
mixed finite element method, which combines spatial mixed
finite element method and time explicit multistep method,
for RLW equation. We discuss the numerical process for our
method, prove the theoretical results for the fully discrete
explicit multistep mixed scheme, obtain the optimal conver-
gence order, and compare our method’s accuracy with some
other numerical schemes. Compared with the numerical
method in [20, 25, 26], our method can obtain the optimal
error estimates in 𝐿

2 and 𝐻
1 norms for the scalar unknown

𝑢 and its flux 𝑞 = 𝑢
𝑥
simultaneously. From our numerical

results, we can see that our method is efficient for RLW
equation.
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[23] I. Dağ andM. N. Özer, “Approximation of the RLW equation by
the least square cubic B-spline finite element method,” Applied
Mathematical Modelling, vol. 25, no. 3, pp. 221–231, 2001.

[24] A. Dogan, “Numerical solution of RLW equation using linear
finite elements within Galerkin’s method,” Applied Mathemati-
cal Modelling, vol. 26, no. 7, pp. 771–783, 2002.

[25] P. Chatzipantelidis, “Explicit multistep methods for nonstiff
partial differential equations,” Applied Numerical Mathematics,
vol. 27, no. 1, pp. 13–31, 1998.

[26] G. Akrivis, O. Karakashian, and F. Karakatsani, “Linearly
implicit methods for nonlinear evolution equations,”
Numerische Mathematik, vol. 94, no. 3, pp. 403–418, 2003.

[27] A. K. Pani, R. K. Sinha, and A. K. Otta, “An𝐻
1-Galerkin mixed

method for second order hyperbolic equations,” International
Journal of Numerical Analysis andModeling, vol. 1, no. 2, pp. 111–
129, 2004.

[28] M. F. Wheeler, “A priori 𝐿
2
error estimates for Galerkin

approximations to parabolic partial differential equations,”
SIAM Journal on Numerical Analysis, vol. 10, pp. 723–759, 1973.

[29] J. L. Bona, W. G. Pritchard, and L. R. Scott, “An evaluation of a
model equation for water waves,” Philosophical Transactions of
the Royal Society of London A, vol. 302, no. 1471, pp. 457–510,
1981.


