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The authors introduce the lacunary series of finite iterated order and use them to investigate the growth of solutions of higher-order
linear differential equations with entire coefficients of finite iterated order and obtain some results which improve and extend some
previous results of Belaidi, 2006, Cao and Yi, 2007, Kinnunen, 1998, Laine and Wu, 2000, Tu and Chen, 2009, Tu and Deng, 2008,
Tu and Deng, 2010, Tu and Liu, 2009, and Tu and Long, 2009.

1. Definitions and Notations

In this paper, we assume that readers are familiar with the
fundamental results and standard notations of the Nevan-
linna theory of meromorphic functions (see [1–3]). In order
to describe the growth of order of entire functions or mero-
morphic functions more precisely, we first introduce some
notations about finite iterated order. Let us define inductively,
for 𝑟 ∈ (0, +∞), exp

1
𝑟 = 𝑒

𝑟 and exp
𝑖+1
𝑟 = exp(exp

𝑖
𝑟), 𝑖 ∈

N. For all sufficiently large 𝑟, we define log
1
𝑟 = log 𝑟 and

log
𝑖+1
𝑟 = log(log

𝑖
𝑟), 𝑖 ∈ N. We also denote exp

0
𝑟 = 𝑟 = log

0
𝑟

and exp
−1
𝑟 = log

1
𝑟. Moreover, we denote the logarithmic

measure of a set𝐸 ⊂ (0, +∞) by𝑚
𝑙
𝐸 = ∫
𝐸
𝑑𝑡/𝑡, and the upper

logarithmic density of 𝐸 ⊂ (0, +∞) is defined by

log dens𝐸 = lim
𝑟→∞

𝑚
𝑙
(𝐸⋂ [1, 𝑟])

log 𝑟
. (1)

Throughout this paper, we use 𝑝 to denote a positive integer.
In the following,we recall somedefinitions of entire functions
or meromorphic functions of finite iterated order (see [4–
10]).

Definition 1. The 𝑝-iterated order of ameromorphic function
𝑓(𝑧) is defined by

𝜎
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑇 (𝑟, 𝑓)

log 𝑟
. (2)

Remark 2. If 𝑓(𝑧) is an entire function, then the 𝑝-iterated
order of 𝑓(𝑧) is defined by

𝜎
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑇 (𝑟, 𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝+1

𝑀(𝑟, 𝑓)

log 𝑟
. (3)

If 𝑝 = 1, the classical growth of order of 𝑓(𝑧) is defined by

𝜎 (𝑓) = lim
𝑟→∞

log𝑇 (𝑟, 𝑓)
log 𝑟

= lim
𝑟→∞

log
2
𝑀(𝑟, 𝑓)

log 𝑟
. (4)

If 𝑝 = 2, the hyperorder of 𝑓(𝑧) is defined by

𝜎
2
(𝑓) = lim

𝑟→∞

log
2
𝑇 (𝑟, 𝑓)

log 𝑟
= lim
𝑟→∞

log
3
𝑀(𝑟, 𝑓)

log 𝑟
. (5)
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Definition 3. If 𝑓(𝑧) is an entire function with 0 < 𝜎
𝑝
(𝑓) =

𝜎 < ∞, then the 𝑝-iterated type of 𝑓(𝑧) is defined by

𝜏
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑀(𝑟, 𝑓)

𝑟
𝜎

.
(6)

Definition 4. The 𝑝-iterated lower order of an entire function
𝑓(𝑧) is defined by

𝜇
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑇 (𝑟, 𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝+1

𝑀(𝑟, 𝑓)

log 𝑟
. (7)

Definition 5. The finiteness degree of the iterated order of a
meromorphic function 𝑓(𝑧) is defined by
𝑖 (𝑓)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0 for 𝑓 (𝑧) rational,
min {𝑝 ∈ N : 𝜎

𝑝
(𝑓) < ∞}

for 𝑓 transcendental for which some
𝑝 ∈ Nwith 𝜎

𝑝
(𝑓) < ∞ exists,

∞ or 𝑓 (𝑧)with 𝜎
𝑝
(𝑓) = ∞ ∀𝑝 ∈ N.

(8)

Definition 6. The 𝑝-iterated exponent of convergence of 𝑎-
point of a meromorphic function 𝑓(𝑧) is defined by

𝜆
𝑝
(𝑓, 𝑎) = lim

𝑟→∞

log
𝑝
𝑛 (𝑟, 𝑎)

log 𝑟
= lim
𝑟→∞

log
𝑝
𝑁(𝑟, 𝑎)

log 𝑟
. (9)

If 𝑎 = 0, the 𝑝-iterated exponent of convergence of
zero-sequence and distinct zero-sequence of a meromorphic
function 𝑓(𝑧) are defined, respectively, by

𝜆
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑛 (𝑟, 1/𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝
𝑁(𝑟, 1/𝑓)

log 𝑟
,

𝜆
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑛 (𝑟, 1/𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝
𝑁(𝑟, 1/𝑓)

log 𝑟
.

(10)
The 𝑝-iterated lower exponent of convergence of zero-
sequence and distinct zero-sequence of a meromorphic
function 𝑓(𝑧) are defined, respectively, by

𝜆
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑛 (𝑟, 1/𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝
𝑁(𝑟, 1/𝑓)

log 𝑟
,

𝜆
𝑝
(𝑓) = lim

𝑟→∞

log
𝑝
𝑛 (𝑟, 1/𝑓)

log 𝑟
= lim
𝑟→∞

log
𝑝
𝑁(𝑟, 1/𝑓)

log 𝑟
.

(11)

2. Introductions and Main Results

In the past ten years, many authors have investigated the
complex oscillation properties of the higher-order linear
differential equations

𝑓
(𝑘)

+ 𝐴
𝑘−1

(𝑧) 𝑓
(𝑘−1)

+ ⋅ ⋅ ⋅ + 𝐴
0
(𝑧) 𝑓 = 0, (12)

𝑓
(𝑘)

+ 𝐴
𝑘−1

(𝑧) 𝑓
(𝑘−1)

+ ⋅ ⋅ ⋅ + 𝐴
0
(𝑧) 𝑓 = 𝐹 (𝑧) (13)

with 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧) being entire functions or

meromorphic functions of fast growing (e.g., see [4–12]), and
obtained the following results.

Theorem A (see [8]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧) be entire func-

tions, if 𝑖(𝐴
𝑗
) ≤ 𝑝 (𝑗 = 0, . . . , 𝑘 − 1), then 𝑖(𝑓) ≤ 𝑝 + 1 and

𝜎
𝑝+1

(𝑓) ≤ max{𝜎
𝑝
(𝐴
𝑗
), 𝑗 = 0, . . . , 𝑘 − 1} hold for all solutions

of (12).

Theorem B (see [8]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧) be entire func-

tions and let 𝑖(𝐴
0
) = 𝑝. If 𝑖(𝐴

𝑗
) < 𝑝 or 𝜎

𝑝
(𝐴
𝑗
) < 𝜎
𝑝
(𝐴
0
) for

all 𝑗 = 1, . . . , 𝑘 − 1, then 𝑖(𝑓) = 𝑝 + 1 and 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
0
)

hold for all nontrivial solutions of (12).

Theorem C (see [4, 12]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧) be entire

functions and let 𝑖(𝐴
0
) = 𝑝. Assume that max{𝜎

𝑝
(𝐴
𝑗
) : 𝑗 =

1, . . . , 𝑘 − 1} ≤ 𝜎
𝑝
(𝐴
0
) (> 0) and max{𝜏

𝑝
(𝐴
𝑗
) : 𝜎
𝑝
(𝐴
𝑗
) =

𝜎
𝑝
(𝐴
0
)} < 𝜏

𝑝
(𝐴
0
). Then, every solution 𝑓(𝑧) ̸≡ 0 of (12)

satisfies 𝑖(𝑓) = 𝑝 + 1 and 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
0
).

Theorem D (see [10]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧) be entire func-

tions of finite iterated order satisfying 𝑖(𝐴
0
) = 𝑝, 𝜎

𝑝
(𝐴
0
) =

𝜎, and lim
𝑟→∞

(∑
𝑘−1

𝑗=1
𝑚(𝑟, 𝐴

𝑗
)/𝑚(𝑟, 𝐴

0
)) < 1. Then, every

nontrivial solution 𝑓(𝑧) of (12) satisfies 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
0
) =

𝜎.

Theorem E (see [10]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧) be entire func-

tions of finite iterated order satisfying max{𝜎
𝑝
(𝐴
𝑗
), 𝑗 ̸= 0} <

𝜇
𝑝
(𝐴
0
) = 𝜎

𝑝
(𝐴
0
) and lim

𝑟→∞
(∑
𝑘−1

𝑗=1
𝑚(𝑟, 𝐴

𝑗
)/𝑚(𝑟, 𝐴

0
)) <

1 (𝑟 ∉ 𝐸), where 𝐸 is a set of 𝑟 of finite linear measure,
then every nontrivial solution 𝑓(𝑧) of (12) satisfies 𝜎

𝑝+1
(𝑓) =

𝜇
𝑝
(𝐴
0
) = 𝜎
𝑝
(𝐴
0
).

Theorem F (see [5]). Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1) be entire

functions of finite iterated order such that there exists one
transcendental 𝐴

𝑑
(0 ≤ 𝑑 ≤ 𝑘 − 1) satisfying 𝜎

𝑝
(𝐴
𝑗
) ≤

𝜎
𝑝
(𝐴
𝑑
) < ∞ for all 𝑗 ̸= 𝑠, then (12) has at least one solution

𝑓(𝑧) that satisfies 𝑖(𝑓) = 𝑝 + 1 and 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
).

Remark 7. Theorems B–E are investigating the growth of
solutions of (12) when the coefficients are of finite iterated
order and 𝐴

0
(𝑧) grows faster than other coefficients in (12).

What can we have if there exists one middle coefficient
𝐴
𝑑
(𝑧) (1 ≤ 𝑑 ≤ 𝑘−1) such that𝐴

𝑑
(𝑧) grows faster than other

coefficients in (12) or (13)? Many authors have investigated
this questionwhen𝐴

𝑑
(𝑧) is of finite order and obtainedmany

results (e.g., see [13–15]). Here, our question is that under
what conditions can we obtain similar results withTheorems
B-C if 𝐴

𝑑
(𝑧) (1 ≤ 𝑑 ≤ 𝑘 − 1) is of finite iterated order and

grows faster than other coefficients in (12) or (13).
In 2009, Tu and Liu make use of the proposition of

lacunary power series to investigate the above question in the
case 𝑝 = 1 and obtain the following result.

Theorem G (see [15]). Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧)

be entire functions satisfying max{𝜎(𝐴
𝑗
), 𝑗 ̸= 𝑑, 𝜎(𝐹)} <

𝜎(𝐴
𝑑
) < ∞ (1 ≤ 𝑑 ≤ 𝑘−1). Suppose that𝐴

𝑑
(𝑧) = ∑

∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛

is an entire function of regular growth such that the sequence
of exponents {𝜆

𝑛
} satisfies Fabry gap condition

𝜆
𝑛

𝑛

→ ∞ (𝑛 → ∞) , (14)
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then one has
(i) if 𝐹(𝑧) ≡ 0, then every transcendental solution 𝑓(𝑧) of

(13) satisfies 𝜎
2
(𝑓) = 𝜎(𝐴

𝑑
);

(ii) if 𝐹(𝑧) ̸≡ 0, then every transcendental solution 𝑓(𝑧) of
(13) satisfies 𝜆

2
(𝑓) = 𝜆

2
(𝑓) = 𝜎

2
(𝑓) = 𝜎(𝐴

𝑑
).

In this paper, we continue our research in this area and
obtain the following results.

Theorem 8. Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧) be

entire functions of finite iterated order and satisfying 0 <

max{𝜎
𝑝
(𝐴
𝑗
), 𝑗 ̸= 𝑑} ≤ 𝜎

𝑝
(𝐴
𝑑
) < ∞ and max{𝜏

𝑝
(𝐴
𝑗
) :

𝜎
𝑝
(𝐴
𝑗
) = 𝜎

𝑝
(𝐴
𝑑
)} < 𝜏

𝑝
(𝐴
𝑑
) (0 ≤ 𝑑 ≤ 𝑘 − 1). Suppose

that 𝐴
𝑑
(𝑧) = ∑

∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛 is an entire function such that the

sequence of exponents {𝜆
𝑛
} satisfies

𝜆
𝑛

𝑛

> (log 𝑛)2+𝜂 (𝜂 > 0, 𝑛 ∈ N) , (15)

for some 𝜂 > 0, then one has
(i) if 𝜎

𝑝
(𝐹) < 𝜎

𝑝
(𝐴
𝑑
) or 𝜎

𝑝
(𝐹) = 𝜎

𝑝
(𝐴
𝑑
) and 𝜏

𝑝
(𝐹) <

𝜏
𝑝
(𝐴
𝑑
), then every transcendental solution𝑓(𝑧) of (13)

satisfies 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
); furthermore if 𝐹(𝑧) ̸≡ 0,

then every transcendental solution𝑓(𝑧) of (13) satisfies
𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
);

(ii) if 𝜎
𝑝
(𝐹) > 𝜎

𝑝
(𝐴
𝑑
) and 𝜎

𝑝+1
(𝐹) ≤ 𝜎

𝑝
(𝐴
𝑑
), then all

solutions of (13) satisfy 𝜎
𝑝
(𝑓) ≥ 𝜎

𝑝
(𝐹) and 𝜎

𝑝+1
(𝑓) ≤

𝜎
𝑝
(𝐴
𝑑
);

(iii) if 𝜎
𝑝+1

(𝐹) > 𝜎
𝑝
(𝐴
𝑑
), then all solutions of (13) satisfy

𝜎
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝐹), and 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) =

𝜎
𝑝+1

(𝐹) holds for all solutions of (13) with at most one
exceptional solution 𝑓

0
satisfying 𝜆

𝑝+1
(𝑓
0
) < 𝜎
𝑝+1

(𝐹).

Remark 9. If 𝑓(𝑧) = ∑
∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛 is an entire function of finite

order and the sequence of exponents {𝜆
𝑛
} satisfies (14), then

(18) in Lemma 15 holds for 𝑓(𝑧), but for entire functions of
infinite order, (14) certainly does not imply (18) in Lemma 15
(see [8]); therefore, we needmore stringent gap condition (15)
which is sufficient and unnecessary for Theorem 8.

Theorem 10. Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧) be

entire functions of finite iterated order satisfyingmax{𝜎
𝑝
(𝐴
𝑗
),

𝑗 ̸= 𝑑, 𝜎
𝑝
(𝐹)} < 𝜇

𝑝
(𝐴
𝑑
) = 𝜎

𝑝
(𝐴
𝑑
) = 𝜎 < ∞ (0 ≤ 𝑑 ≤

𝑘 − 1). Suppose that 𝐴
𝑑
(𝑧) = ∑

∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛 is an entire function

such that the sequence of exponents {𝜆
𝑛
} satisfies gap condition

(15), then every transcendental solution 𝑓(𝑧) of (13) satisfies
𝜇
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝑓) = 𝜎. Furthermore if 𝐹(𝑧) ̸≡ 0, then
every transcendental solution 𝑓(𝑧) of (13) satisfies 𝜆

𝑝+1
(𝑓) =

𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎.

Theorem 11. Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧) be entire

functions satisfying max{𝜎
𝑝
(𝐴
𝑗
), 𝑗 ̸= 𝑑} < 𝜎

𝑝
(𝐴
𝑑
) < ∞ (0 ≤

𝑑 ≤ 𝑘 − 1). Suppose that 𝑇(𝑟, 𝐴
𝑑
) ∼ log𝑀(𝑟, 𝐴

𝑑
) as 𝑟 → ∞

outside a set of 𝑟 of finite logarithmic measure, then one has
(i) if 𝜎

𝑝
(𝐹) < 𝜎

𝑝
(𝐴
𝑑
), then every transcendental solution

𝑓(𝑧) of (13) satisfies 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
); furthermore,

if 𝐹(𝑧) ̸≡ 0, then every transcendental solution 𝑓(𝑧) of
(13) satisfies 𝜆

𝑝+1
(𝑓) = 𝜆

𝑝+1
(𝑓) = 𝜎

𝑝+1
(𝑓) = 𝜎

𝑝
(𝐴
𝑑
);

(ii) if 𝜎
𝑝
(𝐹) > 𝜎

𝑝
(𝐴
𝑑
) and 𝜎

𝑝+1
(𝐹) ≤ 𝜎

𝑝
(𝐴
𝑑
), then all

solutions of (13) satisfy 𝜎
𝑝
(𝑓) ≥ 𝜎

𝑝
(𝐹) and 𝜎

𝑝+1
(𝑓) ≤

𝜎
𝑝
(𝐴
𝑑
);

(iii) if 𝜎
𝑝+1

(𝐹) > 𝜎
𝑝
(𝐴
𝑑
), then all solutions of (13) satisfy

𝜎
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝐹), and 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) =

𝜎
𝑝+1

(𝐹) holds for all solutions of (13) with at most one
exceptional solution 𝑓

0
satisfying 𝜆

𝑝+1
(𝑓
0
) < 𝜎
𝑝+1

(𝐹);
(iv) if 𝜇

𝑝
(𝐴
𝑑
) = 𝜎
𝑝
(𝐴
𝑑
) = 𝜎 and𝐹(𝑧) ̸≡ 0 and 𝜎

𝑝
(𝐹) < 𝜎,

then every transcendental solution𝑓(𝑧) of (13) satisfies
𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎.

Remark 12. Theorem 10 implies that all the solutions of (13)
are of regular growth if 𝐴

𝑑
is of regular growth under some

conditions;Theorem 11 is an improvement of theTheorem in
[14, page 2694] and Theorems 1-2 in [16, page 624]. In fact,
by Lemma 15, the gap condition (15) in Theorem 8 implies
that 𝑇(𝑟, 𝐴

𝑑
) ∼ log𝑀(𝑟, 𝐴

𝑑
) as 𝑟 → ∞ outside a set of

𝑟 of finite logarithmic measure; therefore, Theorem 11 is a
generalization of Theorem 8 in a sense, but the condition on
𝐴
𝑑
in Theorem 8 is more stringent than that in Theorem 11.

In addition,Theorems 8–11 may have polynomial solutions of
degree < 𝑑 if 𝑑 > 1.

3. Preliminary Lemmas

Lemma 13 (see [17]). Let 𝑓(𝑧) be a transcendental meromor-
phic function, and let 𝛼 > 1 be a given constant, for any given
constant and for any given 𝜀 > 0,

(i) there exist a constant 𝐵 > 0 and a set 𝐸
1
⊂ (0, +∞)

having finite logarithmic measure such that for all 𝑧
satisfying |𝑧| = 𝑟 ∉ 𝐸

1
, one has











𝑓
(𝑗)
(𝑧)

𝑓
(𝑖)
(𝑧)











≤ 𝐵[

𝑇 (𝛼𝑟, 𝑓)

𝑟

(log 𝑟)𝛼 log𝑇 (𝛼𝑟, 𝑓)]
𝑗−𝑖

(0 ≤ 𝑖 < 𝑗) .

(16)

(ii) There exists a set𝐻
1
⊂ [0, 2𝜋) that has linear measure

zero a constant 𝐵 > 0 that depends only on 𝛼, for any
𝜃 ∈ [0, 2𝜋) \𝐻

1
, there exists a constant 𝑅

0
= 𝑅
0
(𝜃) > 1

such that for all 𝑧 satisfying arg 𝑧 = 𝜃 and |𝑧| = 𝑟 > 𝑅
0
,

one has










𝑓
(𝑗)
(𝑧)

𝑓
(𝑖)
(𝑧)











≤ 𝐵[𝑇 (𝛼𝑟, 𝑓) log𝑇 (𝛼𝑟, 𝑓)]𝑗−𝑖 (0 ≤ 𝑖 < 𝑗) .

(17)

Remark 14. Throughout this paper, we use 𝐸
1
⊂ (0,∞) to

denote a set having finite logarithmic measure or finite linear
measure, not always the same at each occurrence.
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Lemma 15 (see [18]). Let 𝑓(𝑧) = ∑
∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛 be an entire

function and the sequence of exponents {𝜆
𝑛
} satisfies the gap

condition (15). Then for any given 𝜀 > 0,

log 𝐿 (𝑟, 𝑓) > (1 − 𝜀) log𝑀(𝑟, 𝑓) (18)

holds outside a set of finite logarithmic measure, where
𝑀(𝑟, 𝑓) = sup

|𝑧|=𝑟

|𝑓(𝑧)|, 𝐿(𝑟, 𝑓) = inf
|𝑧|=𝑟

|𝑓(𝑧)|.

Lemma 16 (see [4]). Let 𝑓(𝑧) be an entire function of finite
iterated order satisfying 0 < 𝜎

𝑝
(𝑓) = 𝜎 < ∞ and 𝜏

𝑝
(𝑓) = 𝜏 >

0, then for any given 𝛽 < 𝜏, there exists a set 𝐸
2
⊂ (0, +∞)

having infinite logarithmic measure such that for all 𝑟 ∈ 𝐸
2
,

one has

𝑀(𝑟, 𝑓) > exp
𝑝
{𝛽𝑟
𝜎
} . (19)

Lemma 17. Let 𝑓(𝑧) = ∑
∞

𝑛=0
𝑐
𝜆
𝑛

𝑧
𝜆
𝑛 be an entire function of

finite iterated order satisfying 0 < 𝜎
𝑝
(𝑓) = 𝜎 < ∞ and 𝜏

𝑝
(𝑓) =

𝜏 > 0 such that the sequence of exponents {𝜆
𝑛
} satisfies the gap

condition (15). Then, for any given 𝛽 > 𝜏, there exists a set
𝐸
3
⊂ (0, +∞) having infinite logarithmic measure such that

for all |𝑧| = 𝑟 ∈ 𝐸
3
, one has




𝑓 (𝑧)





> exp

𝑝
{𝛽𝑟
𝜎
} . (20)

Proof. By Lemma 15, for any given 𝜀 > 0, we have





𝑓 (𝑧)





≥ 𝐿 (𝑟, 𝑓) > 𝑀(𝑟, 𝑓)

(1−𝜀)

, (𝑟 ∉ 𝐸
1
) . (21)

For any given 𝛽 < 𝜏, we can choose 𝛽
1
and sufficiently small

𝜀 > 0 such that 𝛽 < 𝛽
1
< 𝜏 and 𝛽 < (1 − 𝜀)𝛽

1
< 𝜏; by

Lemma 16, there exists a set 𝐸
2
⊂ (0, +∞) having infinite

logarithmic measure such that for all |𝑧| = 𝑟 ∈ 𝐸
2
\ 𝐸
1
, we

have




𝑓 (𝑧)





> 𝑀(𝑟, 𝑓)

(1−𝜀)

> (exp
𝑝
{𝛽
1
𝑟
𝜎
})

(1−𝜀)

> exp
𝑝
{𝛽𝑟
𝜎
} ,

(22)

where𝐸
3
= 𝐸
2
\𝐸
1
is a set having infinite logarithmicmeasure.

Lemma 18 (see [13]). Let 𝑓(𝑧) be a transcendental entire
function. Then, there is a set 𝐸

1
⊂ (0, +∞) having finite

logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1

and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓), one has










𝑓 (𝑧)

𝑓
(𝑗)
(𝑧)











≤ 2𝑟
𝑗
, (𝑗 ∈ N) . (23)

Lemma 19 (see [7, 9, 10]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧), 𝐹(𝑧) ̸≡

0 be meromorphic functions, and let 𝑓(𝑧) be a meromorphic
solution of (13) satisfying one of the following conditions:

(i) max{𝑖(𝐹) = 𝑞, 𝑖(𝐴
𝑗
)(𝑗 = 0, . . . , 𝑘 − 1)} < 𝑖(𝑓) = 𝑝 +

1 (𝑝, 𝑞 ∈ N);
(ii) 𝑏 = max{𝜎

𝑝+1
(𝐹), 𝜎
𝑝+1

(𝐴
𝑗
)(𝑗 = 0, . . . , 𝑘 − 1)} <

𝜎
𝑝+1

(𝑓),

then 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝑓).

Lemma 20 (see [8]). Let 𝐴
0
(𝑧), . . . , 𝐴

𝑘−1
(𝑧), 𝐹(𝑧) be entire

functions of finite iterated order, if 𝑖(𝐴
𝑗
) ≤ 𝑝, 𝑖(𝐹) ≤

𝑝 (𝑗 = 0, . . . , 𝑘 − 1). Then 𝜎
𝑝+1

(𝑓) ≤ max{𝜎
𝑝
(𝐴
𝑗
), 𝜎
𝑝
(𝐹), 𝑗 =

0, . . . , 𝑘 − 1} holds for all solutions of (13).

Lemma 21 (see [2]). Let 𝑔 : (0, +∞) → 𝑅, ℎ : (0, +∞) → 𝑅

be monotone increasing functions such that
(i) 𝑔(𝑟) ≤ ℎ(𝑟) outside of an exceptional set of finite linear

measure. Then, for any 𝛼 > 1, there exists 𝑟
0
> 0 such

that 𝑔(𝑟) ≤ ℎ(𝛼𝑟) for all 𝑟 > 𝑟
0
.

(ii) 𝑔(𝑟) ≤ ℎ(𝑟) outside of an exceptional set of finite
logarithmic measure. Then, for any 𝛼 > 1, there exists
𝑟
0
> 0 such that 𝑔(𝑟) ≤ ℎ(𝑟

𝛼
) for all 𝑟 > 𝑟

0
.

Lemma 22 (see [19]). Let 𝑓(𝑧) be an entire function of finite
iterated order satisfying 𝜇

𝑝
(𝑓) = 𝜇 < ∞. Then, for any

given 𝜀 > 0, there exists a set 𝐸
4
⊂ (0, +∞) having infinite

logarithmic measure such that for all 𝑟 ∈ 𝐸
4
, one has

𝑀(𝑟, 𝑓) < exp
𝑝
{𝑟
𝜇+𝜀

} . (24)

Lemma 23 (see [2, 20]). Let 𝑓(𝑧) be a transcendental entire
function, let 0 < 𝜂

1
< 1/4 and 𝑧

𝑟
a point such that |𝑧

𝑟
| = 𝑟 and

that |𝑓(𝑧
𝑟
)| > 𝑀(𝑟, 𝑓)]

𝑓
(𝑟)
−(1/4)+𝜂

1 holds. Then, there exists a
set 𝐸
1
⊂ (0, +∞) of finite logarithmic measure such that

𝑓
(𝑗)
(𝑧
𝑟
)

𝑓 (𝑧
𝑟
)

= (

]
𝑓
(𝑟)

𝑧
𝑟

)

𝑗

(1 + 𝑜 (1)) (25)

holds for all 𝑗 ∈ N and all 𝑟 ∉ 𝐸
1
, where ]

𝑓
(𝑟) is the central

index of 𝑓(𝑧).

Lemma 24 (see [7, 9]). Let 𝑓(𝑧) be an entire function of finite
iterated order satisfying 𝜎

𝑝
(𝑓) = 𝜎, 𝜇

𝑞
(𝑓) = 𝜇, 𝑝, 𝑞 ∈ N.

Then, one has

lim
𝑟→∞

log
𝑝
]
𝑓
(𝑟)

log 𝑟
= 𝜎,

lim
𝑟→∞

log
𝑞
]
𝑓
(𝑟)

log 𝑟
= 𝜇.

(26)

Lemma 25. Let 𝐴
𝑗
(𝑧) (𝑗 = 0, . . . , 𝑘 − 1), 𝐹(𝑧) be entire

functions of finite iterated order satisfying max{𝜎
𝑝
(𝐴
𝑗
),

𝑗 ̸= 𝑑, 𝜎
𝑝
(𝐹)} ≤ 𝜇

𝑝
(𝐴
𝑑
) < ∞. Then, every solution 𝑓(𝑧) of

(13) satisfies 𝜇
𝑝+1

(𝑓) ≤ 𝜇
𝑝
(𝐴
𝑑
).

Proof. By (13), we have










𝑓
(𝑘)

𝑓











≤











𝐴
𝑘−1

𝑓
(𝑘−1)

𝑓











+ ⋅ ⋅ ⋅ +











𝐴
1

𝑓


𝑓











+




𝐴
0





+










𝐹 (𝑧)

𝑓 (𝑧)










.

(27)

By Lemma 23, there exists a set 𝐸
1
having finite logarithmic

measure such that for all |𝑧| = 𝑟 ∉ 𝐸
1
and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓),

we have

𝑓
(𝑗)
(𝑧)

𝑓 (𝑧)

= (

]
𝑓
(𝑟)

𝑧

)

𝑗

(1 + 𝑜 (1)) , (𝑗 ∈ N) . (28)
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By Lemma 22, for any given 𝜀 > 0, there exists a set 𝐸
4
having

infinite logarithmicmeasure such that for all |𝑧| = 𝑟 ∈ 𝐸
4
and

|𝑓(𝑧)| = 𝑀(𝑟, 𝑓) > 1, we have




𝐴
𝑑
(𝑧)





≤ exp

𝑝
{𝑟
𝜇
𝑝
(𝐴
𝑑
)+𝜀
} ,






𝐴
𝑗
(𝑧)






≤ exp

𝑝
{𝑟
𝜇
𝑝
(𝐴
𝑑
)+𝜀
} ,










𝐹 (𝑧)

𝑓 (𝑧)










≤ |𝐹 (𝑧)| < exp
𝑝
{𝑟
𝜇
𝑝
(𝐴
𝑑
)+𝜀
} .

(29)

Hence from (27)–(29), for any given 𝜀 > 0 and for all 𝑧
satisfying |𝑧| = 𝑟 ∈ 𝐸

4
\ 𝐸
1
and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓), we have

(

]
𝑓
(𝑟)

𝑟

)

𝑘

(1 + 𝑜 (1))

≤ (𝑘 + 1) (

]
𝑓
(𝑟)

𝑟

)

𝑘−1

(1 + 𝑜 (1)) exp
𝑝
{𝑟
𝜇
𝑝
(𝐴
𝑑
)+𝜀
} .

(30)

By (30) and Lemma 24, we have 𝜇
𝑝+1

(𝑓) ≤ 𝜇
𝑝
(𝐴
𝑑
).

Therefore, we complete the proof of Lemma 25.

Lemma 26. Let 𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑘−1
, 𝐹 ̸≡ 0 be meromorphic

functions of finite iterated order; if𝑓 is a meromorphic solution
of the (13) and satisfies 𝑏 = max{𝜎

𝑝+1
(𝐹), 𝜎
𝑝+1

(𝐴
𝑗
), 𝑗 =

0, . . . , 𝑘 − 1} < 𝜇
𝑝+1

(𝑓), then 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜇
𝑝+1

(𝑓).

Proof. By (13), we have

1

𝑓

=

1

𝐹

(

𝑓
(𝑘)

𝑓

+ 𝐴
𝑘−1

𝑓
(𝑘−1)

𝑓

+ ⋅ ⋅ ⋅ + 𝐴
0
) . (31)

By (31), we get

𝑁(𝑟,

1

𝑓

) ≤ 𝑘𝑁(𝑟,

1

𝑓

) + 𝑁(𝑟,

1

𝐹

) +

𝑘−1

∑

𝑗=0

𝑁(𝑟, 𝐴
𝑗
) . (32)

By the lemma of logarithmic derivative and (31), we have

𝑚(𝑟,

1

𝑓

) ≤ 𝑚(𝑟,

1

𝐹

) +

𝑘−1

∑

𝑗=0

𝑚(𝑟, 𝐴
𝑗
)

+ 𝑂 {log (𝑟𝑇 (𝑟, 𝑓))} (𝑟 ∉ 𝐸
1
) .

(33)

By (32) and (33), we have

𝑇 (𝑟, 𝑓) = 𝑇(𝑟,

1

𝑓

) + 𝑂 (1)

≤ 𝑘𝑁(𝑟,

1

𝑓

) + 𝑇(𝑟,

1

𝐹

)

+

𝑘−1

∑

𝑗=0

𝑇 (𝑟, 𝐴
𝑗
) + 𝑂 {log (𝑟𝑇 (𝑟, 𝑓))}

= 𝑘𝑁(𝑟,

1

𝑓

) + 𝑇 (𝑟, 𝐹) +

𝑘−1

∑

𝑗=0

𝑇 (𝑟, 𝐴
𝑗
)

+ 𝑂 {log (𝑟𝑇 (𝑟, 𝑓))} , (𝑟 ∉ 𝐸
1
) .

(34)

Since max{𝜎
𝑝+1

(𝐹), 𝜎
𝑝+1

(𝐴
𝑗
), 𝑗 = 0, 1, . . . , 𝑘 − 1} < 𝜇

𝑝+1
(𝑓),

for sufficiently large 𝑟, we have

𝑇 (𝑟, 𝐹) = 𝑜 {𝑇 (𝑟, 𝑓)} ,

𝑇 (𝑟, 𝐴
𝑗
) = 𝑜 {𝑇 (𝑟, 𝑓)} , 𝑗 = 0, . . . , 𝑘 − 1,

log (𝑟𝑇 (𝑟, 𝑓)) = 𝑜 {𝑇 (𝑟, 𝑓)} .

(35)

By (34)-(35), we have

(1 − 𝑜 (1)) 𝑇 (𝑟, 𝑓) ≤ 𝑘𝑁(𝑟,

1

𝑓

) , (𝑟 ∉ 𝐸
1
) . (36)

By Lemma 21 (i) and by (36), we have 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) =

𝜇
𝑝+1

(𝑓).

Lemma 27. Let 𝑓(𝑧) be a transcendental entire function, for
each sufficiently large |𝑧| = 𝑟, and let 𝑧

𝑟
= 𝑟𝑒
𝑖𝜃
𝑟 be a point

satisfying |𝑓(𝑧
𝑟
)| = 𝑀(𝑟, 𝑓).Then, there exists a constant 𝛿

𝑟
(>

0) such that for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈

[𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
], one has

𝑓
(𝑗)
(𝑧)

𝑓 (𝑧)

= (

]
𝑓
(𝑟)

𝑧

)

𝑗

(1 + 𝑜 (1)) (𝑗 ∈ N) . (37)

Proof. If 𝑧
𝑟
= 𝑟𝑒
𝑖𝜃
𝑟 is a point satisfying |𝑓(𝑧

𝑟
)| = 𝑀(𝑟, 𝑓),

since |𝑓(𝑧)| is continuous in |𝑧| = 𝑟, then there exists a
constant 𝛿

𝑟
(> 0) such that for all 𝑧 satisfying |𝑧| = 𝑟 (large

enough) and arg 𝑧 = 𝜃 ∈ [𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
], we have










𝑓 (𝑧)





−




𝑓 (𝑧
𝑟
)









< 𝜀;

that is, 

𝑓 (𝑧)





>

1

2





𝑓 (𝑧
𝑟
)





=

1

2

𝑀 (𝑟, 𝑓)

> 𝑀(𝑟, 𝑓) ]
𝑓
(𝑟)
−(1/4)+𝜂

1

.

(38)

By Lemma 23, we have

𝑓
(𝑗)
(𝑧)

𝑓 (𝑧)

= (

]
𝑓
(𝑟)

𝑧

)

𝑗

(1 + 𝑜 (1)) , (𝑗 ∈ N) (39)

holds for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈ [𝜃

𝑟
−

𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
].

Lemma 28. Let 𝑓(𝑧) be a transcendental entire function, for
each sufficiently large |𝑧| = 𝑟, and let 𝑧

𝑟
= 𝑟𝑒
𝑖𝜃
𝑟 be a point

satisfying |𝑓(𝑧
𝑟
)| = 𝑀(𝑟, 𝑓).Then, there exists a constant 𝛿

𝑟
(>

0) such that for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈

[𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
], one has











𝑓 (𝑧)

𝑓
(𝑗)
(𝑧)











≤ 2𝑟
𝑗

(𝑗 ∈ N) . (40)

Proof. If 𝑧
𝑟
= 𝑟𝑒
𝑖𝜃
𝑟 is a point satisfying |𝑓(𝑧

𝑟
)| = 𝑀(𝑟, 𝑓), then

by Lemma 27 there exists a constant 𝛿
𝑟
(> 0) such that for all
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𝑧 satisfying |𝑧| = 𝑟∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈ [𝜃

𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
],

we have

𝑓
(𝑗)
(𝑧)

𝑓 (𝑧)

= (

]
𝑓
(𝑟)

𝑧

)

𝑗

(1 + 𝑜 (1)) . (41)

Since𝑓(𝑧) is transcendental, we have ]
𝑓
(𝑟) → ∞ (𝑟 → ∞).

Hence by (41), for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈

[𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
], we have











𝑓
(𝑗)
(𝑧)

𝑓 (𝑧)











≥

1

2

𝑟
−𝑗
;

that is,










𝑓 (𝑧)

𝑓
(𝑗)
(𝑧)











≤ 2𝑟
𝑗

(𝑗 ∈ N) .

(42)

Therefore, we complete the proof of Lemma 28.

Lemma 29. Let 𝑓(𝑧) be an entire function of order 0 <

𝜎
𝑝
(𝑓) = 𝜎 < ∞. Then for any given 𝜀 > 0, there exists a

set 𝐸
5
⊂ (0, +∞) with positive upper logarithmic density such

that for all |𝑧| = 𝑟 ∈ 𝐸
5
, one has

𝑀(𝑟, 𝑓) > exp
𝑝
{𝑟
𝜎−𝜀

} . (43)

Proof. Since 0 < 𝜎
𝑝
(𝑓) = 𝜎 < ∞, then for any given 𝜀 > 0,

there exists an increasing sequence {𝑟
𝑛
} tending to ∞ such

that for 𝑛 ≥ 𝑛
4
, we have

𝑀(𝑟
𝑛
, 𝑓) > exp

𝑝
{𝑟
𝜎−(𝜀/2)

𝑛
} . (44)

Since 𝜀 > 0, we can choose𝛼 to satisfy 1 < 𝛼 < (𝜎−(𝜀/2))/(𝜎−

𝜀). Then for all 𝑟 ∈ [𝑟
𝑛
, 𝑟
𝛼

𝑛
] (𝑛 ≥ 𝑛

4
), we have

𝑀(𝑟, 𝑓) ≥ 𝑀(𝑟
𝑛
, 𝑓) > exp

𝑝
{𝑟
𝜎−(𝜀/2)

𝑛
}

≥ exp
𝑝
{𝑟
(𝜎−(𝜀/2))/𝛼

} > exp
𝑝
{𝑟
𝜎−𝜀

} .

(45)

Setting 𝐸
5
=

∞

⋃

𝑛=𝑛
4

[𝑟
𝑛
, 𝑟
𝛼

𝑛
], we have

log dens𝐸
5
= lim
𝑟→∞

𝑚
𝑙
(𝐸
5
∩ [1, 𝑟])

log 𝑟

≥ lim
𝑛→∞

𝑚
𝑙
(𝐸
5
∩ [1, 𝑟

𝛼

𝑛
])

log 𝑟𝛼
𝑛

≥ lim
𝑛→∞

𝑚
𝑙
([𝑟
𝑛
, 𝑟
𝛼

𝑛
])

log 𝑟𝛼
𝑛

=

𝛼 − 1

𝛼

> 0.

(46)

Thus, Lemma 29 is proved.

Lemma 30. Let 𝑓(𝑧) be a transcendental entire function
satisfying 0 < 𝜎

𝑝
(𝑓) = 𝜎 < ∞ and 𝑇(𝑟, 𝑓) ∼ log𝑀(𝑟, 𝑓)

as 𝑟 → ∞ outside a set 𝑟 of finite logarithmic measure. Then
for any given 𝜀 > 0, there exists a set 𝐸

6
⊂ (0, +∞) with

positive upper logarithmic density and a set𝐻
2
⊂ [0, 2𝜋) with

linear measure zero such that for all 𝑧 satisfying 𝑟 ∈ 𝐸
6
and

arg 𝑧 = 𝜃 ∈ [0, 2𝜋) \ 𝐻
2
, one has






𝑓 (𝑟𝑒
𝑖𝜃
)






> exp

𝑝
{𝑟
𝜎−𝜀

} . (47)

Proof. Since 𝑚(𝑟, 𝑓) ∼ log𝑀(𝑟, 𝑓) as 𝑟 → ∞ (𝑟 ∉ 𝐸
1
),

then by the definition of 𝑚(𝑟, 𝑓), there exists a set 𝐻
2
⊂

[0, 2𝜋)having linearmeasure zero such that for all 𝑧 satisfying
arg 𝑧 = 𝜃 ∈ [0, 2𝜋) \ 𝐻

2
, we have






𝑓 (𝑟𝑒
𝑖𝜃
)






> 𝑀(𝑟, 𝑓)

1−𝜀

(𝑟 ∉ 𝐸
1
) . (48)

By Lemma 29, for any given 𝜀 > 0, there exists a set 𝐸
6
⊂

(0, +∞) with positive upper logarithmic density, we have

𝑀(𝑟, 𝑓) > exp
𝑝
{𝑟
𝜎−(𝜀/2)

} . (49)

By (48) and (49), for any given 𝜀 > 0 and for all 𝑧 satisfying
|𝑧| = 𝑟 ∈ 𝐸

6
\ 𝐸
1
and arg 𝑧 = 𝜃 ∈ [0, 2𝜋) \ 𝐻

2
, we have






𝑓 (𝑟𝑒
𝑖𝜃
)






> 𝑀(𝑟, 𝑓)

1−𝜀

> (exp
𝑝
{𝑟
𝜎−(𝜀/2)

})

1−𝜀

> exp
𝑝
{𝑟
𝜎−𝜀

} .

(50)

Therefore, we complete the proof of Lemma 30.

4. Proofs of Theorems 8–11

Proof of Theorem 8. (i) Assume that 𝑓(𝑧) is a transcendental
solution of (13). By (13), we have





𝐴
𝑑





≤











𝑓
(𝑘)

𝑓
(𝑑)











+ ⋅ ⋅ ⋅ +




𝐴
𝑑+1
















𝑓
(𝑑+1)

𝑓
(𝑑)











+











𝑓

𝑓
(𝑑)











(




𝐴
𝑑−1
















𝑓
(𝑑−1)

𝑓











+ ⋅ ⋅ ⋅ +




𝐴
0





+










𝐹

𝑓










) .

(51)

By Lemma 13 (i), there exists a set 𝐸
1
⊂ [1,∞) having finite

logarithmic measure and a constant 𝐵 > 0 such that











𝑓
(𝑗)
(𝑧)

𝑓
(𝑖)
(𝑧)











≤ 𝐵(𝑇 (2𝑟, 𝑓))
2𝑘

, (0 ≤ 𝑖 < 𝑗 ≤ 𝑘) (52)

holds for all |𝑧| = 𝑟 ∉ 𝐸
1
and for sufficiently large 𝑟. Since

max{𝜎
𝑝
(𝐴
𝑗
), 𝑗 ̸= 𝑑, 𝜎

𝑝
(𝐹)} ≤ 𝜎

𝑝
(𝐴
𝑑
) and max{𝜏

𝑝
(𝐴
𝑗
), 𝜏
𝑝
(𝐹) :

𝜎
𝑝
(𝐴
𝑗
) = 𝜎

𝑝
(𝐴
𝑑
) = 𝜎

𝑝
(𝐹)} < 𝜏

𝑝
(𝐴
𝑑
), we choose 𝛼

1
, 𝛽
1
to

satisfy max{𝜏
𝑝
(𝐴
𝑗
), 𝑗 ̸= 𝑑, 𝜏

𝑝
(𝐹)} < 𝛼

1
< 𝛽
1
< 𝜏
𝑝
(𝐴
𝑑
); by

Lemma 17, there exists a set 𝐸
3
⊂ (0, +∞) having infinite

logarithmic measure such that for all 𝑧 satisfying |𝑧| = 𝑟 ∈ 𝐸
3

and for sufficiently large 𝑟, we have





𝐴
𝑑
(𝑧)





> exp

𝑝
{𝛽
1
𝑟
𝜎
𝑝
(𝐴
𝑑
)
} ,






𝐴
𝑗
(𝑧)






< exp

𝑝
{𝛼
1
𝑟
𝜎
𝑝
(𝐴
𝑑
)
} , 𝑗 ̸= 𝑑.

(53)

By Lemma 18, there exists a set 𝐸
1
⊂ (0, +∞) having finite

logarithmic measure such that for all 𝑧 satisfying |𝑓(𝑧)| =

𝑀(𝑟, 𝑓) > 1 and |𝑧| = 𝑟 ∉ 𝐸
1
, we have











𝑓 (𝑧)

𝑓
(𝑑)

(𝑧)











≤ 2𝑟
𝑑
,










𝐹 (𝑧)

𝑓 (𝑧)










≤ |𝐹 (𝑧)| < exp
𝑝
{𝛼
1
𝑟
𝜎
𝑝
(𝐴
𝑑
)
} .

(54)
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Hence from (51)–(54), for all 𝑧 satisfying |𝑧| = 𝑟 ∈ 𝐸
3
\𝐸
1
and

|𝑓(𝑧)| = 𝑀(𝑟, 𝑓), we have

exp
𝑝
{𝛽
1
𝑟
𝜎
𝑝
(𝐴
𝑑
)
}

≤ 2𝐵 (𝑘 + 1) 𝑟
𝑑 exp {𝛼

1
𝑟
𝜎
𝑝
(𝐴
𝑑
)
} [𝑇 (2𝑟, 𝑓)]

2𝑘

.

(55)

By (55), we have

𝜎
𝑝+1

(𝑓) = lim
𝑟→∞

log
𝑝+1

𝑇 (𝑟, 𝑓)

log 𝑟
≥ 𝜎
𝑝
(𝐴
𝑑
) . (56)

On the other hand, by Lemma 20, we have 𝜎
𝑝+1

(𝑓) ≤ 𝜎
𝑝
(𝐴
𝑑
).

Therefore, every transcendental solution 𝑓(𝑧) of (13) satisfies
𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
). Furthermore if 𝐹(𝑧) ̸≡ 0, then by

Lemma 19, we have that every transcendental solution 𝑓(𝑧)

of (13) satisfies 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
).

(ii) We assume that 𝑓 is a solution of (13). By the
elementary theory of differential equations, all the solutions
of (13) are entire functions and have the form

𝑓 = 𝑓
∗
+ 𝐶
1
𝑓
1
+ 𝐶
2
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐶

𝑘
𝑓
𝑘
, (57)

where 𝐶
1
, . . . , 𝐶

𝑘
are complex constants, {𝑓

1
, . . . , 𝑓

𝑘
} is a

solution base of (12), and 𝑓∗ is a solution of (13) and has the
form

𝑓
∗
= 𝐷
1
𝑓
1
+ 𝐷
2
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐷

𝑘
𝑓
𝑘
, (58)

where𝐷
1
, . . . , 𝐷

𝑘
are certain entire functions satisfying

𝐷


𝑗
= 𝐹 ⋅ 𝐺

𝑗
(𝑓
1
, . . . , 𝑓

𝑘
) ⋅ 𝑊(𝑓

1
, . . . , 𝑓

𝑘
)
−1

(𝑗 = 1, . . . , 𝑘) ,

(59)

where 𝐺
𝑗
(𝑓
1
, . . . , 𝑓

𝑘
) are differential polynomials in

𝑓
1
, . . . , 𝑓

𝑘
and their derivative with constant coefficients, and

𝑊(𝑓
1
, . . . , 𝑓

𝑘
) is the Wronskian of 𝑓

1
, . . . , 𝑓

𝑘
. By Theorem

A, we have 𝜎
𝑝+1

(𝑓
𝑗
) ≤ 𝜎

𝑝
(𝐴
𝑑
) (𝑗 = 1, 2, . . . , 𝑘); then by

(57)–(59), we get

𝜎
𝑝+1

(𝑓) ≤ max {𝜎
𝑝+1

(𝑓
𝑗
) , 𝜎
𝑝+1

(𝐹) , 𝑗 = 1, . . . , 𝑘}

≤ 𝜎
𝑝
(𝐴
𝑑
) .

(60)

Since 𝜎
𝑝
(𝐹) > 𝜎

𝑝
(𝐴
𝑑
), it is easy to see that 𝜎

𝑝
(𝑓) ≥ 𝜎

𝑝
(𝐹) by

(13).
(iii) Suppose that𝑓 is a solution of (13), it is easy to see that

𝜎
𝑝+1

(𝑓) ≥ 𝜎
𝑝+1

(𝐹) by (13).On the other hand, since𝜎
𝑝+1

(𝐹) >

𝜎
𝑝
(𝐴
𝑑
) and by (57)–(59), we have

𝜎
𝑝+1

(𝑓) ≤ max {𝜎
𝑝+1

(𝑓
𝑗
) , 𝜎
𝑝+1

(𝐹) , 𝑗 = 1, . . . , 𝑘}

≤ 𝜎
𝑝+1

(𝐹) .

(61)

Therefore, all solutions of (13) satisfy 𝜎
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝐹).
By the same proof in Theorem 4.2 in [8, page 401], we

can obtain that all solutions of (13) satisfying 𝜆
𝑝+1

(𝑓) =

𝜆
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝐹) with at most one exceptional solution 𝑓
0

satisfying 𝜆
𝑝+1

(𝑓
0
) < 𝜎
𝑝+1

(𝐹).

Proof of Theorem 10. Suppose that 𝑓(𝑧) is a transcendental
solution of (13), by the same proof in Theorem 8, we have
𝜎
𝑝+1

(𝑓) = 𝜎
𝑝
(𝐴
𝑑
) = 𝜎. Thus, it remains to show that

𝜇
𝑝+1

(𝑓) = 𝜇
𝑝
(𝐴
𝑑
) = 𝜎. We choose 𝛼

2
, 𝛽
2
to satisfy

max {𝜎
𝑝
(𝐴
𝑗
) , 𝑗 ̸= 𝑑, 𝜎

𝑝
(𝐹)} < 𝛼

2
< 𝛽
2
< 𝜎. (62)

Since the sequence of exponents {𝜆
𝑛
} of 𝐴

𝑑
satisfies (15) and

𝜇
𝑝
(𝐴
𝑑
) = 𝜎, then by Lemma 15, there exists a set 𝐸

1
having

finite logarithmic measure such that for all sufficiently large
𝑟 ∉ 𝐸
1
, we have





𝐴
𝑑
(𝑧)





≥ exp

𝑝
{𝑟
𝛽
2

} ,






𝐴
𝑗
(𝑧)






≤ exp

𝑝
{𝑟
𝛼
2

} , 𝑗 ̸= 𝑑.

(63)

Hence from (51), (52), (54), and (63), for all 𝑧 satisfying |𝑧| =
𝑟 ∉ 𝐸
1
and |𝑓(𝑧)| = 𝑀(𝑟, 𝑓), we have

exp
𝑝
{𝑟
𝛽
2

} ≤ 2𝐵 (𝑘 + 1) 𝑟
𝑑exp
𝑝
{𝑟
𝛼
2

} [𝑇 (2𝑟, 𝑓)]
2𝑘

. (64)

Since 𝛽
2
is arbitrarily close to 𝜎, by (64) and Lemma 21 (ii),

we have

𝜇
𝑝+1

(𝑓) = lim
𝑟→∞

log
𝑝+1

𝑇 (𝑟, 𝑓)

log 𝑟
≥ 𝜎. (65)

On the other hand, by Lemma 26, we have 𝜇
𝑝+1

(𝑓) ≤

𝜇
𝑝
(𝐴
𝑑
) = 𝜎; therefore, every transcendental solution of (13)

satisfies 𝜇
𝑝+1

(𝑓) = 𝜎.

Proof of Theorem 11. (i) By Lemma 20, we know that every
solution of (13) satisfies 𝜎

𝑝+1
(𝑓) ≤ 𝜎

𝑝
(𝐴
𝑑
). In the following,

we show that every transcendental solution𝑓(𝑧) of (13) satis-
fies 𝜎
𝑝+1

(𝑓) ≥ 𝜎
𝑝
(𝐴
𝑑
). Suppose that 𝑓(𝑧) is a transcendental

solution of (13). For each sufficiently large circle |𝑧| = 𝑟,
we take a point 𝑧

𝑟
= 𝑟𝑒
𝑖𝜃
𝑟 satisfying |𝑓(𝑧

𝑟
)| = 𝑀(𝑟, 𝑓). By

Lemma 28, there exist a constant 𝛿
𝑟
> 0 and a set 𝐸

1
such

that for all 𝑧 satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈

[𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
], we have











𝑓 (𝑧)

𝑓
(𝑑)

(𝑧)











≤ 2𝑟
𝑑
. (66)

By Lemma 13 (ii), there exist a set𝐻
1
⊂ [0, 2𝜋) having linear

measure zero and a constant 𝐵 > 0 such that for sufficiently
large 𝑟 and for all 𝑧 satisfying arg 𝑧 = 𝜃 ∈ [𝜃

𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
] \

𝐻
1
, we have











𝑓
(𝑗)
(𝑧)

𝑓
(𝑖)
(𝑧)











≤ 𝐵[𝑇 (2𝑟, 𝑓)]
2𝑘

(0 ≤ 𝑖 < 𝑗 ≤ 𝑘) . (67)

Setting max{𝜎
𝑝
(𝐴
𝑗
), 𝜎
𝑝
(𝐹), 𝑗 ̸= 𝑑} = 𝑏 < 𝜎

𝑝
(𝐴
𝑑
), for all 𝑧

satisfying |𝑧| = 𝑟 ∉ 𝐸
1
and arg 𝑧 = 𝜃 ∈ [𝜃

𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
]

and for any given 𝜀 (0 < 2𝜀 < 𝜎
𝑝
(𝐴
𝑑
) − 𝑏), we have






𝐴
𝑗
(𝑧)






≤ exp {𝑟𝑏+𝜀} (𝑗 ̸= 𝑑) ,










𝐹 (𝑧)

𝑓 (𝑧)










≤ |𝐹 (𝑧)| ≤ exp {𝑟𝑏+𝜀} .
(68)
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Since 𝑇(𝑟, 𝐴
𝑑
) ∼ log𝑀(𝑟, 𝐴

𝑑
) as 𝑟 → ∞ (𝑟 ∉ 𝐸

1
), by

Lemma 30, for any given 𝜀 > 0, there exists a set 𝐸
6
⊂ (0,∞)

with log dens𝐸
6
> 0 and a set 𝐻

2
⊂ [0, 2𝜋) with linear

measure zero such that for all 𝑧 satisfying |𝑧| = 𝑟 ∈ 𝐸
6
and

arg 𝑧 = 𝜃 ∈ [𝜃
𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
] \ 𝐻
2
, we have





𝐴
𝑑
(𝑧)





> exp

𝑝
{𝑟
𝜎
𝑝
(𝐴
𝑑
)−𝜀
} . (69)

Substituting (66)–(69) into (51), for all 𝑧 satisfying |𝑧| = 𝑟 ∈

𝐸
6
\ 𝐸
1
and arg 𝑧 = 𝜃 ∈ [𝜃

𝑟
− 𝛿
𝑟
, 𝜃
𝑟
+ 𝛿
𝑟
] \ (𝐻

1
∪𝐻
2
), we have

exp
𝑝
{𝑟
𝜎
𝑝
(𝐴
𝑑
)−𝜀
}

≤ (𝑘 + 1) 𝐵[𝑇 (2𝑟, 𝑓)]
2𝑘

⋅ 2𝑟
𝑑
⋅ exp
𝑝
{𝑟
𝑏+𝜀

} .

(70)

From (70), we have 𝜎
𝑝+1

(𝑓) ≥ 𝜎
𝑝
(𝐴
𝑑
). Therefore, every

transcendental solution 𝑓(𝑧) of (13) satisfies 𝜎
𝑝+1

(𝑓) =

𝜎
𝑝
(𝐴
𝑑
). Furthermore, if 𝐹(𝑧) ̸≡ 0, then every transcendental

solution 𝑓(𝑧) of (13) satisfies 𝜆
𝑝+1

(𝑓) = 𝜆
𝑝+1

(𝑓) = 𝜎
𝑝+1

(𝑓) =

𝜎
𝑝
(𝐴
𝑑
).

(ii)–(iv) By the same proof in Theorems 8 and 10, we can
obtain the conclusions (ii)–(iv).
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[18] T. Kövari, “A gap-theorem for entire functions of infinite order,”
TheMichigan Mathematical Journal, vol. 12, pp. 133–140, 1965.

[19] H. Hu and X. M. Zheng, “Growth of solutions to linear
differential equationswith entire coefficients,”Electronic Journal
of Differential Equations, no. 226, pp. 1–15, 2012.

[20] W. K. Hayman, “The local growth of power series: a survey of
the Wiman-Valiron method,” Canadian Mathematical Bulletin,
vol. 17, no. 3, pp. 317–358, 1974.


