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By applying the method of coincidence degree, some criteria are established for the existence of antiperiodic solu-
tions for a generalized high-order (𝑝, 𝑞)-Laplacian neutral differential system with delays (𝜑𝑝((𝑥(𝑡) − 𝑐𝑥(𝑡 − 𝜏))

(𝑘)
))
(𝑚−𝑘)

=

𝐹(𝑡, 𝑥𝜃0(𝑡), 𝑥


𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

𝜃𝑘(𝑡)
, 𝑦𝜗0(𝑡), 𝑦



𝜗1(𝑡)
, . . . , 𝑦

(𝑙)

𝜗𝑙(𝑡)
), (𝜑𝑞((𝑦(𝑡) − 𝑑𝑦(𝑡 − 𝜎))

(𝑙)
))
(𝑛−𝑙)

= 𝐺(𝑡, 𝑦𝜇0(𝑡), 𝑦


𝜇1(𝑡)
, . . . , 𝑦

(𝑙)

𝜇𝑙(𝑡)
, 𝑥]0(𝑡), 𝑥



]1(𝑡)
, . . . , 𝑥

(𝑘)

]𝑘(𝑡)
)

in the critical case |𝑐| = |𝑑| = 1. The results of this paper are completely new. Finally, an example is employed to illustrate our
results.

1. Introduction

During the last twenty years, there have been quite a few
results on the existence of periodic solutions for delay differ-
ential equations and neutral functional differential equations.
We can see [1–7]. For example, the authors of [8–11] inves-
tigated the existence of periodic solutions for the following
types of neutral functional differential equations:

(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

= 𝑔1 (𝑡, 𝑥 (𝑡)) + 𝑔2 (𝑡, 𝑥 (𝑡 − 𝛿)) + 𝑒 (𝑡) ,

(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

+ 𝑔 (𝑥 (𝑡 − 𝛿)) = 𝑒 (𝑡) ,

(𝜑𝑝(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

)


+ 𝑔 (𝑡, 𝑥 (𝑡 − 𝜂 (𝑡))) = 𝑒 (𝑡) ,

(𝜑𝑝 (𝑥

(𝑡) − 𝑐𝑥


(𝑡 − 𝜏)))



= 𝑓 (𝑥 (𝑡)) 𝑥

(𝑡)

+ 𝜉 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜂 (𝑡))) + 𝑒 (𝑡) ,

(1)

respectively. But the condition of constant |𝑐| ̸= 1 is required.
For example, under the assumption |𝑐| ̸= 1, they obtain that
𝐴 : 𝐶2𝜋 := {𝑥 : 𝑥 ∈ 𝐶(R,R), 𝑥(𝑡 + 2𝜋) ≡ 𝑥(𝑡)} → 𝐶2𝜋,

(𝐴𝑥)(𝑡) = 𝑥(𝑡) − 𝑐𝑥(𝑡 − 𝜏) has a unique inverse 𝐴−1 : 𝐶2𝜋 →
𝐶2𝜋 defined by

(𝐴
−1
𝑓) (𝑡) =

{{{{

{{{{

{

∑
𝑗≥0

𝑐
𝑗
𝑓 (𝑡 − 𝑗𝜏) , |𝑐| < 1,

−∑
𝑗≥1

𝑐
−𝑗
𝑓 (𝑡 + 𝑗𝜏) , |𝑐| > 1,

(2)

and then

∫
2𝜋

0


(𝐴
−1
𝑓) (𝑠)


d𝑠 ≤ 1

|1 − |𝑐||
∫
2𝜋

0

𝑓 (𝑠)
 d𝑠, ∀𝑓 ∈ 𝐶2𝜋,

(3)

which was crucial to obtaining estimation of a priori bounds
of periodic solutions in the noncritical case |𝑐| ̸= 1.

Under the critical case |𝑐| = 1, the authors of [12–15]
studied a first-order neutral differential equation

(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

= 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) , (4)

a Duffing differential equation of neutral type

(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

= 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) , (5)
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a Rayleigh differential equation of neutral type

(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

= 𝑓 (𝑥 (𝑡)) 𝑥


(𝑡)

+ 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) ,
(6)

and a 𝑝-Laplacian differential equation of neutral type

(𝜑𝑝(𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))

)


= 𝑓 (𝑥 (𝑡)) 𝑥

(𝑡)

+ 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) ,

(7)

respectively.
In the past thirty years, there has been a great deal of

work on the problem of the periodic solutions of high-order
nonlinear differential equations, especially for the third-order
and fourth-order differential equations which have been
used to describe nonlinear oscillations [16–20], and fluid
mechanical and nonlinear elastic mechanical phenomena
[21–27]. In [28], Jin and Lu discussed the existence of
periodic solutions of third-order 𝑝-Laplacian equation with
a deviating argument

(𝜑𝑝 (𝑥

(𝑡)))


+ 𝑓 (𝑡, 𝑥

(𝑡) , 𝑥

(𝑡))

+ 𝑔 (𝑡, 𝑥 (𝑡 − 𝜂 (𝑡))) = 𝑒 (𝑡) .

(8)

Before continuing, by applying Mawhin’s continuation
theorem of coincidence degree theory, the authors of [29]
studied the existence of periodic solutions for a fourth-order
𝑝-Laplacian equation with a deviating argument

(𝜑𝑝 (𝑥

(𝑡)))


+ 𝑓 (𝑥

(𝑡)) + 𝑔 (𝑥 (𝑡 − 𝜂 (𝑡))) = 𝑒 (𝑡) . (9)

Arising from problems in applied sciences, it is well
known that the existence of antiperiodic solutions plays a key
role in characterizing the behavior of nonlinear differential
equations as a special periodic solution and has been exten-
sively studied by many authors during the past twenty years;
see [30–44] and references therein. For example, antiperiodic
trigonometric polynomials are important in the study of
interpolation problems [45, 46], and antiperiodicwavelets are
discussed in [47].

However, to the best of our knowledge, due to the
neutral term and 𝑝-Laplace operator term, the existence of
antiperiodic solutions for (4)–(7) is very difficult to obtain
by applying traditional researching methods. Therefore, to
date, there are few papers to investigate the existence of
antiperiodic solutions for (4)–(7).

Motivated by above statements, in this paper, we will
apply themethod of coincidence degree to study the existence
of antiperiodic solutions for a generalized high-order (𝑝, 𝑞)-
Laplacian neutral differential system with delays in the
critical case

(𝜑𝑝 ((𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))
(𝑘)
))
(𝑚−𝑘)

= 𝐹 (𝑡, 𝑥𝜃0(𝑡), 𝑥


𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

𝜃𝑘(𝑡)
, 𝑦𝜗0(𝑡), 𝑦



𝜗1(𝑡)
, . . . , 𝑦

(𝑙)

𝜗𝑙(𝑡)
) ,

(𝜑𝑞 ((𝑦 (𝑡) − 𝑑𝑦 (𝑡 − 𝜎))
(𝑙)
))
(𝑛−𝑙)

= 𝐺 (𝑡, 𝑦𝜇0(𝑡), 𝑦


𝜇1(𝑡)
, . . . , 𝑦

(𝑙)

𝜇𝑙(𝑡)
, 𝑥]0(𝑡), 𝑥



]1(𝑡)
, . . . , 𝑥

(𝑘)

]𝑘(𝑡)
) ,

(10)

where |𝑐| = |𝑑| = 1, 𝜑𝑝(𝑠) = |𝑠|
𝑝−2𝑠, 𝜑𝑞(𝑠) = |𝑠|

𝑞−2𝑠, and 𝑠 ∈ R,
𝑝, 𝑞 ≥ 2; 𝜃𝑖(𝑡) (0 ≤ 𝑖 ≤ 𝑘), 𝜗𝑖(𝑡) (0 ≤ 𝑖 ≤ 𝑙), 𝜇𝑖(𝑡) (0 ≤ 𝑖 ≤ 𝑙),
and ]𝑖(𝑡) (0 ≤ 𝑖 ≤ 𝑘) ∈ 𝐶(R,R) are 𝜋-periodic functions;
for any 𝜌(𝑡) ∈ 𝐶(R,R), 𝑥𝜌(𝑡) is defined by 𝑥𝜌(𝑡) = 𝑥(𝑡 − 𝜌(𝑡));
𝐹, 𝐺 ∈ 𝐶(R𝑘+𝑙+3,R) are 2𝜋-periodic in their first arguments;
𝜏, 𝜎 are constants;𝑚, 𝑛, 𝑘, and 𝑙 are nonnegative integers, 𝑘 <
𝑚, 𝑙 < 𝑛.

Throughout this paper, we will denote by N the set of
nonnegative integers and by N1 the set of odd positive
integers.

Let 𝑝 = 𝑞, 𝑘 = 𝑙,𝑚 = 𝑛, 𝑥 = 𝑦, 𝑐 = 𝑑, 𝜏 = 𝜎, and 𝐹 = 𝐺 in
system (10), then system (10) is reformulated as

(𝜑𝑝 ((𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏))
(𝑘)
))
(𝑚−𝑘)

= 𝐹 (𝑡, 𝑥𝜃0(𝑡), 𝑥


𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

𝜃𝑘(𝑡)
, 𝑥𝜗0(𝑡), 𝑥



𝜗1(𝑡)
, . . . , 𝑥

(𝑙)

𝜗𝑙(𝑡)
) .

(11)

Furthermore, one can easily obtain the following.

(a) If 𝑝 = 𝑞 = 2, 𝑥 = 𝑦, |𝑐| = |𝑑| = 1, 𝑘 = 𝑙 = 0, 𝑚 =
𝑛 = 1, 𝜃0(𝑡) = 𝛿(𝑡),

𝐹 = 𝐹 (𝑡, 𝑥𝜃0(𝑡)) = 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) , (12)

then system (10) reduces to (4).
(b) If 𝑝 = 𝑞 = 2, 𝑥 = 𝑦, |𝑐| = |𝑑| = 1, 𝑘 = 𝑙 = 0, 𝑚 =
𝑛 = 2, 𝜃0(𝑡) = 𝛿(𝑡),

𝐹 = 𝐹 (𝑡, 𝑥𝜃0(𝑡)) = 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) , (13)

then system (10) reduces to (5).
(c) If 𝑝 = 𝑞 = 2, 𝑥 = 𝑦, |𝑐| = |𝑑| = 1, 𝑘 = 𝑙 = 0, 𝑚 =
𝑛 = 2, 𝜃0(𝑡) = 𝜃1(𝑡) ≡ 0, 𝜗0(𝑡) = 𝛿(𝑡),

𝐹 = 𝐹 (𝑡, 𝑥𝜃0(𝑡), 𝑥


𝜃1(𝑡)
, 𝑥𝜗0(𝑡))

= 𝑓 (𝑥 (𝑡)) 𝑥

(𝑡) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) ,

(14)

then system (10) reduces to (6).
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(d) If 𝑝 = 𝑞, 𝑥 = 𝑦, |𝑐| = |𝑑| = 1, 𝑘 = 𝑙 = 1, 𝑚 = 𝑛 =
2, 𝜃0(𝑡) = 𝜃1(𝑡) ≡ 0, 𝜗0(𝑡) = 𝛿(𝑡),

𝐹 = 𝐹 (𝑡, 𝑥𝜃0(𝑡), 𝑥


𝜃1(𝑡)
, 𝑥𝜗0(𝑡))

= 𝑓 (𝑥 (𝑡)) 𝑥

(𝑡) + 𝑔 (𝑡, 𝑥 (𝑡 − 𝛿 (𝑡))) + 𝑒 (𝑡) ,

(15)

then system (10) reduces to (7).

The main purpose of this paper is to establish sufficient
conditions for the existence of 𝜋-antiperiodic solutions to
system (10) by using the method of coincidence degree.

The organization of this paper is as follows. In Section 2,
we make some preparations. In Section 3, by using the
method of coincidence degree, we establish sufficient condi-
tions for the existence of 𝜋-antiperiodic solutions to system
(10). An illustrative example is given in Section 4.

2. Preliminaries

The following continuation theorem of coincidence degree is
crucial in the arguments of our main results.

Lemma 1 (see [48]). Let X,Y be two Banach spaces; let Ω ⊂
X be open bounded and symmetric with 0 ∈ Ω. Suppose that
𝐿 : 𝐷(𝐿) ⊂ X → Y is a linear Fredholm operator of index zero
with𝐷(𝐿)∩Ω ̸= 0 and𝑁 : Ω → Y is 𝐿-compact. Further, one
also assumes that

(H) 𝐿𝑥−𝑁𝑥 ̸= 𝜆(−𝐿𝑥−𝑁(−𝑥)), for all 𝑥 ∈ 𝐷(𝐿)∩𝜕Ω, 𝜆 ∈
(0, 1].

Then equation 𝐿𝑥 = 𝑁𝑥 has at least one solution on𝐷(𝐿)∩
Ω.

Definition 2. Let 𝑢(𝑡) : R → R be continuous. 𝑢(𝑡) is said to
be 𝑇/2-antiperiodic on R, if

𝑢 (𝑡 + 𝑇) = 𝑢 (𝑡) , 𝑢 (𝑡 +
𝑇

2
) = −𝑢 (𝑡) , ∀𝑡 ∈ R. (16)

We will adopt the following notations:

𝐶
𝑘

2𝜋
:= {𝑢 ∈ 𝐶 (R,R) : 𝑢 is 2𝜋-periodic} ,

𝑘 ∈ N, |𝑢|∞ = max
𝑡∈[0,2𝜋]

|𝑢 (𝑡)| ,
(17)

where 𝑢 is a 2𝜋-periodic function.
For the sake of convenience, we introduce the following

assumptions.

(𝐻1)There exist nonnegative constants 𝛼1, 𝛼2, . . . , 𝛼𝑘+𝑙+2,
𝛽1, 𝛽2, . . . , 𝛽𝑘+𝑙+2, such that

𝐹 (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2) − 𝐹 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑘+𝑙+2)


≤

𝑘+𝑙+2

∑
𝑖=1

𝛼𝑖
𝑠𝑖 − 𝑧𝑖

 ,

𝐺 (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2) − 𝐺 (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑘+𝑙+2)


≤

𝑘+𝑙+2

∑
𝑖=1

𝛽𝑖
𝑠𝑖 − 𝑧𝑖



(18)

for any (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2), (𝑡, 𝑧1, 𝑧2, . . . , 𝑧𝑘+𝑙+2) ∈

R𝑘+𝑙+3.

(𝐻2) For all (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2) ∈ R
𝑘+𝑙+3,

𝐹 (𝑡 + 𝜋, −𝑠1, −𝑠2, . . . , −𝑠𝑘+𝑙+2)

= −𝐹 (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2) ,

𝐺 (𝑡 + 𝜋, −𝑠1, −𝑠2, . . . , −𝑠𝑘+𝑙+2)

= −𝐺 (𝑡, 𝑠1, 𝑠2, . . . , 𝑠𝑘+𝑙+2) .

(19)

In order to apply Lemma 1 to study the existence of
antiperiodic solutions for system (10), we set

X = {𝑥 = (𝑥1 (𝑡) , 𝑥2 (𝑡) , 𝑦1 (𝑡) , 𝑦2 (𝑡))
𝑇
∈ 𝐶
𝑘

2𝜋
× 𝐶
𝑚−𝑘−1

2𝜋

×𝐶
𝑙

2𝜋
× 𝐶
𝑛−𝑙−1

2𝜋
: 𝑥 (𝑡 + 𝜋) = −𝑥 (𝑡) } ,

Y = {𝑥 = (𝑥1 (𝑡) , 𝑥2 (𝑡) , 𝑦1 (𝑡) , 𝑦2 (𝑡))
𝑇
∈ 𝐶
0

2𝜋
× 𝐶
0

2𝜋

×𝐶
0

2𝜋
× 𝐶
0

2𝜋
: 𝑥 (𝑡 + 𝜋) = −𝑥 (𝑡) }

(20)

are two Banach spaces with the norms

‖𝑥‖X =

𝑘

∑
𝑖=0


𝑥
(𝑖)

1

∞
+

𝑚−𝑘−1

∑
𝑖=0


𝑥
(𝑖)

2

∞
+

𝑙

∑
𝑖=0


𝑦
(𝑖)

1

∞

+

𝑛−𝑙−1

∑
𝑖=0


𝑦
(𝑖)

2

∞
,

‖𝑥‖Y =

2

∑
𝑗=1

(

𝑥𝑗
∞
+

𝑦𝑗
∞
) ,

(21)

respectively. Define

D = {𝑥 = (𝑥1 (𝑡) , 𝑥2 (𝑡) , 𝑦1 (𝑡) , 𝑦2 (𝑡))
𝑇
∈ 𝐶
𝑘

2𝜋
× 𝐶
𝑚−𝑘

2𝜋

×𝐶
𝑙

2𝜋
× 𝐶
𝑛−𝑙

2𝜋
: 𝑥 (𝑡 + 𝜋) = −𝑥 (𝑡) }

(22)

and two difference operators 𝐴 and 𝐵 as follows:

𝐴 : Y → Y , (𝐴𝑥) (𝑡) = 𝑥 (𝑡) − 𝑐𝑥 (𝑡 − 𝜏) ,

𝐵 : Y → Y , (𝐵𝑦) (𝑡) = 𝑦 (𝑡) − 𝑑𝑦 (𝑡 − 𝜎) .
(23)
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Then system (10) reduces to

(𝐴𝑥1)
(𝑘)
(𝑡) = 𝜑𝑝 (𝑥2 (𝑡)) ,

𝑥
(𝑚−𝑘)

2
(𝑡)

=𝐹(𝑡, 𝑥1𝜃0(𝑡), 𝑥


1𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

1𝜃𝑘(𝑡)
, 𝑦1𝜗0(𝑡), 𝑦



1𝜗1(𝑡)
, . . . , 𝑦

(𝑙)

𝜗1𝑙(𝑡)
) ,

(𝐵𝑦1)
(𝑙)
(𝑡) = 𝜑𝑞 (𝑦2 (𝑡)) ,

𝑦
(𝑛−𝑙)

2
(𝑡)

=𝐺(𝑡, 𝑦1𝜇0(𝑡), 𝑦


1𝜇1(𝑡)
, . . . , 𝑦

(𝑙)

1𝜇𝑙(𝑡)
, 𝑥1]0(𝑡), 𝑥



1]1(𝑡)
, . . . , 𝑥

(𝑘)

1]𝑘(𝑡)
) ,

(24)

where 1/𝑝 + 1/𝑝 = 1, 1/𝑞 + 1/𝑞 = 1, 1 < 𝑝, 𝑞 ≤ 2.
Obviously, the existence of antiperiodic solutions to system
(10) is equivalent to that of antiperiodic solutions to system
(24). Thus, the problem of finding a 𝜋-antiperiodic solution
for system (10) reduces to finding one for system (24).

Define a linear operator 𝐿 : 𝐷(𝐿) ≡ D ⊂ X → Y by
setting

𝐿𝑥 = 𝐿(

𝑥1
𝑥2
𝑦1
𝑦2

) =(

(𝐴𝑥1)
(𝑘)

𝑥
(𝑚−𝑘)

2

(𝐵𝑦1)
(𝑙)

𝑦
(𝑛−𝑙)

2

), ∀𝑥 ∈ 𝐷 (𝐿) (25)

and𝑁 : X → Y by setting

𝑁𝑥 = 𝑁(

𝑥1
𝑥2
𝑦1
𝑦2

)

=(

𝜑𝑝 (𝑥2 (𝑡))

𝐹 (𝑡, 𝑥1𝜃0(𝑡), 𝑥


1𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

1𝜃𝑘(𝑡)
, 𝑦1𝜗0(𝑡), 𝑦



1𝜗1(𝑡)
, . . . , 𝑦

(𝑙)

1𝜗𝑙(𝑡)
)

𝜑𝑞 (𝑦2 (𝑡))

𝐺 (𝑡, 𝑦1𝜇0(𝑡), 𝑦


1𝜇1(𝑡)
, . . . , 𝑦

(𝑙)

1𝜇𝑙(𝑡)
, 𝑥1]0(𝑡), 𝑥



1]1(𝑡)
, . . . , 𝑥

(𝑘)

1]𝑘(𝑡)
)

).

(26)

It is easy to see that

Ker 𝐿 = {0} ,

Im 𝐿 =
{{{

{{{

{

𝑥 ∈ Y : ∫
2𝜋

0

(

𝑥1 (𝑠)

𝑥2 (𝑠)

𝑦1 (𝑠)

𝑦2 (𝑠)

) d𝑠 = (

0

0

0

0

)

}}}

}}}

}

≡ Y .
(27)

Thus, dim Ker 𝐿 = 0 = codim Im 𝐿, and 𝐿 is a linear
Fredholm operator of index zero.

Define the continuous projector 𝑃 : X → Ker 𝐿 and the
averaging projector 𝑄 : Y → Y by

𝑃(

𝑥1
𝑥2
𝑦1
𝑦2

) = 𝑄(

𝑥1
𝑥2
𝑦1
𝑦2

) =
1

2𝜋
∫
2𝜋

0

(

𝑥1 (𝑠)

𝑥2 (𝑠)

𝑦1 (𝑠)

𝑦2 (𝑠)

) d𝑠 ≡ (

0

0

0

0

) .

(28)

Hence Im𝑃 = Ker 𝐿 and Ker 𝑄 = Im 𝐿. Denoting by 𝐿−1
𝑃
:

Im 𝐿 → 𝐷(𝐿) ∩ Ker𝑃 the inverse of 𝐿|𝐷(𝐿)∩Ker𝑃, we have

(𝐿
−1

𝑃
(

𝑥1
𝑥2
𝑦1
𝑦2

))(𝑡) = (

(𝐴−1𝐾𝑥1) (𝑡)

(𝐾𝑥2) (𝑡)

(𝐵−1𝐾𝑦1) (𝑡)

(𝐾𝑦2) (𝑡)

) , (29)

where

(𝐾𝑥1) (𝑡) =

𝑘−1

∑
𝑖=0

1

𝑖!
(𝐴ℎ1)

(𝑖)
(0) 𝑡
𝑖

+
1

(𝑘 − 1)!
∫
𝑡

0

(𝑡 − 𝑠)
𝑘−1
𝑥1 (𝑠) d𝑠,

(𝐾𝑥2) (𝑡) =

𝑚−𝑘−1

∑
𝑖=0

1

𝑖!
ℎ
(𝑖)

2
(0) 𝑡
𝑖

+
1

(𝑚 − 𝑘 − 1)!
∫
𝑡

0

(𝑡 − 𝑠)
𝑚−𝑘−1

𝑥2 (𝑠) d𝑠,

(𝐾𝑦1) (𝑡) =

𝑙−1

∑
𝑖=0

1

𝑖!
(𝐵ℎ3)

(𝑖)
(0) 𝑡
𝑖

+
1

(𝑙 − 1)!
∫
𝑡

0

(𝑡 − 𝑠)
𝑙−1
𝑦1 (𝑠) d𝑠,

(𝐾𝑦2) (𝑡) =

𝑛−𝑙−1

∑
𝑖=0

1

𝑖!
ℎ
(𝑖)

4
(0) 𝑡
𝑖

+
1

(𝑛 − 𝑙 − 1)!
∫
𝑡

0

(𝑡 − 𝑠)
𝑛−𝑙−1

𝑦2 (𝑠) d𝑠,

(30)

inwhich (𝐴ℎ1)
(𝑖)
(0) (𝑖 = 0, 1, . . . , 𝑘−1) are decided by𝐸1𝑍1 =

𝐵1, where

𝐸1 =
(
(

(

2 0 0 ⋅ ⋅ ⋅ 0 0

𝑐1 2 0 ⋅ ⋅ ⋅ 0 0

𝑐2 𝑐1 2 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

𝑐𝑘−2 𝑐𝑘−3 𝑐𝑘−4 ⋅ ⋅ ⋅ 2 0

𝑐𝑘−1 𝑐𝑘−2 𝑐𝑘−3 ⋅ ⋅ ⋅ 𝑐1 2

)
)

)𝑘×𝑘

,

𝑍1 =

(
(
(
(
(
(
(

(

(𝐴ℎ1)
(𝑘−1)

(0)

(𝐴ℎ1)
(𝑘−2)

(0)

(𝐴ℎ1)
(𝑘−3)

(0)

...
(𝐴ℎ1)


(0)

(𝐴ℎ1) (0)

)
)
)
)
)
)
)

)𝑘×1

,

(31)



Abstract and Applied Analysis 5

𝐵1 = (𝑏11, 𝑏12, . . . , 𝑏1𝑘)
𝑇
, 𝑏1𝑖 = −(1/𝑖!) ∫

2𝜋

0
(𝜋−𝑠)

𝑖
𝑥1(𝑠)d𝑠, 𝑐𝑗 =

(𝜋)
𝑗
/𝑗!, and 𝑗 = 1, 2, . . . , 𝑘−1; ℎ(𝑖)

2
(0) (𝑖 = 0, 1, . . . , 𝑚−𝑘−1)

are decided by 𝐸2𝑍2 = 𝐵2, where

𝐸2 =
(
(

(

2 0 ⋅ ⋅ ⋅ 0 0

𝑐1 2 ⋅ ⋅ ⋅ 0 0

𝑐2 𝑐1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
𝑐𝑚−𝑘−2 𝑐𝑚−𝑘−3 ⋅ ⋅ ⋅ 2 0

𝑐𝑚−𝑘−1 𝑐𝑚−𝑘−2 ⋅ ⋅ ⋅ 𝑐1 2

)
)

)(𝑚−𝑘)×(𝑚−𝑘)

,

𝑍2 =

(
(
(
(
(
(

(

ℎ
(𝑚−𝑘−1)

2
(0)

ℎ
(𝑚−𝑘−2)

2
(0)

ℎ
(𝑚−𝑘−3)

2
(0)

...
ℎ
2
(0)

ℎ2 (0)

)
)
)
)
)
)

)(𝑚−𝑘)×1

,

(32)

𝐵2 = (𝑏21, 𝑏22, . . . , 𝑏2(𝑚−𝑘))
𝑇
, 𝑏2𝑖 = −(1/𝑖!) ∫

2𝜋

0
(𝜋 −

𝑠)
𝑖
𝑥2(𝑠)d𝑠, 𝑐𝑗 = (𝜋)

𝑗
/𝑗!, and 𝑗 = 1, 2, . . . , 𝑚 − 𝑘 −

1; (𝐵ℎ3)
(𝑖)
(0) (𝑖 = 0, 1, . . . , 𝑙 − 1) are decided by 𝐸3𝑍3 = 𝐵3,

where

𝐸3 =
(
(

(

2 0 0 ⋅ ⋅ ⋅ 0 0

𝑐1 2 0 ⋅ ⋅ ⋅ 0 0

𝑐2 𝑐1 2 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

𝑐𝑙−2 𝑐𝑙−3 𝑐𝑙−4 ⋅ ⋅ ⋅ 2 0

𝑐𝑙−1 𝑐𝑙−2 𝑐𝑙−3 ⋅ ⋅ ⋅ 𝑐1 2

)
)

)𝑙×𝑙

,

𝑍3 =

(
(
(
(
(
(
(

(

(𝐵ℎ3)
(𝑙−1)

(0)

(𝐵ℎ3)
(𝑙−2)

(0)

(𝐵ℎ3)
(𝑙−3)

(0)

...
(𝐵ℎ3)


(0)

(𝐵ℎ3) (0)

)
)
)
)
)
)
)

)𝑙×1

,

(33)

𝐵3 = (𝑏31, 𝑏32, . . . , 𝑏3𝑙)
𝑇
, 𝑏3𝑖 = −(1/𝑖!) ∫

2𝜋

0
(𝜋 − 𝑠)

𝑖
𝑦1(𝑠)d𝑠, 𝑐𝑗 =

(𝜋)
𝑗
/𝑗!, and 𝑗 = 1, 2, . . . , 𝑙 − 1; ℎ(𝑖)

4
(0) (𝑖 = 0, 1, . . . , 𝑛 − 𝑙 − 1)

are decided by 𝐸4𝑍4 = 𝐵4, where

𝐸4 =
(
(

(

2 0 ⋅ ⋅ ⋅ 0 0

𝑐1 2 ⋅ ⋅ ⋅ 0 0

𝑐2 𝑐1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
𝑐𝑛−𝑙−2 𝑐𝑛−𝑙−3 ⋅ ⋅ ⋅ 2 0

𝑐𝑛−𝑙−1 𝑐𝑛−𝑙−2 ⋅ ⋅ ⋅ 𝑐1 2

)
)

)(𝑛−𝑙)×(𝑛−𝑙)

,

𝑍4 =

(
(
(
(
(
(

(

ℎ
(𝑛−𝑙−1)

4
(0)

ℎ
(𝑛−𝑙−2)

4
(0)

ℎ
(𝑛−𝑙−3)

4
(0)

...
ℎ
4
(0)

ℎ4 (0)

)
)
)
)
)
)

)(𝑛−𝑙)×1

,

(34)

𝐵4 = (𝑏41, 𝑏42, . . . , 𝑏4(𝑛−𝑙))
𝑇
, 𝑏4𝑖 = −(1/𝑖!) ∫

2𝜋

0
(𝜋 −

𝑠)
𝑖
𝑦2(𝑠)d𝑠, 𝑐𝑗 = (𝜋)

𝑗
/𝑗!, and 𝑗 = 1, 2, . . . , 𝑛 − 𝑙 − 1.

Clearly, 𝑄𝑁 and 𝐿−1
𝑃
(𝐼 − 𝑄)𝑁 are continuous. Using

the Arzela-Ascoli theorem, it is not difficult to show that
𝑄𝑁(Ω), 𝐿

−1

𝑃
(𝐼−𝑄)𝑁(Ω) are relatively compact for any open

bounded set Ω ⊂ X. Therefore,𝑁 is 𝐿-compact on Ω for any
open bounded setΩ ⊂ X.

Lemma 3 (see [12]). Let |𝜏| = (𝑏/𝑎)𝜋, where 𝑎 and 𝑏 are
coprime positive integers. Then

(1) if 𝑐 = −1, 𝑏 is odd and 𝑎 is even, then

𝜔1 := inf
𝑘∈N1


1 − 𝑐𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 + cos 𝑘𝜏)]1/2 > 0; (35)

(2) if 𝑐 = 1 and 𝑏 is odd, then

𝜔2 := inf
𝑘∈N1


1 − 𝑐𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 − cos 𝑘𝜏)]1/2 > 0; (36)

(3) if 𝑐 = 1 and 𝑎 = 𝑏 = 1, then

𝜔3 := inf
𝑘∈N1


1 − 𝑐𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 − cos 𝑘𝜏)]1/2 = 2 > 0.

(37)

Lemma 4 (see [13]). Suppose 𝐴 : Y → Y , (𝐴𝑥)(𝑡) = 𝑥(𝑡) −
𝑐𝑥(𝑡 − 𝜏) for all 𝑡 ∈ [0, 2𝜋]. Then the following propositions are
true.

(1) If 𝑐 = −1, |𝜏| = (𝑏/𝑎)𝜋, where 𝑎 and 𝑏 are coprime
positive integers with 𝑏 odd and 𝑎 even, then 𝐴 has
a unique inverse 𝐴−1 : Y → Y satisfying ‖𝐴−1‖ ≤
(1/𝜔1).

(2) If 𝑐 = 1, |𝜏| = (𝑏/𝑎)𝜋, where 𝑎 and 𝑏 are coprime
positive integers with 𝑏 odd, then𝐴 has a unique inverse
𝐴−1 : Y → Y satisfying ‖𝐴−1‖ ≤ (1/𝜔2).

(3) If 𝑐 = 1, |𝜏| = 𝜋, then 𝐴 has a unique inverse 𝐴−1 :
Y → Y satisfying ‖𝐴−1‖ ≤ (1/𝜔3).

Lemma 5 (see [12]). Let |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are
coprime positive integers. Then

(1) if 𝑑 = −1, ] is odd and 𝜇 is even, then

𝜔1 := inf
𝑘∈N1


1 − 𝑑𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 + cos 𝑘𝜏)]1/2 > 0; (38)
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(2) if 𝑑 = 1 and ] is odd, then

𝜔2 := inf
𝑘∈N1


1 − 𝑑𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 − cos 𝑘𝜏)]1/2 > 0; (39)

(3) if 𝑑 = 1 and 𝜇 = ] = 1, then

𝜔3 := inf
𝑘∈N1


1 − 𝑑𝑒

−𝑘𝑖𝜏
= inf
𝑘∈N1

[2 (1 − cos 𝑘𝜏)]1/2 = 2 > 0.

(40)

Lemma 6 (see [13]). Suppose 𝐵 : Y → Y , (𝐵𝑥)(𝑡) = 𝑥(𝑡) −

𝑑𝑥(𝑡−𝜎) for all 𝑡 ∈ [0, 2𝜋]. Then the following propositions are
true.

(1) If 𝑑 = −1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd and 𝜇 even, then 𝐵 has
a unique inverse 𝐵−1 : Y → Y satisfying ‖𝐵−1‖ ≤
(1/𝜔1).

(2) If 𝑑 = 1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd, then𝐵 has a unique inverse
𝐵−1 : Y → Y satisfying ‖𝐵−1‖ ≤ (1/𝜔2).

(3) If 𝑑 = 1, |𝜎| = 𝜋, then 𝐵 has a unique inverse 𝐵−1 :
Y → Y satisfying ‖𝐵−1‖ ≤ (1/𝜔3).

3. Main Result

In this section, we will study the existence of 𝜋-antiperiodic
solutions for system (10) in the critical case |𝑐| = |𝑑| = 1.

Theorem7. Assume that (H1)-(H2) hold. Suppose further that
𝑐 = −1, |𝜏| = (𝑏/𝑎)𝜋, where 𝑎 and 𝑏 are coprime positive
integers with 𝑏 odd and 𝑎 even, then system (10) has at least
one 𝜋-antiperiodic solution, if one of the following conditions
holds.

(1) 𝑑 = −1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd and 𝜇 even, and𝑊1 +𝑊2 <
1, where

𝑊1 = max{
𝑘+1

∑
𝑖=1

𝜋
𝑚−𝑖+1

𝜔1
𝛼𝑖,

𝑘+1

∑
𝑖=1

𝜋
𝑛−𝑙+𝑘−𝑖+1

𝜔1
𝛽𝑙+𝑖+1} ,

𝑊2 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔1
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔1
𝛽𝑖} .

(41)

(2) 𝑑 = 1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd, and𝑊1 +𝑊3 < 1, where

𝑊3 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔2
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔2
𝛽𝑖} . (42)

(3) 𝑑 = 1, |𝜎| = 𝜋, and𝑊1 +𝑊4 < 1, where

𝑊4 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔3
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔3
𝛽𝑖} , (43)

in which 𝜔1, 𝜔2, and 𝜔3 are constants defined by
Lemma 3 or Lemma 5.

Proof. As the proof of other cases works almost exactly as the
proof of case (1), we will prove case (1) only. Consider the
operator equation

𝐿𝑥 − 𝑁𝑥 = 𝜆 (−𝐿𝑥 − 𝑁 (−𝑥)) , 𝜆 ∈ (0, 1] . (44)

Then we have

(𝐴𝑥1)
(𝑘)
(𝑡) =

1

1 + 𝜆
𝜑𝑝 (𝑥2 (𝑡)) −

𝜆

1 + 𝜆
𝜑𝑝 (−𝑥2 (𝑡)) ,

𝑥
(𝑚−𝑘)

2
(𝑡) =

1

1 + 𝜆
𝐹 (𝑡, 𝑥, 𝑦) −

𝜆

1 + 𝜆
𝐹 (𝑡, −𝑥, −𝑦) ,

(𝐵𝑦1)
(𝑙)
(𝑡) =

1

1 + 𝜆
𝜑𝑞 (𝑦2 (𝑡)) −

𝜆

1 + 𝜆
𝜑𝑞 (−𝑦2 (𝑡)) ,

𝑦
(𝑛−𝑙)

2
(𝑡) =

1

1 + 𝜆
𝐺 (𝑡, 𝑦, 𝑥) −

𝜆

1 + 𝜆
𝐺 (𝑡, −𝑦, −𝑥) ,

(45)

where

𝐹 (𝑡, 𝑥1, 𝑦1)

= 𝐹 (𝑡, 𝑥1𝜃0(𝑡), 𝑥


1𝜃1(𝑡)
, . . . , 𝑥

(𝑘)

1𝜃𝑘(𝑡)
, 𝑦1𝜗0(𝑡), 𝑦



1𝜗1(𝑡)
, . . . , 𝑦

(𝑙)

1𝜗𝑙(𝑡)
) ,

𝐺 (𝑡, 𝑦1, 𝑥1)

= 𝐺 (𝑡, 𝑦1𝜇0(𝑡), 𝑦


1𝜇1(𝑡)
, . . . , 𝑦

(𝑙)

1𝜇𝑙(𝑡)
, 𝑥1]0(𝑡), 𝑥



1]1(𝑡)
, . . . , 𝑥

(𝑘)

1]𝑘(𝑡)
) ,

𝐹 (𝑡, −𝑥1, −𝑦1)

= 𝐹 (𝑡, −𝑥1𝜃0(𝑡), −𝑥


1𝜃1(𝑡)
, . . . , −𝑥

(𝑘)

1𝜃𝑘(𝑡)
, −𝑦1𝜗0(𝑡), −𝑦



1𝜗1(𝑡)
,

. . . , −𝑦
(𝑙)

1𝜗𝑙(𝑡)
) ,

𝐺 (𝑡, −𝑦1, −𝑥1)

= 𝐺 (𝑡, −𝑦1𝜇0(𝑡), −𝑦


1𝜇1(𝑡)
, . . . , −𝑦

(𝑙)

1𝜇𝑙(𝑡)
, −𝑥1]0(𝑡), −𝑥



1]1(𝑡)
,

. . . , −𝑥
(𝑘)

1]𝑘(𝑡)
) .

(46)

Suppose that 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑦1(𝑡), 𝑦2(𝑡))
𝑇
∈ D is

an arbitrary 𝜋-antiperiodic solution of system (45). Because
𝑥1(𝑡) ∈ 𝐶

𝑘

2𝜋
is 𝑇/2-antiperiodic, hence, we have

∫
2𝜋

0

𝑥1 (𝑠) d𝑠 = ∫
𝜋

0

𝑥1 (𝑠) d𝑠 + ∫
2𝜋

𝜋

𝑥1 (𝑠) d𝑠

= ∫
𝜋

0

𝑥1 (𝑠) d𝑠 + ∫
𝜋

0

𝑥1 (𝑠 + 𝜋) d𝑠 = 0.
(47)
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Then there exists a constant 𝜉 ∈ [0, 2𝜋] such that

𝑥1 (𝜉) = 0. (48)

Therefore, we have

𝑥1 (𝑡)
 =

𝑥1 (𝜉) + ∫

𝑡

𝜉

𝑥


1
(𝑠) d𝑠


≤ ∫
𝑡

𝜉


𝑥


1
(𝑠)

d𝑠,

𝑥1 (𝑡)
 =
𝑥1 (𝑡 − 2𝜋)

 =


𝑥1 (𝜉) − ∫

𝜉

𝑡−2𝜋

𝑥


1
(𝑠) d𝑠



≤ ∫
𝜉

𝑡−2𝜋


𝑥


1
(𝑠)

d𝑠

(49)

for all 𝑡 ∈ [𝜉, 𝜉 + 2𝜋]. Combining the above two inequalities,
we can get

𝑥1
∞ = max
𝑡∈[0,2𝜋]

𝑥1 (𝑡)


= max
𝑡∈[𝜉,𝜉+2𝜋]

𝑥1 (𝑡)


≤ max
𝑡∈[𝜉,𝜉+2𝜋]

{
1

2
(∫
𝑡

𝜉


𝑥


1
(𝑠)

d𝑠 + ∫

𝜉

𝑡−2𝜋


𝑥


1
(𝑠)

d𝑠)}

≤
1

2
∫
2𝜋

0


𝑥


1
(𝑠)

d𝑠.

(50)

Similar to (50), one can easily get


𝑥


1

∞
≤
1

2
∫
2𝜋

0


𝑥


1
(𝑠)

d𝑠,


𝑥


1

∞
≤
1

2
∫
2𝜋

0


𝑥


1
(𝑠)

d𝑠, . . . , 𝑥

(𝑘−1)

1

∞
≤
1

2
∫
2𝜋

0


𝑥
(𝑘)

1
(𝑠)

d𝑠,

(51)

which yield


𝑥
(𝑖)

1

∞
≤ 𝜋
𝑘−𝑖
𝑥
(𝑘)

1

∞
for 𝑖 = 0, 1, . . . , 𝑘 − 1. (52)

By a parallel argument to (47)–(52), we can also obtain


𝑦
(𝑖)

1

∞
≤ 𝜋
𝑙−𝑖
𝑦
(𝑙)

1

∞
, for 𝑖 = 0, 1, . . . , 𝑙 − 1, (53)


𝑥
(𝑗)

2

∞
≤ 𝜋
𝑚−𝑘−𝑗−1

𝑥
(𝑚−𝑘−1)

2

∞
, for 𝑗 = 0, 1, . . . , 𝑚 − 𝑘 − 2,

(54)

𝑦
(𝑗)

2

∞
≤ 𝜋
𝑛−𝑙−𝑗−1

𝑦
(𝑛−𝑙−1)

2

∞
, for 𝑗 = 0, 1, . . . , 𝑛 − 𝑙 − 2.

(55)

Since 𝑥2(𝑡) ∈ 𝐶
𝑚−𝑘

2𝜋
is 𝜋-antiperiodic, similar to (47), there

exists a constant 𝜁 such that 𝑥(𝑚−𝑘−1)
2

(𝜁) = 0. By a parallel
argument to (50), we can obtain from (45), (𝐻1), (52), and
(53) that

2

𝑥
(𝑚−𝑘−1)

2

∞

≤ 2

𝑥
(𝑚−𝑘−1)

2
(𝜁)

+ ∫
2𝜋

0


𝑥
(𝑚−𝑘)

2
(𝑠)

d𝑠

= ∫
2𝜋

0



1

1 + 𝜆
𝐹 (𝑠, 𝑥1, 𝑦1) −

𝜆

1 + 𝜆
𝐹 (𝑠, −𝑥1, −𝑦1)


d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

𝐹 (𝑠, 𝑥1, 𝑦1)
 d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

𝐹 (𝑠, −𝑥1, −𝑦1)
 d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

𝐹 (𝑠, 𝑥1, 𝑦1) − 𝐹 (𝑠, 0, 0)
 d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

𝐹 (𝑠, −𝑥1, −𝑦1) − 𝐹 (𝑠, 0, 0)
 d𝑠

+
1

1 + 𝜆
∫
2𝜋

0

|𝐹 (𝑠, 0, 0)| d𝑠 + 𝜆

1 + 𝜆
∫
2𝜋

0

|𝐹 (𝑠, 0, 0)| d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

(𝛼1
𝑥1 (𝑠 − 𝜃0 (𝑠))

 + 𝛼2

𝑥


1
(𝑠 − 𝜃1 (𝑠))


+ ⋅ ⋅ ⋅

+ 𝛼𝑘+1

𝑥
(𝑘)

1
(𝑠 − 𝜃𝑘 (𝑠))



+ 𝛼𝑘+2
𝑦1 (𝑠 − 𝜗0 (𝑠))



+ 𝛼𝑘+3

𝑦


1
(𝑠 − 𝜗1 (𝑠))


+ ⋅ ⋅ ⋅

+𝛼𝑘+𝑙+2

𝑦
(𝑙)

1
(𝑠 − 𝜗𝑙 (𝑠))


) d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

(𝛼1
𝑥1 (𝑠 − 𝜃0 (𝑠))

 + ⋅ ⋅ ⋅

+ 𝛼𝑘+1

𝑥
(𝑘)

1
(𝑠 − 𝜃𝑘 (𝑠))



+ 𝛼𝑘+2
𝑦1 (𝑠 − 𝜗0 (𝑠))

 + ⋅ ⋅ ⋅

+𝛼𝑘+𝑙+2

𝑦
(𝑙)

1
(𝑠 − 𝜗𝑙 (𝑠))


) d𝑠

+ ∫
2𝜋

0

|𝐹 (𝑠, 0, 0)| d𝑠

≤ ∫
2𝜋

0

(𝛼1
𝑥1 (𝑠 − 𝜃0 (𝑠))

 + 𝛼2

𝑥


1
(𝑠 − 𝜃1 (𝑠))


+ ⋅ ⋅ ⋅

+ 𝛼𝑘+1

𝑥
(𝑘)

1
(𝑠 − 𝜃𝑘 (𝑠))


+ 𝛼𝑘+2

𝑦1 (𝑠 − 𝜗0 (𝑠))


+ 𝛼𝑘+3

𝑦


1
(𝑠 − 𝜗1 (𝑠))


+ ⋅ ⋅ ⋅

+𝛼𝑘+𝑙+2

𝑦
(𝑙)

1
(𝑠 − 𝜗𝑙 (𝑠))


) d𝑠 + ∫

2𝜋

0

|𝐹 (𝑠, 0, 0)| d𝑠
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≤ ∫
2𝜋

0

(𝛼1
𝑥1
∞ + 𝛼2


𝑥


1

∞
+ ⋅ ⋅ ⋅ + 𝛼𝑘


𝑥
(𝑘−1)

1

∞

+ 𝛼𝑘+1

𝑥
(𝑘)

1

∞
+ 𝛼𝑘+2

𝑦1
∞ + 𝛼𝑘+3


𝑦


1

∞
+ ⋅ ⋅ ⋅

+𝛼𝑘+𝑙+1

𝑦
(𝑙−1)

1

∞
+ 𝛼𝑘+𝑙+2


𝑦
(𝑙)

1

∞
) d𝑠

+ ∫
2𝜋

0

|𝐹 (𝑠, 0, 0)| d𝑠

≤ 2𝜋𝛼1
𝑥1
∞ + 2𝜋𝛼2


𝑥


1

∞
+ ⋅ ⋅ ⋅ + 2𝜋𝛼𝑘


𝑥
(𝑘−1)

1

∞

+ 2𝜋𝛼𝑘+1

𝑥
(𝑘)

1

∞
+ 2𝜋𝛼𝑘+2

𝑦1
∞ + 2𝜋𝛼𝑘+3


𝑦


1

∞
+ ⋅ ⋅ ⋅

+ 2𝜋𝛼𝑘+𝑙+1

𝑦
(𝑙−1)

1

∞
+ 2𝜋𝛼𝑘+𝑙+2


𝑦
(𝑙)

1

∞

+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)|

≤ 2𝜋𝛼1
(2𝜋)
𝑘

2𝑘

𝑥
(𝑘)

1

∞
+ 2𝜋𝛼2

(2𝜋)
𝑘−1

2𝑘−1

𝑥
(𝑘)

1

∞
+ ⋅ ⋅ ⋅

+ 2𝜋𝛼𝑘
2𝜋

2


𝑥
(𝑘)

1

∞
+ 2𝜋𝛼𝑘+1


𝑥
(𝑘)

1

∞

+ 2𝜋𝛼𝑘+2
(2𝜋)
𝑙

2𝑙

𝑦
(𝑙)

1

∞
+ 2𝜋𝛼𝑘+3

(2𝜋)
𝑙−1

2𝑙−1

𝑦
(𝑙)

1

∞

+ ⋅ ⋅ ⋅ + 2𝜋𝛼𝑘+𝑙+1
2𝜋

2


𝑦
(𝑙)

1

∞
+ 2𝜋𝛼𝑘+𝑙+2


𝑦
(𝑙)

1

∞

+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)|

= 2

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛼𝑖

𝑥
(𝑘)

1

∞
+ 2

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛼𝑘+𝑖+1


𝑦
(𝑙)

1

∞

+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)| .

(56)

Namely,


𝑥
(𝑚−𝑘−1)

2

∞
≤

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛼𝑖

𝑥
(𝑘)

1

∞
+

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛼𝑘+𝑖+1


𝑦
(𝑙)

1

∞

+ 𝜋 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)| .

(57)

Since 𝑦2(𝑡) ∈ 𝐶
𝑛−𝑙

2𝜋
is 𝜋-antiperiodic, similar to (50), there

exists a constant 𝜂 such that 𝑦(𝑛−𝑙−1)
2

(𝜂) = 0. By a parallel
argument to (50), we can obtain from (45), (𝐻1), (52), and
(53) that

2

𝑦
(𝑛−𝑙−1)

2

∞

≤ 2

𝑦
(𝑛−𝑙−1)

2
(𝜂)

+ ∫
2𝜋

0


𝑦
(𝑛−𝑙)

2
(𝑠)

d𝑠

= ∫
2𝜋

0



1

1 + 𝜆
𝐺 (𝑠, 𝑦1, 𝑥1) −

𝜆

1 + 𝜆
𝐺 (𝑠, −𝑦1, −𝑥1)


d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

𝐺 (𝑠, 𝑦1, 𝑥1)
 d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

𝐺 (𝑠, −𝑦1, −𝑥1)
 d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

𝐺 (𝑠, 𝑦1, 𝑥1) − 𝐺 (𝑠, 0, 0)
 d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

𝐺 (𝑠, −𝑦1, −𝑥1) − 𝐺 (𝑠, 0, 0)
 d𝑠

+
1

1 + 𝜆
∫
2𝜋

0

|𝐺 (𝑠, 0, 0)| d𝑠 + 𝜆

1 + 𝜆
∫
2𝜋

0

|𝐺 (𝑠, 0, 0)| d𝑠

≤
1

1 + 𝜆
∫
2𝜋

0

(𝛽1
𝑦1 (𝑠 − 𝜇0 (𝑠))



+ 𝛽2

𝑦


1
(𝑠 − 𝜇1 (𝑠))


+ ⋅ ⋅ ⋅

+ 𝛽𝑙+1

𝑦
(𝑙)

1
(𝑠 − 𝜇𝑙 (𝑠))



+ 𝛽𝑙+2
𝑥1 (𝑠 − ]0 (𝑠))



+ 𝛽𝑙+3

𝑥


1
(𝑠 − ]1 (𝑠))


+ ⋅ ⋅ ⋅

+𝛽𝑙+𝑘+2

𝑥
(𝑘)

1
(𝑠 − ]𝑘 (𝑠))


) d𝑠

+
𝜆

1 + 𝜆
∫
2𝜋

0

(𝛽1
𝑦1 (𝑠 − 𝜇0 (𝑠))



+ 𝛽2

𝑦


1
(𝑠 − 𝜇1 (𝑠))


+ ⋅ ⋅ ⋅

+ 𝛽𝑙+1

𝑦
(𝑙)

1
(𝑠 − 𝜇𝑙 (𝑠))



+ 𝛽𝑙+2
𝑥1 (𝑠 − ]0 (𝑠))



+ 𝛽𝑙+3

𝑥


1
(𝑠 − ]1 (𝑠))


+ ⋅ ⋅ ⋅

+𝛽𝑙+𝑘+2

𝑥
(𝑘)

1
(𝑠 − ]𝑘 (𝑠))


) d𝑠

+ ∫
2𝜋

0

|𝐺 (𝑠, 0, 0)| d𝑠

≤ ∫
2𝜋

0

(𝛽1
𝑦1 (𝑠 − 𝜇0 (𝑠))

 + 𝛽2

𝑦


1
(𝑠 − 𝜇1 (𝑠))



+ ⋅ ⋅ ⋅ + 𝛽𝑙+1

𝑦
(𝑙)

1
(𝑠 − 𝜇𝑙 (𝑠))



+ 𝛽𝑙+2
𝑥1 (𝑠 − ]0 (𝑠))

 + 𝛽𝑙+3

𝑥


1
(𝑠 − ]1 (𝑠))



+ ⋅ ⋅ ⋅ + 𝛽𝑙+𝑘+2

𝑥
(𝑘)

1
(𝑠 − ]𝑘 (𝑠))


) d𝑠

+ ∫
2𝜋

0

|𝐺 (𝑠, 0, 0)| d𝑠

≤ ∫
2𝜋

0

(𝛽1
𝑦1
∞ + 𝛽2


𝑦


1

∞
+ ⋅ ⋅ ⋅ + 𝛽𝑙


𝑦
(𝑙−1)

1

∞

+ 𝛽𝑙+1

𝑦
(𝑙)

1

∞
+ 𝛽𝑙+2

𝑥1
∞ + 𝛽𝑙+3


𝑥


1

∞
+ ⋅ ⋅ ⋅

+𝛽𝑙+𝑘+1

𝑥
(𝑘−1)

1

∞
+ 𝛽𝑙+𝑘+2


𝑥
(𝑘)

1

∞
) d𝑠

+ ∫
2𝜋

0

|𝐺 (𝑠, 0, 0)| d𝑠
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≤ 2𝜋𝛽1
𝑦1
∞ + 2𝜋𝛽2


𝑦


1

∞
+ ⋅ ⋅ ⋅ + 2𝜋𝛽𝑙


𝑦
(𝑙−1)

1

∞

+ 2𝜋𝛽𝑙+1

𝑦
(𝑙)

1

∞
+ 2𝜋𝛽𝑙+2

𝑥1
∞ + 2𝜋𝛽𝑙+3


𝑥


1

∞
+ ⋅ ⋅ ⋅

+ 2𝜋𝛽𝑙+𝑘+1

𝑥
(𝑘−1)

1

∞
+ 2𝜋𝛽𝑙+𝑘+2


𝑥
(𝑘)

1

∞

+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)|

≤ 2𝜋𝛽1
(2𝜋)
𝑙

2𝑙

𝑦
(𝑙)

1

∞
+ 2𝜋𝛽2

(2𝜋)
𝑙−1

2𝑙−1

𝑦
(𝑙)

1

∞
+ ⋅ ⋅ ⋅

+ 2𝜋𝛽𝑙
2𝜋

2


𝑦
(𝑙)

1

∞
+ 2𝜋𝛽𝑙+1


𝑦
(𝑙)

1

∞
+ 2𝜋𝛽𝑙+2

(2𝜋)
𝑘

2𝑘

𝑥
(𝑘)

1

∞

+ 2𝜋𝛽𝑙+3
(2𝜋)
𝑘−1

2𝑘−1

𝑥
(𝑘)

1

∞
+ ⋅ ⋅ ⋅ + 2𝜋𝛽𝑙+𝑘+1

2𝜋

2


𝑥
(𝑘)

1

∞

+ 2𝜋𝛽𝑙+𝑘+2

𝑥
(𝑘)

1

∞
+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)|

= 2

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛽𝑖

𝑦
(𝑙)

1

∞
+ 2

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛽𝑙+𝑖+1

𝑥
(𝑘)

1

∞

+ 2𝜋 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)| .

(58)

Namely,


𝑦
(𝑛−𝑙−1)

2

∞
≤

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛽𝑖

𝑦
(𝑙)

1

∞
+

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛽𝑙+𝑖+1

𝑥
(𝑘)

1

∞

+ 𝜋 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)| .

(59)

From (1) of Lemmas 4 and 6, one can obtain


𝑥
(𝑘)

1
(𝑡)

=

𝐴
−1
𝐴𝑥
(𝑘)

1
(𝑡)

≤
1

𝜔1


𝐴𝑥
(𝑘)

1
(𝑡)


=
1

𝜔1


(𝐴𝑥1)

(𝑘)
(𝑡)

≤
1

𝜔1
𝜑𝑝 (

𝑥2
∞) ,


𝑦
(𝑙)

1
(𝑡)

=

𝐵
−1
𝐵𝑦
(𝑙)

1
(𝑡)

≤
1

𝜔1


𝐵𝑥
(𝑙)

1
(𝑡)


=
1

𝜔1


(𝐵𝑦1)
(𝑙)
(𝑡)

≤
1

𝜔1
𝜑𝑞 (

𝑦2
∞) .

(60)

That is,


𝑥
(𝑘)

1

∞
≤
1

𝜔1
𝜑𝑝 (

𝑥2
∞) ,


𝑦
(𝑙)

1

∞
≤
1

𝜔1
𝜑𝑞 (

𝑦2
∞) .

(61)

From (54) and (55), we can get

𝑥2
∞ ≤ 𝜋

𝑚−𝑘−1
𝑥
(𝑚−𝑘−1)

2

∞
,

𝑦2
∞ ≤ 𝜋

𝑛−𝑙−1
𝑦
(𝑛−𝑙−1)

2

∞
.

(62)

With (57)–(62), we have

𝑥2
∞ ≤

𝑘+1

∑
𝑖=1

𝜋𝑚−𝑖+1

𝜔1
𝛼𝑖
𝑥2

𝑝−1

∞

+

𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔1
𝛼𝑘+𝑖+1

𝑦2

𝑞

−1

∞
+ 𝑇1,

𝑦2
∞ ≤

𝑘+1

∑
𝑖=1

𝜋𝑛−𝑙+𝑘−𝑖+1

𝜔1
𝛽𝑙+𝑖+1

𝑥2

𝑝

−1

∞

+

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔1
𝛽𝑖
𝑦2

𝑞

−1

∞
+ 𝑇2,

(63)

where

𝑇1 = 𝜋
𝑚−𝑘 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)| ,

𝑇2 = 𝜋
𝑛−𝑙 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)| .

(64)

Let𝑋0 = max{|𝑥2|∞, |𝑦2|∞}. Then we have from (63) that

𝑋0 ≤ 𝑊1𝑋
𝑝

−1

0
+𝑊2𝑋

𝑞

−1

0
+max {𝑇1, 𝑇2} (65)

in which

𝑊1 = max{
𝑘+1

∑
𝑖=1

𝜋𝑚−𝑖+1

𝜔1
𝛼𝑖,

𝑘+1

∑
𝑖=1

𝜋𝑛−𝑙+𝑘−𝑖+1

𝜔1
𝛽𝑙+𝑖+1} ,

𝑊2 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔1
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔1
𝛽𝑖} .

(66)

Since 1 < 𝑝, 𝑞 ≤ 2, (65) implies from (1) that there exists a
positive constant𝑀0 such that𝑋0 ≤ 𝑀0; that is,

𝑥2
∞ ≤ 𝑀0,

𝑦2
∞ ≤ 𝑀0, (67)

which implies from (61) that there exist positive constants𝑀1
and𝑀2 such that


𝑥
(𝑘)

1

∞
≤ 𝑀1,


𝑦
(𝑙)

1

∞
≤ 𝑀2, (68)

which implies from (57) and (59) that


𝑥
(𝑚−𝑘−1)

2

∞
≤

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛼𝑖𝑀1 +

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛼𝑘+𝑖+1𝑀2

+ 𝜋 max
𝑠∈[0,2𝜋]

|𝐹 (𝑠, 0, 0)| ≡ 𝑀3,


𝑦
(𝑛−𝑙−1)

2

∞
≤

𝑙+1

∑
𝑖=1

𝜋
𝑙−𝑖+2
𝛽𝑖𝑀2 +

𝑘+1

∑
𝑖=1

𝜋
𝑘−𝑖+2

𝛽𝑙+𝑖+1𝑀1

+ 𝜋 max
𝑠∈[0,2𝜋]

|𝐺 (𝑠, 0, 0)| ≡ 𝑀4.

(69)
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Substituting (68), (69) into (52), (53), (54), and (55), we get


𝑥
(𝑖)

1

∞
≤
𝑇
𝑘−𝑖

2𝑘−𝑖

𝑥
(𝑘)

1

∞

≤
𝑇𝑘−𝑖

2𝑘−𝑖
𝑀1 ≡ 𝑁𝑖 for 𝑖 = 0, 1, . . . , 𝑘 − 1,


𝑦
(𝑖)

1

∞
≤
𝑇𝑙−𝑖

2𝑙−𝑖

𝑦
(𝑙)

1

∞

≤
𝑇𝑙−𝑖

2𝑙−𝑖
𝑀2 ≡ 𝐿 𝑖 for 𝑖 = 0, 1, . . . , 𝑙 − 1,


𝑥
(𝑗)

2

∞
≤
𝑇𝑚−𝑘−𝑗−1

2𝑚−𝑘−𝑗−1

𝑥
(𝑚−𝑘−1)

2

∞

≤
𝑇𝑚−𝑘−𝑗−1

2𝑚−𝑘−𝑗−1
𝑀3 ≡ 𝐻𝑗 for 𝑗 = 0, 1, . . . , 𝑚 − 𝑘 − 2,


𝑦
(𝑗)

2

∞
≤
𝑇𝑛−𝑙−𝑗−1

2𝑛−𝑙−𝑗−1

𝑦
(𝑛−𝑙−1)

2

∞

≤
𝑇𝑛−𝑙−𝑗−1

2𝑛−𝑙−𝑗−1
𝑀4 ≡ 𝐾𝑗 for 𝑗 = 0, 1, . . . , 𝑛 − 𝑙 − 2.

(70)

Let

𝑀 =

𝑘−1

∑
𝑖=0

𝑁𝑖 +

𝑚−𝑘−2

∑
𝑖=0

𝐻𝑖 +

𝑙−1

∑
𝑖=0

𝐿 𝑖 +

𝑛−𝑙−2

∑
𝑖=0

𝐾𝑖

+

4

∑
𝑖=1

𝑀𝑖 + 1 (Clearly,𝑀 is independent of 𝜆) .

(71)

Take

Ω = {𝑥 ∈ X : ‖𝑥‖X < 𝑀} . (72)

It is clear thatΩ satisfies all the requirements in Lemma 1 and
condition (𝐻) is satisfied. In view of all the discussions above,
we conclude from Lemma 1 that system (10) has at least one
𝜋-antiperiodic solution. This completes the proof.

Similar to Theorem 7, we can easily obtain the following
results.

Theorem8. Assume that (𝐻1)-(𝐻2) hold. Suppose further that
𝑐 = 1, |𝜏| = (𝑏/𝑎)𝜋, where 𝑎 and 𝑏 are coprime positive integers
with 𝑏 odd, then system (10) has at least one 𝜋-antiperiodic
solution, if one of the following conditions holds.

(1) 𝑑 = −1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd and 𝜇 even, and𝑊5 +𝑊2 <
1, where

𝑊5 = max{
𝑘+1

∑
𝑖=1

𝜋𝑚−𝑖+1

𝜔2
𝛼𝑖,

𝑘+1

∑
𝑖=1

𝜋𝑛−𝑙+𝑘−𝑖+1

𝜔2
𝛽𝑙+𝑖+1} ,

𝑊2 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔1
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔1
𝛽𝑖} .

(73)

(2) 𝑑 = 1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd, and𝑊5 +𝑊3 < 1, where

𝑊3 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔2
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔2
𝛽𝑖} . (74)

(3) 𝑑 = 1, |𝜎| = 𝜋, and𝑊5 +𝑊4 < 1, where

𝑊4 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔3
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔3
𝛽𝑖} , (75)

in which 𝜔1, 𝜔2, and 𝜔3 are constants defined by
Lemma 3 or Lemma 5.

Theorem9. Assume that (𝐻1)-(𝐻2) hold. Suppose further that
𝑐 = 1, |𝜏| = 𝜋, then system (10) has at least one 𝜋-antiperiodic
solution, if one of the following conditions holds.

(1) 𝑑 = −1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd and 𝜇 even, and𝑊6 +𝑊2 <
1, where

𝑊6 = max{
𝑘+1

∑
𝑖=1

𝜋𝑚−𝑖+1

𝜔3
𝛼𝑖,

𝑘+1

∑
𝑖=1

𝜋𝑛−𝑙+𝑘−𝑖+1

𝜔3
𝛽𝑙+𝑖+1} ,

𝑊2 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔1
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔1
𝛽𝑖} .

(76)

(2) 𝑑 = 1, |𝜎| = (]/𝜇)𝜋, where 𝜇 and ] are coprime
positive integers with ] odd, and𝑊6 +𝑊3 < 1, where

𝑊3 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔2
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔2
𝛽𝑖} . (77)

(3) 𝑑 = 1, |𝜎| = 𝜋, and𝑊6 +𝑊4 < 1, where

𝑊4 = max{
𝑙+1

∑
𝑖=1

𝜋𝑚−𝑘+𝑙−𝑖+1

𝜔3
𝛼𝑘+𝑖+1,

𝑙+1

∑
𝑖=1

𝜋𝑛−𝑖+1

𝜔3
𝛽𝑖} , (78)

in which 𝜔1, 𝜔2, and 𝜔3 are constants defined by
Lemma 3 or Lemma 5.

4. An Example

Example 1. Let 𝑝, 𝑞 ≥ 2. Then the following third-order
(𝑝, 𝑞)-Laplacian neutral differential system

(𝜑𝑝 ((𝑥 (𝑡) + 𝑥 (𝑡 −
𝜋

2
))


))



= sin 𝑡 +
√2

𝜋4
𝑥 (𝑡 − 1) +

√2

𝜋6
𝑦 (𝑡 − 1) +

√2

𝜋6
𝑦

(𝑡 − 1) ,

(𝜑𝑞 ((𝑦 (𝑡) + 𝑦 (𝑡 −
𝜋

2
))


))



= cos 𝑡 +
√2

𝜋6
𝑦 (𝑡 − 1) +

√2

𝜋4
𝑥 (𝑡 − 1)

(79)

has at least one 𝜋-antiperiodic solution.
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Proof. By calculation, 𝜔1 = √2, 𝛼1 = √2/𝜋
4, 𝛼3 = 𝛼4 =

√2/𝜋6, 𝛼2 = 𝛼5 = 0, 𝛽1 = √2/𝜋
6, 𝛽4 = √2/𝜋

4, and 𝛽2 =
𝛽3 = 𝛽5 = 0. Therefore,

𝑊1 = max { 1
𝜋
,
1

𝜋2
} =

1

𝜋
<
1

2
,

𝑊2 = max { 1
𝜋2
+
1

𝜋3
,
1

𝜋3
} =

1

𝜋2
+
1

𝜋3
<
1

2
.

(80)

Hence,

𝑊1 +𝑊2 <
1

2
+
1

2
= 1, (81)

which implies that case (1) in Theorem 7 holds. It is easy
to verify that (𝐻1)-(𝐻2) hold and the result follows from
Theorem 7. This completes the proof.
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