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We studied on the differential geometry of the Hamilton space including trajectories of the motion of particles exposed to
gravitational fields and the cotangent bundle.

1. Introduction

As known, a Hamilton space is constructed as a differentiable
manifold and a real valuable function defined on its cotangent
bundle. The second order partial differentiation (Hessian)
of this real valuable function with respect to momentum
coordinate (𝑝

𝑖
) determines a metric tensor on the cotangent

bundle. However, Hessian of the Hamiltonian with respect
to momentum coordinate determines a metric tensor on
the manifold. This metric tensor is considered by Miron
[1]. Recently, many studies have been done on the metrics
defined on the cotangent bundles, and most of these studies
are on two distinguished metrics. One of these metrics is
the Riemann extension of the torsion-free affine connection
[2–4] and the other one is the diagonal lift in cotangent
bundle [1, 5]. Willmore [3] showed that a torsion-free affine
connection on a manifold determines canonically a pseudo-
Riemannian metric on the cotangent bundle. Furthermore,
he expressed this pseudo-Riemannianmetric as the Riemann
extension of the affine connection. Akbulut et al. [5] defined
a diagonal lift of a Riemannian metric of a manifold to its
cotangent bundle, and they studied the differential geometry
of the cotangent bundle with respect to this Riemann metric.
Oproiu [6] studied the differential geometry of tangent
bundle of a Lagrange manifold when this tangent bundle
is endowed with pseudo-Riemannian metric obtained from
fundamental tensor field by amethod similar to the obtaining

of the complete lift of a pseudo-Riemannian metric on a
differentiable manifold. Ayhan [7, 8] obtained the images on
the cotangent bundle of the some tensor fields (i.e., functions,
vector fields, and 1-forms, and tensor fields with types (1,1),
(0,2) and (2,0)) on the tangent bundle of a Lagrangemanifold
which are obtained by vertical, complete, and horizontal lifts
under the Legendre transformation.

In this paper, it is proved that the trajectories of particles
exposed to gravitational fields are geodesics and theHamilton
function as represented of the total energy of system is
constant along these trajectories. We studied the differential
geometry of the cotangent bundle 𝑇

∗𝑀 of the Hamilton
space 𝑀 including the trajectories of particles exposed to
gravitational fields.Weobtained that the pseudo-Riemannian
metric𝐺 on𝑇∗𝑀 corresponds to pseudo-Riemannianmetric
𝑔
𝐶 on 𝑇𝑀 with respect to Legendre transformation, and we

showed that 𝐺 is the Riemann extension of the Levi-Civita
connection. Moreover we considered an almost product
structure 𝑃 is defined on 𝑇∗𝑀. By means of 𝑃 and 𝐺, an
almost symplectic structure 𝜃 on 𝑇∗𝑀 is defined. Finally we
obtained that the coefficients of the Levi-Civita connection ∇̇
and Riemann curvature tensor 𝐾 of (𝑇∗𝑀,𝐺) and we found
the condition under which𝑇∗𝑀 is locally flat.

In this study, all the manifolds and the geometric objects
are assumed to be 𝐶∞, and we use the Einstein summation
convention.
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2. The Movement in a Hamilton Space

The fundamental physical concept is that a gravitational field
is identical to geometry of theHamilton space.This geometry
is determined by Hamiltonian

𝐻(𝑥
𝑖
, 𝑝
𝑖
) =

1

2
𝑔
𝑖𝑘
(𝑥) 𝑝𝑖𝑝𝑘, (1)

where 𝑔𝑖𝑘(𝑥) is a tensor with type (2, 0) given by 𝑔𝑖𝑘𝑔
𝑘𝑗

=

𝛿𝑖
𝑗
. 𝑔
𝑘𝑗
(𝑥) is local components of a (pseudo)Riemann metric

tensor [9]. At the same time, the second order partial differ-
entiation (Hessian) of Hamiltonian given by (1) with respect
tomomentum coordinate (𝑝

𝑖
) is equal to the following tensor

type of (2, 0):

𝑔
𝑖𝑘
(𝑥) =

𝜕
2𝐻

𝜕𝑝
𝑖
𝜕𝑝
𝑘

. (2)

The Hamilton space 𝑀, called a Hamilton mechanic
system by mechanists, consists of n-dimensional differen-
tiable manifold 𝑀 and regular Hamiltonian 𝐻 given by (2)
providing det[𝑔𝑖𝑘] ̸= 0 [1, 10]. The motion of every particle
in the Hamilton space depending on time is represented as
a curve 𝛾 : 𝐼 ⊂ 𝑅 → 𝑀. For any time 𝑡, the position
coordinates of every particle in the Hamilton space are given
by 𝑥𝑖 ∘ 𝛾(𝑡), 𝑖 = 1, . . . , 𝑛, or briefly 𝑥𝑖, 𝑖 = 1, . . . , 𝑛, and,
respectively, the velocity and momentum coordinates are
given by 𝑦𝑖 = 𝑑𝑥𝑖/𝑑𝑡, 𝑖 = 1, . . . , 𝑛, and 𝑝

𝑖
= 𝑔
𝑖𝑗
𝑦𝑗, 𝑖 = 1, . . . , 𝑛.

The movement equation of any particle in the
Hamilton space from the position (𝑥1(𝑡

1
), . . . , 𝑥𝑛(𝑡

1
)) to

(𝑥1(𝑡
2
), . . . , 𝑥𝑛(𝑡

2
)) is determined by the canonic Hamilton

equation which is defined by

𝑑𝑥𝑖

𝑑𝑡
=
𝜕𝐻

𝜕𝑝
𝑖

;
𝑑𝑝
𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
. (3)

The solution curves of the differential equation system in (3)
are one-parameter groupof diffeomorphisms of theHamilton
space [11]. The Hamiltonian 𝐻 is fixed on family of one-
parameter curves, which defines a conservation law. As any
particle is moving on any curve in the Hamilton space, the
total energy 𝐻 of the system is the same on every point
of curve. In other words, the Hamiltonian is not changed
with respect to variable 𝑡 and the total energy 𝐻 must be
constant as the particles move. Since the tangent vector
field of a curve 𝐶 : 𝑡 → (𝑥

𝑖
(𝑡), 𝑝
𝑖
(𝑡)), 𝑖 = 1, . . . , 𝑛,

satisfies the canonic Hamilton equation in (3), this tangent
vector field of 𝐶 is called the Hamilton vector field. Integral
curves of the Hamilton vector field correspond to geodesics
in the Hamilton space 𝑀 [12]. In Section 3, we proved
that the integral curves of the Hamilton vector field on
𝑇
∗𝑀 correspond to geodesics on 𝑀 and also the value of

Hamiltonian 𝐻 does not change on geodesics of 𝑀 for the
Hamiltonian of the gravitational fields given by (1).

The Hamilton space𝑀 is an 𝑛-dimensional differentiable
manifold with (𝑈, 𝑥𝑖), 𝑖 = 1, . . . , 𝑛, the local chart and 𝑇∗𝑀 is
2𝑛-dimensional its cotangent bundle with (𝜋−1(𝑈), 𝑥𝑖, 𝑝

𝑖
), 𝑖 =

1, . . . , 𝑛, the local chart, where 𝜋 : 𝑇∗𝑀 → 𝑀 is canonical

projection, 𝑥𝑖 = 𝑥𝑖𝑜𝜋 and 𝑝
𝑖
are the vector space coordinates

of an element from 𝜋−1(𝑈) with respect to the local frame
(𝑑𝑥1, . . . , 𝑑𝑥𝑛) of 𝑇∗𝑀 defined by the local chart (𝑈, 𝑥𝑖). In
classical mechanics, 𝑇∗𝑀 and TM are called momentum
phase space and velocity phase space, respectively. The
tangent bundle of 𝑇∗𝑀 has an integrable vector subbundle
𝑉𝑇∗𝑀 = Ker𝜋

∗
called the vertical distribution on 𝑇∗𝑀. A

nonlinear connection on 𝑇∗𝑀 is defined by the horizontal
distribution by 𝐻𝑇∗𝑀 and 𝐻𝑇∗𝑀 is complementary to
𝑉𝑇∗𝑀 in 𝑇𝑇∗𝑀. Thus 𝑇𝑇∗𝑀 = 𝑉𝑇∗𝑀 ⊕ 𝐻𝑇∗𝑀. The
system of the local vector fields (𝜕/𝜕𝑝

1
, . . . , 𝜕/𝜕𝑝

𝑛
) is a local

frame in 𝑉𝑇∗𝑀 and the system of the local vector fields
(𝛿/𝛿𝑥1, . . . , 𝛿/𝛿𝑥𝑛) is a local frame in𝐻𝑇∗𝑀.

The Legendre transformation 𝜑 is a diffeomorphism
between the open set of 𝑈̃ ⊂ 𝑇𝑀 and the open set of
𝑈 ⊂ 𝑇∗𝑀. Let {𝛿/𝛿𝑥𝑖, 𝜕/𝜕𝑦𝑖}, {𝑑𝑥𝑖, 𝛿𝑦𝑖} be an adapted frame
(coframe) on 𝑇𝑀 and {𝛿/𝛿𝑥𝑖, 𝜕/𝜕𝑝

𝑖
}, {𝑑𝑥𝑖, 𝛿𝑝

𝑖
} be an adapted

frame (coframe) on 𝑇∗𝑀. Then the differential geometric
objects on 𝑇∗𝑀 can be expressed in terms of those of 𝑇𝑀
by using the Legendre transformation as follows:

(𝜑
−1
)
∗

(𝑑𝑥
𝑖
) = 𝑑𝑥

𝑖
,

(𝜑
−1
)
∗

(𝛿𝑦
𝑖
) = 𝑔
𝑖𝑗
𝛿𝑝
𝑗
, (𝜑

−1
)
∗

(𝑔
𝑖𝑗
) = 𝑔
𝑖𝑗
.

(4)

3. The Integral Curves and Metrics

In this section, we studied the relation between the integral
curves of theHamilton vector field on𝑇∗𝑀 and the geodesics
on 𝑀. Then we obtained the pseudo-Riemann metric 𝐺 on
𝑇
∗𝑀 by using two different methods. In addition, we defined

an almost symplectic structure 𝜃 on 𝑇∗𝑀 by using 𝐺 and
an almost product structure 𝑃. Finally, the fact that the total
energy𝐻 is constant for each stage of the system as the system
with 𝑛-particlesmoveswith the effect of the gravitational field
is reexpressed in terms of differential geometric objects on the
cotangent bundle 𝑇∗𝑀 of the Hamilton space𝑀.

Theorem 1. Let𝐻 be the Hamiltonian given by (1). Let 𝐶 be a
curve in 𝑇∗𝑀, 𝛾 be a projection of 𝐶 to𝑀; that is, 𝜋 ∘ 𝐶 = 𝛾,
and let𝑤 be a 1-form associatedwith the tangent vector of curve
𝛾(𝑡).

(i) If the curve𝐶 is an integral curve of theHamilton vector
field 𝑉, the curve 𝛾 is geodesic.

(ii) TheHamiltonian of the gravitational field𝐻 is constant
along the geodesic of the Hamilton space.

Proof. (i) Let 𝑉 be the Hamilton vector field. 𝑉 has local
expression with respect to induced coordinate system on
𝑇
∗𝑀

𝑉 =
𝜕𝐻

𝜕𝑝
𝑖

𝜕

𝜕𝑥𝑖
−
𝜕𝐻

𝜕𝑥𝑖
𝜕

𝜕𝑝
𝑖

. (5)

The tangent vector field of 𝐶 in 𝑇
∗
𝑀 has local coordinate

expression

𝐶
∗
(
𝑑

𝑑𝑡
) =

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

𝜕

𝜕𝑥𝑖
+
𝑑𝑝
𝑖 (𝑡)

𝑑𝑡

𝜕

𝜕𝑝
𝑖

(6)
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with respect to induced coordinate system of 𝑇∗𝑀. If the
curve 𝐶 is an integral curve of the Hamilton vector field 𝑉,
the equation 𝐶

∗
(𝑑/𝑑𝑡) = 𝑉

𝐶(𝑡)
holds. From this equation, we

obtain the following canonic Hamilton equations:

𝑑𝑥𝑖 (𝑡)

𝑑𝑡
=
𝜕𝐻

𝜕𝑝
𝑖

= 𝑔
𝑖𝑗
𝑝
𝑗
,

𝑑𝑝
𝑖 (𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥𝑖
. (7)

The right part of the above equations is expressed by

𝑑

𝑑𝑡
(𝑔
𝑖𝑗

𝜕𝐻

𝜕𝑝
𝑗

) +
𝜕𝐻

𝜕𝑥𝑖
= 0. (8)

Using the composite function differentiation, we get

𝑑𝑝
𝑘

𝑑𝑡
+

𝜕

𝜕𝑥𝑘
(𝑔
𝑖𝑗

𝜕𝐻

𝜕𝑝
𝑗

)
𝑑𝑥𝑘

𝑑𝑡
+
𝜕𝐻

𝜕𝑥𝑖
= 0, (9)

and by

𝑑𝑥𝑘

𝑑𝑡
= 𝑔
𝑘𝑎
𝑝
𝑎
, (10)

we get

𝑑𝑝
𝑘

𝑑𝑡
+

𝜕

𝜕𝑥𝑘
(𝑔
𝑖𝑗

𝜕𝐻

𝜕𝑝
𝑗

)𝑔
𝑘𝑎
𝑝
𝑎
+
𝜕𝐻

𝜕𝑥𝑖
= 0. (11)

Next, transvecting by 𝑔
𝑘𝑎
, we get

𝑔
𝑘𝑎

𝑑𝑝
𝑘

𝑑𝑡
+ 𝑆
𝑗
(𝑥, 𝑝) = 0, (12)

where

𝑆
𝑗
(𝑥, 𝑝) =

𝜕

𝜕𝑥𝑘
(𝑔
𝑖𝑗

𝜕𝐻

𝜕𝑝
𝑗

)𝑝
𝑎
+ 𝑔
𝑘𝑎

𝜕𝐻

𝜕𝑥𝑖
. (13)

We get a nonlinear connection on 𝑇∗𝑀 defined by

𝑁
𝑗𝑘
= 𝑆
𝑎

𝑗
=
1

2
𝑔
𝑘𝑎

𝜕2𝐻

𝜕𝑥𝑗𝜕𝑝
𝑎

, (14)

where

𝑁
𝑗𝑘
= 𝑆
𝑎

𝑗
=
1

2

𝜕𝑆
𝑗

𝜕𝑝
𝑎

. (15)

Then, we obtain

𝜕𝑁
𝑗𝑘

𝜕𝑝
𝑏

=
1

2
𝑔
𝑘𝑎

𝜕𝑔𝑎𝑏

𝜕𝑥𝑗
, (16)

and since the following equation is satisfied:

𝜕𝑔𝑎𝑏

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
𝑔 (𝑑𝑥

𝑎
, 𝑑𝑥
𝑏
) , (17)

we get

𝜕𝑁
𝑗𝑘

𝜕𝑝
𝑏

= −Γ
𝑏

𝑗𝑘
. (18)

Subsequently we obtained that 𝑁
𝑗𝑘
= −Γ𝑏
𝑗𝑘
𝑝
𝑏
and 𝑆
𝑗
(𝑥, 𝑝) =

−Γ𝑏
𝑗𝑘
𝑝
𝑏
𝑝
𝑎
. If we substitute the above equation into (12), we get

𝑔
𝑘𝑎

𝑑𝑝
𝑘

𝑑𝑡
− Γ
𝑏

𝑗𝑘
𝑝
𝑏
𝑝
𝑎
= 0, (19)

and transvecting by 𝑔𝑘𝑎, we get

𝑑𝑝
𝑘

𝑑𝑡
− Γ
𝑏

𝑗𝑘
𝑝
𝑏
𝑔
𝑘𝑎
𝑝
𝑎
= 0. (20)

Thus,

𝑑𝑝
𝑘

𝑑𝑡
− Γ
𝑏

𝑗𝑘
𝑝
𝑏

𝑑𝑥
𝑘

𝑑𝑡
= 0. (21)

Then we get

∇
(𝑑𝑥
𝑘
/𝑑𝑡)(𝜕/𝜕𝑥

𝑘
)
𝑝
𝑗
𝑑𝑥
𝑗
= 0. (22)

Since𝑤 = 𝑝
𝑖
𝑑𝑥𝑖 is a 1-form associatedwith the tangent vector,

𝛾̇ = 𝑑𝛾(𝑡)/𝑑𝑡 of curves 𝛾(𝑡), and Riemann connection ∇

satisfies the following property:

∇
𝛾̇
(𝑤 (𝛾̇)) = 2𝑔 (𝛾̇, ∇

𝛾̇
𝛾̇) for 𝑤 (𝛾̇) = 𝑔 (𝛾̇, 𝛾̇) , (23)

we get

𝑔 (𝛾̇, ∇
𝛾̇
𝛾̇) = 0. (24)

Therefore it can be seen that straightforward the curve 𝛾(𝑡) is
a geodesic curve.

(ii) It is sufficient to show the Hamiltonian 𝐻 is not
changed with respect to variable 𝑡 in order to prove the
theorem. We calculate

𝑑𝐻

𝑑𝑡
=
𝜕𝐻

𝜕𝑥𝑖
𝑑𝑥
𝑖

𝑑𝑡
+
𝜕𝐻

𝜕𝑝
𝑖

𝑑𝑝
𝑖

𝑑𝑡
. (25)

If we take into account (3), we obtain 𝑑𝐻/𝑑𝑡 = 0. Thus 𝐻 is
not dependent on value 𝑡.

Therefore, we obtain that the trajectories of particles
exposed to gravitational fields are geodesics and theHamilton
function represented of the total energy of system is constant
along these trajectories.

We consider differential geometric objects on the cotan-
gent bundle 𝑇∗𝑀 of the Hamilton space. Let us start by
obtaining a metric on 𝑇∗𝑀. A pseudo-Riemann metric 𝐺 on
the cotangent bundle 𝑇∗𝑀 of the Hamilton space is obtained
by using two different ways. Firstly, the pseudo-Riemann
metric on the cotangent bundle 𝑇∗𝑀 is obtained as we were
inspired by the paper of Willmore [3] as follows.

Theorem 2. The Levi-Civita connection ∇ on 𝑀 determines
canonically a pseudo-Riemannian metric on 𝑇∗𝑀.

Proof. Let 𝑃 be a point on 𝑇∗𝑀 such that 𝐶(0) = 𝑃. Let 𝑋
be a tangent vector to 𝐶 at 𝑃. The image of the curve 𝐶(𝑡)
under the bundle projection map 𝜋 is a curve 𝛾(𝑡) on 𝑀,
passing through 𝑝 = 𝜋(𝑃) ∈ 𝑈. The curve 𝐶(𝑡) can be
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regarded as a field of covariant vectors 𝜔(𝑡) defined along
the curve 𝛾(𝑡). The covariant derivative (∇

𝑑𝜋(𝑋)
𝜔(𝑡))
𝑡=0

is a
covector at𝑝which can be evaluated on the projected tangent
vector 𝑑𝜋(𝑋). This defines a quadratic differential form𝑄 on
𝑇(𝑇
∗𝑀). From this we obtain a bilinear form 𝐺 on 𝑇∗𝑀 at

𝑃 by the usual formula

𝐺 (𝑋, 𝑌) = 𝑄 (𝑋 + 𝑌,𝑋 + 𝑌) − 𝑄 (𝑋,𝑋) − 𝑄 (𝑌, 𝑌) , (26)

where 𝑋 and 𝑌 are tangent vectors to 𝑇∗𝑀 at 𝑃. We shall
consider that𝐺 corresponds toRiemann extension of∇on𝑀.
We choose a local coordinate system (𝑥

𝑖), 𝑖 = 1, . . . , 𝑛, valid
in some neighborhood 𝑈 around 𝑝. Then a local coordinate
system for 𝜋−1(𝑈) is (𝑥𝑖, 𝑝

𝑗
), where 𝜔 = 𝑝

𝑗
𝑑𝑥𝑗. The curve

may be expressed locally by 𝑡 → (𝑥𝑖(𝑡), 𝑝
𝑗
(𝑡)) and the

corresponding curve 𝛾 is 𝑡 → (𝑥𝑖(𝑡)). The vector 𝑋 at 𝑃
is given by (𝑥̇𝑖(0), 𝑝̇

𝑖
(0)) and its projection 𝑑𝜋(𝑋) by 𝑥̇𝑖(0).

Then, at when 𝑡 = 0, we have

∇
𝑑𝜋(𝑋)

𝜔 (𝑡) = 𝑥̇
𝑖
(0) (∇𝑖𝑝𝑗 (𝑡)) 𝑑𝑥

𝑗

= [
𝑑𝑝
𝑗

𝑑𝑡
− Γ
𝑘

𝑖𝑗
𝑝
𝑘
𝑥̇
𝑖
(0)] 𝑑𝑥

𝑗
,

(27)

where Γ𝑘
𝑖𝑗
are the connection coefficients of∇.We evaluate this

covector on 𝑑𝜋(𝑋) to get the number

𝑄 (𝑋,𝑋) = (∇
𝑑𝜋(𝑋)

𝜔 (𝑡)) (𝑑𝜋 (𝑋))

= − Γ
𝑘

𝑖𝑗
𝑝
𝑘
𝑥̇
𝑖
𝑥̇
𝑗
+ 𝑝̇
𝑗
𝑥̇
𝑗
.

(28)

If the equation which is obtained above taken into account in
(26), we get for 𝐺(𝑋,𝑋)the following:

𝐺 (𝑋,𝑋) = 𝑄 (2𝑋, 2𝑋) − 2𝑄 (𝑋,𝑋)

= 2𝑄 (𝑋,𝑋)

= − 2Γ
𝑘

𝑖𝑗
𝑝
𝑘
𝑥̇
𝑖
𝑥̇
𝑗
+ 2𝑝̇
𝑗
𝑥̇
𝑗

= (−2Γ
𝑘

𝑖𝑗
𝑝
𝑘
𝑑𝑥
𝑖
𝑑𝑥
𝑗
+ 2𝑑𝑝

𝑗
𝑑𝑥
𝑗
) (𝑋,𝑋) .

(29)

Therefore 𝐺 has local expression

𝐺 = −2Γ
𝑘

𝑖𝑗
𝑝
𝑘
𝑑𝑥
𝑖
𝑑𝑥
𝑗
+ 2𝑑𝑝

𝑗
𝑑𝑥
𝑗 (30)

with respect to the induced coordinates (𝑥𝑖, 𝑝
𝑖
) in 𝜋

−1
(𝑈).

Since the adapted dual frame on 𝑇∗𝑀 is (𝑑𝑥𝑖, 𝛿𝑝
𝑖
), where

𝛿𝑝
𝑖
= 𝑑𝑝
𝑖
− 𝑝
𝑘
Γ
𝑘

𝑖𝑗
𝑑𝑥
𝑗
, (31)

we get 𝐺 = 2𝛿𝑝
𝑖
𝑑𝑥𝑗.

Secondly, the pseudo-Riemann metric on the cotangent
bundle 𝑇∗𝑀 is obtained as follows.

Theorem 3. Let 𝑀 be a manifold with a (pseudo)Riemann
metric 𝑔. Then the pseudo-Riemannian metric 𝑔𝐶 on 𝑇𝑀

corresponds to the pseudo-Riemannian metric 𝐺 = 2𝛿𝑝
𝑖
𝑑𝑥𝑘

on 𝑇∗𝑀.

Proof. Let 𝑔 be a (pseudo)Riemannian metric on𝑀 then 𝑔𝐶

given by 𝑔𝐶 = 2𝑔
𝑗𝑘
𝛿𝑦𝑗𝑑𝑥𝑘 is a pseudo-Riemann metric on

𝑇𝑀. By using the equalities in (4), we get

(𝜑
−1
)
∗

(𝑔
𝐶
)

= 2(𝜑
−1
)
∗

(𝑔
𝑗𝑘
) (𝜑
−1
)
∗

(𝛿𝑦
𝑗
) (𝜑
−1
)
∗

(𝑑𝑥
𝑘
)

= 2𝑔
𝑗𝑘
𝑔
𝑗𝑖

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿
𝑖

𝑘

𝛿𝑝
𝑖
𝑑𝑥
𝑘
,

(32)

which gives a pseudo-Riemann metric 𝐺 = 2𝛿𝑝
𝑖
𝑑𝑥𝑘on 𝑇∗𝑀.

In order to understand the relation between the pseudo-
Riemann manifold (𝑇∗𝑀,𝐺) and the symplectic manifold
(𝑇∗𝑀, 𝜃), we need to define an almost symplectic structure 𝜃
on the cotangent bundle 𝑇∗𝑀 of the Hamilton space and an
almost product structure 𝑃 on 𝑇∗𝑀. The definition of 𝑃 and
𝜃 was obtained as we were inspired by the studies of Miron
[10] for the Hamilton space.

Definition 4. Let 𝑤 = 𝑝
𝑖
𝑑𝑥𝑖 be globally defined as 1-form on

𝑇∗𝑀. The exterior differential dw of the 1-form w is called an
almost symplectic structure 𝜃 on the cotangent bundle 𝑇∗𝑀
of the Hamilton space given by

𝜃 = 𝑑𝑤 = 𝛿𝑝
𝑖
∧ 𝑑𝑥
𝑖
. (33)

Definition 5. Let 𝑇∗𝑀 be a 2n-dimensional manifold. A
mixed tensor field defines an endomorphism on each tangent
space of 𝑇∗𝑀. If there exists a mixed tensor field 𝑃 which
satisfies

𝑃 ∘ 𝑃 = 𝐼, (34)

we say that the field gives an almost product structure to
𝑇∗𝑀.

We can consider the tensor field with type (1, 1) on 𝑇∗𝑀:

𝑃 =
𝛿

𝛿𝑥𝑖
⊗ 𝑑𝑥
𝑗
−

𝜕

𝜕𝑝
𝑖

⊗ 𝛿𝑝
𝑗
. (35)

Theorem 6. 𝑃 is an almost product structure on 𝑇∗𝑀.

Proof. We have

𝑃(
𝛿

𝛿𝑥i
) =

𝛿

𝛿𝑥i
, 𝑃 (

𝜕

𝜕𝑝
𝑖

) = −
𝜕

𝜕𝑝
𝑖

(36)

from which 𝑃 ∘ 𝑃 = 𝐼.

Theorem 7. Let 𝐺 be a pseudo-Riemann metric defined as
Riemann extension of ∇ in 𝑀 and let 𝑃 be an almost
product structure on 𝑇∗𝑀. 𝜃 is an almost symplectic structure
associated with (𝐺, 𝑃). Nondegenerate skew-symmetric 2-form
𝜃 on 𝑇∗𝑀 is given by following equation:

𝜃 (𝑋, 𝑌) = 𝐺 (𝑃𝑋, 𝑌) . (37)
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Proof. By using (33), the value of the vector fields 𝑋, 𝑌 on
𝑇∗𝑀 under 𝜃 is

𝜃 (𝑋
𝑉
+ 𝑋
𝐻
, 𝑌
𝑉
+ 𝑌
𝐻
)

= 𝛿𝑝
𝑖
∧ 𝑑𝑥
𝑖
(𝑋
𝑖
𝛿
𝑖
+ 𝑋
𝑛+𝑖
𝜕
𝑖
, 𝑌
𝑗
𝛿
𝑗
+ 𝑌
𝑛+𝑗
𝜕
𝑗
)

= 𝛿𝑝
𝑖
(𝑋
𝑛+𝑖
𝜕
𝑖
) ⋅ 𝑑𝑥
𝑖
(𝑌
𝑗
𝛿
𝑗
) − 𝛿𝑝

𝑖
(𝑌
𝑛+𝑗
𝜕
𝑗
) ⋅ 𝑑𝑥
𝑖
(𝑋
𝑖
𝛿
𝑖
)

= 𝑋
𝑛+𝑖
𝑌
𝑖
− 𝑌
𝑛+𝑖
𝑋
𝑖
.

(38)

On the other hand, the value of 𝐺(𝑃𝑋, 𝑌) is

𝐺(𝑃 (𝑋
𝑉
+ 𝑋
𝐻
) , 𝑌
𝑉
+ 𝑌
𝐻
) = 𝐺 (𝑋

𝑉
− 𝑋
𝐻
, 𝑌
𝑉
+ 𝑌
𝐻
)

= 𝐺 (𝑋
𝑉
, 𝑌
𝐻
) − 𝐺 (𝑋

𝐻
, 𝑌
𝑉
)

= 𝑋
𝑛+𝑖
𝑌
𝑖
− 𝑌
𝑛+𝑖
𝑋
𝑖
.

(39)

Therefore, it is seen forward the accuracy of the claim of the
theorem.

Theorem 8. Let 𝑀 be Riemann manifold and let 𝐻 be
Hamiltonian. For any vector field𝑋 on 𝑇∗𝑀,

𝑑𝐻 (𝑋) = 𝜃 (𝑉,𝑋) . (40)

Proof. 𝑑𝐻 is a 1-form on 𝑇∗𝑀 with local expression

𝑑𝐻 =
𝛿𝐻

𝛿𝑥𝑖
𝑑𝑥
𝑖
+
𝜕𝐻

𝜕𝑝
𝑖

𝛿𝑝
𝑖
, (41)

with respect to adapted local dual frame, and 𝑋 has local
expression

𝑋 = 𝑋
𝑗 𝛿

𝛿𝑥𝑗
+ 𝑋
𝑛+𝑗 𝜕

𝜕𝑝
𝑗

. (42)

From (40) and (41), we get

𝑑𝐻 (𝑋) =
𝛿𝐻

𝛿𝑥𝑖
𝑋
𝑖
+
𝜕𝐻

𝜕𝑝
𝑖

𝑋
𝑛+𝑖
. (43)

Since𝑉 is a Hamilton vector field,𝑉 has local expression with
respect to adapted frame on 𝑇∗𝑀:

𝑉 =
𝑑𝑥𝑗

𝑑𝑡

𝛿

𝛿𝑥𝑗
+
𝛿𝑝
𝑗

𝑑𝑡

𝜕

𝜕𝑝
𝑗

, (44)

where 𝛿𝑝
𝑖
/𝑑𝑡 = (𝑑𝑝

𝑖
/𝑑𝑡) − 𝑝

𝑘
Γ𝑘
𝑖𝑗
(𝑑𝑥𝑗/𝑑𝑡). Thus we have

𝜃 (𝑉,𝑋) = 𝐺 (𝑃𝑉,𝑋) =
𝑑𝑥𝑖

𝑑𝑡
𝑋
𝑛+𝑖

− (
𝑑𝑝
𝑖

𝑑𝑡
− 𝑝
𝑘
Γ
𝑘

𝑖𝑗

𝑑𝑥𝑗

𝑑𝑡
)𝑋
𝑖
.

(45)

If we substitute the above equation into (3), we get

𝜃 (𝑉,𝑋) =
𝜕𝐻

𝜕𝑝
𝑖

𝑋
𝑛+𝑖

+ (
𝜕𝐻

𝜕𝑥𝑖
+ 𝑝
𝑘
Γ
𝑘

𝑖𝑗

𝜕𝐻

𝜕𝑝
𝑗

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿𝐻/𝛿𝑥
𝑖

𝑋
𝑖
.

(46)

From (43) and (46) it is easily seen that 𝑑𝐻(𝑋) = 𝜃(𝑉,𝑋).
By using the differential geometric objects𝐻,𝐺, 𝜃, and 𝑃

on the cotangent bundle of the Hamilton space considered in
this section, we obtain

𝑑𝐻 (𝑋) = 𝜃 (𝑉,𝑋) = 𝐺 (𝑃𝑉,𝑋) = ∇𝑑𝜋(𝑃𝑉)𝜔 (𝑑𝜋 (𝑋)) , (47)

where 𝐺 is the pseudo-Riemannian metric defining the
Riemann extension of the Levi-Civita connection onM. If we
put 𝑉 instead of𝑋 in the above equation, we obtain

𝜃 (𝑉, 𝑉) = 𝐺 (𝑃𝑉,𝑉) = ∇𝑑𝜋(𝑃𝑉)𝜔 (𝑑𝜋 (𝑉))

= 𝑑𝐻 (𝑉) = 𝑉 (𝐻) = 0.
(48)

Since 𝑉(𝐻) = 0, the Hamilton function which gives the total
energy of each stage of the system is constant.

4. The Differential Geometry of (𝑇∗𝑀,𝐺)

In this section, we obtained that the coefficients of the Levi-
Civita connection

∘

∇ and Riemannian curvature tensor 𝐾 of
(𝑇
∗
𝑀,𝐺) and we found the condition under which 𝑇∗𝑀 is

locally flat.

Theorem 9. The Lie brackets of the horizontal base vector
fields 𝛿/𝛿𝑥𝑖 = 𝜕/𝜕𝑥𝑖 −𝑁

𝑖𝑗
𝜕/𝜕𝑝
𝑗
, 𝑖, 𝑗 = 1, ..., 𝑛 and vertical base

vector fields 𝜕/𝜕𝑝
𝑖
on 𝑇∗𝑀 are given by

(i) [𝛿/𝛿𝑥𝑖, 𝛿/𝛿𝑥𝑗] = −𝑅
𝑘𝑖𝑗
𝜕/𝜕𝑝
𝑘
,

(ii) [𝛿/𝛿𝑥𝑖, 𝜕/𝜕𝑝
𝑗
] = −Γ

𝑗

𝑖𝑘
𝜕/𝜕𝑝
𝑘
,

(iii) [𝜕/𝜕𝑝
𝑖
, 𝜕/𝜕𝑝

𝑗
] = 0, where 𝑅

𝑘𝑖𝑗
= 𝛿𝑁

𝑘𝑗
/𝛿𝑥𝑖 −

𝛿𝑁
𝑘𝑖
/𝛿𝑥𝑗[2]. 𝑅

𝑘𝑖𝑗
= −𝑝
ℎ
𝑅ℎ
𝑘𝑖𝑗

for𝑁
𝑘𝑖
= −Γℎ
𝑘𝑖
𝑝
ℎ
.

Theorem 10. Let (𝑀,𝐻) be Hamilton space, 𝑇∗𝑀 the cotan-
gent bundle of 𝑀, 𝐺 a pseudo-Riemann metric defined as

Riemann extension of Levi-Civita connection ∇ in 𝑀, and
∘

∇

the Levi-Civita connection on𝑇∗𝑀.Then the connection coeffi-
cients of the Levi-Civita connection of the pseudo-Riemannian
metric 𝐺 on 𝑇∗𝑀 are given by

∘

∇
𝛿𝑖
𝛿
𝑗
= −𝑅
𝑘𝑖𝑗
𝜕
𝑘
,

∘

∇
𝛿𝑖
𝜕
𝑗
= −Γ
𝑗

𝑖𝑘
𝜕
𝑘
,

∘

∇
𝜕𝑖
𝛿
𝑗
= Γ
𝑖

𝑗𝑘
𝜕
𝑘
,

∘

∇
𝜕𝑖
𝜕
𝑗
= 0,

(49)

where

𝛿
𝑖
=

𝛿

𝛿𝑥𝑖
, 𝜕

𝑖
=

𝜕

𝜕𝑝
𝑖

. (50)
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Proof. Let𝑋,𝑌, and𝑍 be vector fields on 𝑇∗𝑀. According to
the Koszul formula, we get

2𝐺(
∘

∇
𝑋
𝑌,𝑍)

= 𝑋𝐺 (𝑌, 𝑍) + 𝑌𝐺 (𝑍,𝑋) − 𝑍𝐺 (𝑋, 𝑌)

− 𝐺 (𝑋, [𝑌, 𝑍]) − 𝐺 (𝑌, [𝑍,𝑋]) + 𝐺 (𝑍, [𝑋, 𝑍]) .

(51)

We put 𝛿
𝑖
, 𝛿
𝑗
, and 𝛿

𝑘
instead of 𝑋, 𝑌, and 𝑍 in (51); then we

get

2𝐺(
∘

∇
𝛿𝑖
𝛿
𝑗
, 𝛿
𝑘
) = 𝑅

𝑖𝑗𝑘
+ 𝑅
𝑗𝑘𝑖
− 𝑅
𝑘𝑖𝑗
. (52)

By the equality ∑
(𝑖,𝑗𝑘)

𝑅
𝑖𝑗𝑘
= 0, we find

𝐺(
∘

∇
𝛿𝑖
𝛿
𝑗
, 𝛿
𝑘
) = −𝑅

𝑘𝑖𝑗
, (53)

and we put 𝛿
𝑖
, 𝛿
𝑗
, and 𝜕

𝑘
instead of𝑋, 𝑌, and 𝑍 in (51). So we

get

2𝐺(
∘

∇
𝛿𝑖
𝛿
𝑗
, 𝜕
𝑘
) = Γ
𝑘

𝑗𝑖
− Γ
𝑘

𝑖𝑗
. (54)

Since the Levi-Civita connection ∇ which is defined on𝑀 is
torsion-free, we have Γ𝑘

𝑗𝑖
= Γ
𝑘

𝑖𝑗
. Subsequently we find

𝐺(
∘

∇
𝛿𝑖
𝛿
𝑗
, 𝜕
𝑘
) = 0. (55)

Thus we get

∘

∇
𝛿𝑖
𝛿
𝑗
= −𝑅
𝑘𝑖𝑗
𝜕
𝑘
, (56)

and the rest of the equalities can be obtained similarly.

Theorem 11. Let𝑀 be a Hamilton space, 𝑇∗𝑀 the cotangent
bundle of𝑀, 𝐺 a pseudo-Riemann metric defined as Riemann

extension of Levi-Civita connection ∇ in𝑀,
∘

∇ the Levi-Civita
connection on 𝑇∗𝑀, and 𝐾 the Riemann curvature tensor on
𝑇∗𝑀. Then the components of the Riemann curvature tensor
on 𝑇∗𝑀 are given by

𝐾(𝛿
𝑖
, 𝛿
𝑗
) 𝛿
𝑘

= (−𝛿
𝑖
𝑅
ℎ𝑗𝑘

+ 𝛿
𝑗
𝑅
ℎ𝑖𝑘

+ 𝑅
𝑙𝑗𝑘
Γ
𝑙

𝑖ℎ
− 𝑅
𝑙𝑖𝑘
Γ
𝑙

𝑗ℎ
+ 𝑅
𝑙𝑖𝑗
Γ
𝑙

𝑘ℎ
) 𝜕
ℎ
,

𝐾 (𝛿
𝑖
, 𝛿
𝑗
) 𝜕
𝑘
= (𝜕
𝑘
𝑅
ℎ𝑖𝑗
) 𝜕
ℎ
,

𝐾 (𝛿
𝑖
, 𝜕
𝑗
) 𝛿
𝑘
= 𝛿
𝑘
(Γ
𝑗

𝑖ℎ
∘ 𝜋) 𝜕

ℎ
,

𝐾 (𝜕
𝑖
, 𝛿
𝑗
) 𝛿
𝑘
= −𝛿
𝑘
(Γ
𝑖

𝑗ℎ
∘ 𝜋) 𝜕

ℎ
,

𝐾 (𝛿
𝑖
, 𝜕
𝑗
) 𝜕
𝑘

= 𝐾(𝜕
𝑖
, 𝛿
𝑗
) 𝜕
𝑘
= 𝐾 (𝜕

𝑖
, 𝜕
𝑗
) 𝛿
𝑘
= 𝐾 (𝜕

𝑖
, 𝜕
𝑗
) 𝜕
𝑘
= 0.

(57)

Proof. Let𝑋, 𝑌, and 𝑍 be vector fields on 𝑇∗𝑀. Then

𝐾 (𝑋, 𝑌, ) 𝑍 =
∘

∇
𝑋

∘

∇
𝑌
𝑍 −
∘

∇
𝑌

∘

∇
𝑋
𝑍 −
∘

∇
[𝑋,𝑌]

𝑍. (58)

If we put 𝛿
𝑖
, 𝛿
𝑗
, and 𝜕

𝑘
instead of𝑋, 𝑌, and 𝑍in (58), we get

𝐾(𝛿
𝑖
, 𝛿
𝑗
) 𝜕
𝑘
=
∘

∇
𝛿𝑖

∘

∇
𝛿𝑗
𝜕
𝑘
−
∘

∇
𝛿𝑗

∘

∇
𝛿𝑖
𝜕
𝑘
−
∘

∇[𝛿
𝑖
, 𝛿
𝑗
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈𝑉𝑇
∗
𝑀

𝜕
𝑘

= − 𝛿
𝑖
(Γ
𝑘

𝑗𝑙
∘ 𝜋) 𝜕

𝑙
+ 𝛿
𝑗
(Γ
𝑘

𝑖𝑙
∘ 𝜋) 𝜕

𝑙

− Γ
𝑘

𝑗𝑙
Γ
𝑙

𝑖ℎ
𝜕
ℎ
+ Γ
𝑘

𝑖𝑙
Γ
𝑙

𝑗ℎ
𝜕
ℎ

= (−
𝜕Γ𝑘
𝑗ℎ

𝜕𝑥𝑖
+
𝜕Γ
𝑘

𝑖ℎ

𝜕𝑥𝑗
− Γ
𝑘

𝑗𝑙
Γ
𝑙

𝑖ℎ
+ Γ
𝑘

𝑖𝑙
Γ
𝑙

𝑗ℎ
)𝜕
ℎ

= − 𝑅
𝑘

ℎ𝑖𝑗
𝜕
ℎ
.

(59)

By the equality 𝑅
ℎ𝑖𝑗
= −𝑝
𝑘
𝑅𝑘
ℎ𝑖𝑗
, we obtain

𝐾(𝛿
𝑖
, 𝛿
𝑗
) 𝜕
𝑘
=
𝜕𝑅
ℎ𝑖𝑗

𝜕𝑝
𝑘

𝜕
ℎ
. (60)

The other coefficients of the curvature tensor can be obtained
similarly.

Theorem 12. The pseudo-Riemann manifold (𝑇∗𝑀,𝐺) is flat
if and only if the Riemann manifold (𝑀, 𝑔) is Euclidean.

Proof. If the Riemann manifold (𝑀, 𝑔) is Euclidean, the
Christoffel symbols must be zero. Thus, Riemann curvature
tensor 𝑅 on𝑀 and𝐾 on 𝑇∗𝑀must be zero.

5. Concluding Remarks

The projected curves in the Hamilton space of the integral
curves of the Hamilton vector field are geodesics. Further-
more, the total energy of each stage of the system is constant.
The cotangent bundle of the Hamilton space is flat if and only
if the Hamilton space is Euclidean.
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