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An efficient computational method is given in order to solve the systems of nonlinear infinite-delay-differential equations (IDDEs)
with proportional delays. Representation of the solution and an iterative method are established in the reproducing kernel space.
Some examples are displayed to demonstrate the computation efficiency of the method.

1. Introduction

In functional-differential equations (FDEs), there is a class
of infinite-delay-differential equations (IDDEs) with propor-
tional delays such systems are often encountered in many
scientific fields such as electric mechanics, quantummechan-
ics, and optics. In view of this, developing the research for
this class of IDDEs possesses great significance on theory
and practice, for this attracts constant interest of researchers.
Ones have found that there exist very different mathematical
challenges between FDEs with proportional delays and those
with constant delays. Some researches on the numerical
solutions and the corresponding analysis for the linear FDEs
with proportional delays have been presented by several
authors. In the last few years, there has been a growing interest
in studying the existence of solutions of functional differential
equations with state dependent delay [1–7]. Initial-value
problem for neutral functional-differential equations with
proportional time delays had been studied in [8–11]; in
the literature [11] authors had discussed the existence and
uniqueness of analytic solution of linear proportional delays
equations.

Ishiwata et al. used the rational approximation method
and the collocation method to compute numerical solutions
of delay-differential equations with proportional delays in
[12, 13]. At [14–17], Hu et al. gave the numerical method
to compute numerical solutions of neutral delay differ-
ential equations. For neutral delay differential equations

with proportional delays, Chen and Wang proposed the
variational iteration method [18] and the homotopy pertur-
bation method [19]. Recently, time-delay systems become
interested in applications like population growth models,
transportation, communications, and agricultural models so
those systemswere widely studied both in a theoretical aspect
and in that of related applications [20–22].

We consider the following nonlinear infinite delay-
differential equation (IDDE) with proportional delay [23]:

𝑢


(𝑥) = 𝑔 (𝑥, 𝑢 (𝑥) , 𝑢 (𝑝𝑥)) ,

𝑢 (0) = 𝜂,

(1)

where 𝑝 ∈ (0, 1), 𝜂 is a given initial value, 𝑢(𝑥) ∈ 𝑊
2
[0, +∞),

and for 𝑥 ∈ [0, +∞), 𝑦, 𝑧 ∈ (−∞, +∞), 𝑔(𝑥, 𝑦, 𝑧) is a
continuous function; 𝑔(𝑥, 𝑦, 𝑧) ∈ 𝑊

1
[0, +∞) as 𝑦 = 𝑦(𝑥),

𝑧 = 𝑧(𝑥) ∈ 𝑊
1
[0, +∞).

Next, the following system of nonlinear infinite-delay-
differential equations (IDDEs) with proportional delays will
be studied:

𝑢


(𝑥) = 𝐹 (𝑥, 𝑢 (𝑥) , V (𝑝𝑥)) ,

V


(𝑥) = 𝐺 (𝑥, V (𝑥) , 𝑢 (𝑞𝑥)) ,

𝑢 (0) = 0, V (0) = 0,

(2)

where 𝑝, 𝑞 ∈ (0, 1), for 𝑥 ∈ [0, +∞), 𝑦, 𝑧 ∈ (−∞, +∞),
𝑓(𝑥, 𝑦, 𝑧), 𝑔(𝑥, 𝑦, 𝑧) are continuous bounded function, and
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𝑓(𝑥, 𝑦, 𝑧) ∈ 𝑊
1
[0, +∞), 𝑔(𝑥, 𝑦, 𝑧) ∈ 𝑊

1
[0, +∞) as 𝑦 = 𝑦(𝑥),

𝑧 = 𝑧(𝑥). 𝑊
2
[0, +∞) and 𝑊

1
[0,∞) are reproducing kernel

spaces. Equations (2) are obtained through homogenization
of initial condition for model in [24]. In this study, exis-
tence and a new iterative algorithm are established for the
nonlinear infinite-delay-differential equations (IDDEs) with
proportional delays in the reproducing kernel spaces.

The paper is organized as follows. In Section 2, some
definitions of the reproducing kernel spaces are introduced.
In Section 3, main results and the structure of the solution
for operator equation are discussed. Existence of the solution
to (2) and an iterative method are developed for the kind
of problems in the reproducing kernel space. We verify that
the approximate solution converges to the exact solution
uniformly. In Section 4, some experiments are given to
demonstrate the computation efficiency of the algorithm.The
conclusion is given in Section 5.

2. Preliminaries

Definition 1 (see [25] (reproducing kernel)). Let 𝑀 be a
nonempty abstract set. A function 𝐾 : 𝑀 × 𝑀 → 𝐶 is a
reproducing kernel of the Hilbert space𝐻 if and only if

(a) ∀𝑦 ∈ 𝑀, 𝐾(⋅, 𝑥) ∈ 𝐻,
(b) ∀𝑦 ∈ 𝑀, ∀𝑢 ∈ 𝐻, ⟨𝑢(⋅), 𝐾(⋅, 𝑦)⟩ = 𝑢(𝑦).

The condition (b) is called “the reproducing property”; a
Hilbert space which possesses a reproducing kernel is called
a Reproducing Kernel Hilbert Space (RKHS).

Next, two reproducing kernel spaces are given.

Definition 2. 𝑊
2
[0, +∞) = {𝑢(𝑥) | 𝑢

 is absolutely
continuous real value functions, 𝑢 ∈ 𝐿

2
[0, +∞), 𝑢(0) = 0}.

𝑊
2
[0, +∞) is a Hilbert space, for 𝑢(𝑥), V(𝑥) ∈ 𝑊

2
[0, +∞);

the inner product and norm in𝑊
2
[0, +∞) are given by

⟨𝑢 (𝑥) , V (𝑥)⟩
𝑊
2

= ∫

+∞

0

(4𝑢V + 5𝑢

V

+ 𝑢

V

) 𝑑𝑥,

‖𝑢‖
𝑊
2

= √⟨𝑢, 𝑢⟩
𝑊
2

,

(3)

respectively.

Theorem 3. The space 𝑊
2
[0, +∞) is a reproducing kernel

space that is, for any 𝑢(𝑦) ∈ 𝑊
2
[0, +∞) and each fixed 𝑥 ∈

[0, +∞), there exists 𝑅
𝑥
(𝑦) ∈ 𝑊

2
[0, +∞), 𝑦 ∈ [0, +∞), such

that 𝑢(𝑥) = ⟨𝑅
𝑥
(𝑦), 𝑢(𝑦)⟩. And the corresponding reproducing

kernel can be represented as follows [26]:

𝑅
𝑥
(𝑦) =

{
{
{

{
{
{

{

−

1

12

𝑒
−2(𝑥+𝑦)

(−1+𝑒
2𝑦
) (1+𝑒

2𝑦
−2𝑒
𝑥+𝑦

) , 𝑦 ≤ 𝑥,

−

1

12

𝑒
−2(𝑥+𝑦)

(−1+𝑒
2𝑥
) (1+𝑒

2𝑥
−2𝑒
𝑥+𝑦

) , 𝑦 > 𝑥.

(4)

Definition 4. 𝑊
1
[0, +∞) = {𝑢(𝑥) | 𝑢 is absolutely continuous

real-valued function, 𝑢 ∈ 𝐿
2
[0, +∞)}.

The inner product and norm in𝑊
1
[0, +∞) can be defined

by

⟨𝑢 (𝑥) , V (𝑥)⟩
𝑊
1

= ∫

+∞

0

(𝑢V + 𝑢

V

) 𝑑𝑥,

‖𝑢‖
𝑊
1

= √⟨𝑢, 𝑢⟩
𝑊
1

,

(5)

respectively, where 𝑢(𝑥), V(𝑥) ∈ 𝑊
1
[0, +∞). It has been

proved that 𝑊
1
[0, +∞) is a complete reproducing kernel

space and its reproducing kernel is as follows [27]:

𝑄
𝑥
(𝑦) =

{
{

{
{

{

1

2

𝑒
−𝑥−𝑦

(1 + 𝑒
2𝑥
) , 𝑥 < 𝑦,

1

2

𝑒
−𝑥−𝑦

(1 + 𝑒
2𝑦
) , 𝑥 ≥ 𝑦.

(6)

3. Statements of the Main Results

In this section, the implementation method of obtaining the
solution of (2) is proposed in the reproducing kernel space
𝑊
2
[0, +∞).
Put the differential operator L = 𝑑/𝑑𝑥; then we can

convert (2) into the following form:

L𝑢 (𝑥) = 𝐹 (𝑥, 𝑢 (𝑥) , V (𝑝𝑥)) ,

LV (𝑥) = 𝐺 (𝑥, V (𝑥) , 𝑢 (𝑞𝑥)) ,

𝑢 (0) = V (0) = 0,

(7)

where 𝑥 ∈ [0, +∞), and

𝐹 (𝑥, 𝑢 (𝑥) , V (𝑝𝑥))
def
= 𝑁 (𝑢 (𝑥) , V (𝑝𝑥)) + 𝑓 (𝑥) , (8)

𝐺 (𝑥, V (𝑥) , 𝑢 (𝑞𝑥))

def
= 𝐷 (V (𝑥) , 𝑢 (𝑞𝑥)) + 𝑔 (𝑥) . (9)

It is clear that L : 𝑊
2
[0, +∞) → 𝑊

1
[0, +∞) is a

bounded linear operator. Let 𝜑
𝑖
(𝑥) = 𝑄

𝑥
𝑖

(𝑥), where {𝑥
𝑖
}
∞

𝑖=1

is dense in the interval [0, +∞), and 𝜓
𝑖
(𝑥) = L∗𝜑

𝑖
(𝑥),

whereL∗ is the conjugate operator ofL. Define the normal
orthogonal system 𝜓

𝑖
(𝑥) in 𝑊

2
[0, +∞), which derives from

Gram-Schmidt orthogonalization process of {𝜓
𝑖
(𝑥)}
∞

𝑖=1
,

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , 𝛽

𝑖𝑖
> 0, 𝑖 = 1, 2, . . . (10)

Lemma 5. Assume that {𝑥
𝑖
}
∞

𝑖=1
are dense in [0, +∞); then

{𝜓
𝑖
(𝑥)}
∞

𝑖=1
is a complete system in 𝑊

2
[0, +∞) and {𝜓

𝑖
(𝑥)} =

(𝑑/𝑑𝑦)𝑅
𝑥
(𝑦)|
𝑦=𝑥
𝑖

.

Proof. Ones have

𝜓
𝑖
(𝑥) = ⟨𝜓

𝑖
(𝑦) , 𝑅

𝑥
(𝑦)⟩
𝑊
2

= ⟨L
∗
𝜑
𝑖
(𝑦) , 𝑅

𝑥
(𝑦)⟩
𝑊
2

= ⟨𝜑
𝑖
(𝑦) ,L𝑅

𝑥
(𝑦)⟩
𝑊
1

= L𝑅
𝑥
(𝑥
𝑖
)

=

𝑑

𝑑𝑦

𝑅
𝑥
(𝑦)








𝑦=𝑥
𝑖

.

(11)

Clearly, 𝜓
𝑖
(𝑥) ∈ 𝑊

2
[0, +∞).
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For any 𝑢(𝑥) ∈ 𝑊
2
[0, +∞), let ⟨𝑢(𝑥), 𝜓

𝑖
(𝑥)⟩ = 0, 𝑖 =

1, 2, . . ., which means that

⟨𝑢 (𝑥) , (L
∗
𝜑
𝑖
(𝑥)⟩ = ⟨L𝑢 (⋅) , 𝜑

𝑖
(⋅)⟩ = (L𝑢) (𝑥

𝑖
) = 0.

(12)

Note that {𝑥
𝑖
}
∞

𝑖=1
is dense in [0, +∞); therefore,L𝑢(𝑥) = 0. It

follows that 𝑢(𝑥) ≡ 0 from the existence ofL−1.

3.1. Construction the of Iterative Sequence �̃�
𝑛
(𝑥) and Ṽ

𝑛
(𝑥).

Next we construct the iterative sequence �̃�
𝑛
(𝑥) and Ṽ

𝑛
(𝑥),

putting

L𝑀
𝑛
(𝑥) = 𝐹 (𝑥, �̃�

𝑛−1
(𝑥) , Ṽ

𝑛−1
(𝑝𝑥)) ,

�̃�
𝑛
(𝑥) = 𝑃

𝑛
𝑀
𝑛
(𝑥) ,

L𝑁
𝑛
(𝑥) = 𝐺 (𝑥, Ṽ

𝑛−1
(𝑥) , �̃�

𝑛−1
(𝑞𝑥)) ,

Ṽ
𝑛
(𝑥) = 𝑃

𝑛
𝑁
𝑛
(𝑥) ,

(13)

where 𝑀
𝑛
(𝑥),𝑁

𝑛
(𝑥) ∈ 𝑊

2
[0, +∞) and 𝑃

𝑛
: 𝑊
2

→

Span{𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
} is a orthogonal projection operator.

Then by (13) it followed that:

𝑀
𝑛
(𝑥) = ∫

𝑥

0

𝐹 (𝜇, �̃�
𝑛−1

(𝜇) , Ṽ
𝑛−1

(𝑝𝜇)) 𝑑𝜇,

𝑀


𝑛
(𝑥) = 𝐹 (𝑥, �̃�

𝑛−1
(𝑥) , Ṽ

𝑛−1
(𝑝𝑥)) ,

𝑀


𝑛
(𝑥) =

𝑑

𝑑𝑥

𝐹 (𝑥, �̃�
𝑛−1

(𝑥) , Ṽ
𝑛−1

(𝑝𝑥)) ,

(14)

𝑁
𝑛
(𝑥) = ∫

𝑥

0

𝐺 (𝜇, Ṽ
𝑛−1

(𝜇) , �̃�
𝑛−1

(𝑞𝜇)) 𝑑𝜇,

𝑁


𝑛
(𝑥) = 𝐺 (𝑥, Ṽ

𝑛−1
(𝑥) , �̃�

𝑛−1
(𝑞𝑥)) ,

𝑁


𝑛
(𝑥) =

𝑑

𝑑𝑥

𝐺 (𝑥, Ṽ
𝑛−1

(𝑥) , �̃�
𝑛−1

(𝑞𝑥)) .

(15)

Lemma 6. Let {𝑥
𝑖
}
∞

𝑖=1
be dense on [0, +∞); if the solution of

(2) is unique, then the solution satisfies the form

𝑀
𝑛
(𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, �̃�
𝑛−1

(𝑥
𝑘
) , Ṽ
𝑛−1

(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

𝑁
𝑛
(𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, Ṽ
𝑛−1

(𝑥
𝑘
) , �̃�
𝑛−1

(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) .

(16)

Proof. Note that ⟨𝑢(𝑥), 𝜑
𝑖
(𝑥)⟩ = 𝑢(𝑥

𝑖
) and {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is

an orthonormal basis of 𝑊
2
[0, +∞); hence according to

Lemma 5 we have

𝑀
𝑛
(𝑥) =

∞

∑

𝑖=1

⟨𝑀
𝑛
(𝑥) , 𝜓

𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

⟨𝑀
𝑛
(𝑥) ,

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥)⟩𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑀
𝑛
(𝑥) , 𝜓

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨L𝑀

𝑛
(𝑥) , 𝜑

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑛−1

(𝑥
𝑘
) , V
𝑛−1

(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) .

(17)

In the same manner

𝑁
𝑛
(𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑛−1

(𝑥
𝑘
) , 𝑢
𝑛−1

(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) . (18)

Take 𝑢
0
(𝑥) = V

0
(𝑥) = 0; define the iterative sequence

𝑢
𝑛
(𝑥) = 𝑃

𝑛
𝑀
𝑛
(𝑥)

=

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑛−1

(𝑥
𝑘
) , V
𝑛−1

(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

V
𝑛
(𝑥) = 𝑃

𝑛
𝑁
𝑛
(𝑥)

=

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑛−1

(𝑥
𝑘
) , 𝑢
𝑛−1

(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) .

(19)

3.2. The Boundedness of Sequence 𝑢
𝑛
(𝑥) and V

𝑛
(𝑥). From

𝜕
3

𝑦
𝑅
𝑥
(𝑥 + 0) − 𝜕

3

𝑦
𝑅
𝑥
(𝑥 − 0) = 1, (20)

we have

𝜕
4

𝑦
𝑅
𝑥
(𝑦) = 𝑔

𝑥
(𝑦) + (𝜕

3

𝑦
𝑅
𝑥
(𝑥 + 0) −𝜕

3

𝑦
𝑅
𝑥
(𝑥 − 0))

× 𝛿 (𝑥 − 𝑦)

= 𝑔
𝑥
(𝑦) + 𝛿 (𝑥 − 𝑦) ,

(21)

where

𝑔
𝑥
(𝑦) =

{
{
{
{

{
{
{
{

{

𝑔
1

𝑥
, 𝑦 < 𝑥,

𝑔
2

𝑥
, 𝑦 > 𝑥,

0, 𝑦 = 𝑥,

(22)

𝑔
1

𝑥
(𝑦) = 𝜕

4

𝑦
(𝑎
1
𝑒
𝑦
+ 𝑎
2
𝑒
−𝑦

+ 𝑎
3
𝑒
2𝑦

+ 𝑎
4
𝑒
−2𝑦

); 𝑔2
𝑥
(𝑦) = 𝜕

4

𝑦
(𝑏
1
𝑒
𝑦
+

𝑏
2
𝑒
−𝑦

+𝑏
3
𝑒
2𝑦

+𝑏
4
𝑒
−2𝑦

); and 𝑔
1

𝑥
(𝑦), 𝑔
2

𝑥
(𝑦), 𝜕
𝑦
𝑔
1

𝑥
(𝑦), 𝜕
𝑦
𝑔
2

𝑥
(𝑦) are

bounded functions with respect to 𝑥, 𝑦, respectively.
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Lemma7. For𝑥 ∈ [0, +∞),𝑦, 𝑧 ∈ (−∞, +∞), and𝐹(𝑥, 𝑦, 𝑧),
𝐺(𝑥, 𝑦, 𝑧) are continuous bounded functions on [0, +∞), we
have that𝑀(𝑖)

𝑛
(𝑥) and 𝑁

(𝑖)

𝑛
(𝑥) (𝑖 = 0, 1, 2) are bounded.

Proof. By the expression of 𝑀
𝑛
(𝑥), 𝑀

𝑛
(𝑥) and the assump-

tions, we know that 𝑀
𝑛
(𝑥) and 𝑀



𝑛
(𝑥) are bounded. In the

following, we will discuss the boundedness of𝑀
𝑛
(𝑥).

Since the function which is in 𝐶
2

[0,+∞)
is dense in

𝑊
2
[0, +∞), without loss of generality, we assume that𝑀

𝑛
(𝑥)

is continuous.
Note that

4𝑅
𝑥
(𝑦) − 5𝜕

2

𝑦
𝑅
𝑥
(𝑦) + 𝜕

4

𝑦
𝑅
𝑥
(𝑦) = 𝛿 (𝑥 − 𝑦) . (23)

One gets

𝑀


𝑛
(𝑥) = ∫

∞

0

𝑀


𝑛
(𝑦) 𝛿 (𝑥 − 𝑦) 𝑑𝑦

= ∫

∞

0

𝑀


𝑛
(𝑦) [4𝑅

𝑥
(𝑦)−5𝜕

2

𝑦
𝑅
𝑥
(𝑦)+𝜕

4

𝑦
𝑅
𝑥
(𝑦)] 𝑑𝑦

= ∫

∞

0

𝑀


𝑛
(𝑦) [4𝑅

𝑥
(𝑦) − 5𝜕

2

𝑦
𝑅
𝑥
(𝑦)] 𝑑𝑦

+ ∫

∞

0

𝑀


𝑛
(𝑦) 𝜕
4

𝑦
𝑅
𝑥
(𝑦) 𝑑𝑦

= 𝑀


𝑛
(𝑦) [4𝑅

𝑥
(𝑦) − 5𝜕

2

𝑦
𝑅
𝑥
(𝑦)]










∞

0

− ∫

+∞

0

𝑀


𝑛
(𝑦) [4𝜕

𝑦
𝑅
𝑥
(𝑦) − 5𝜕

3

𝑦
𝑅
𝑥
(𝑦)] 𝑑𝑦

+ ∫

∞

0

𝑀


𝑛
(𝑦) [𝑔

𝑥
(𝑦) + 𝛿 (𝑥 − 𝑦)] 𝑑𝑦

= 𝑚 (𝑥) + ∫

∞

0

𝑀


𝑛
(𝑦) [𝑔

𝑥
(𝑦) + 𝛿 (𝑥 − 𝑦)] 𝑑𝑦

= 𝑚 (𝑥) + ∫

∞

0

𝑀


𝑛
(𝑦) 𝑔
𝑥
(𝑦) 𝑑𝑦 + 𝑀



𝑛
(𝑥) ,

(24)

where 𝑚(𝑥) = 𝑀


𝑛
(𝑦)[4𝑅

𝑥
(𝑦) − 5𝜕

2

𝑦
𝑅
𝑥
(𝑦)]|
∞

0
−

∫

∞

0
𝑀


𝑛
(𝑦)[4𝜕

𝑦
𝑅
𝑥
(𝑦) − 5𝜕

3

𝑦
𝑅
𝑥
(𝑦)]𝑑𝑦. Thus, we have

0 = 𝑚 (𝑥) − ∫

∞

0

𝑀


𝑛
(𝑦) 𝑔
𝑥
(𝑦) 𝑑𝑦

= 𝑚 (𝑥) − ∫

𝑥

0

𝑀


𝑛
(𝑦) 𝑔
1

𝑥
(𝑦) 𝑑𝑦 − ∫

∞

𝑥

𝑀


𝑛
(𝑦) 𝑔
2

𝑥
(𝑦) 𝑑𝑦

= 𝑚 (𝑥) − 𝑀


𝑛
(𝑦) 𝑔
1

𝑥
(𝑦)










𝑥

0

+ ∫

𝑥

0

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
1

𝑥
(𝑦) 𝑑𝑦

− 𝑀


𝑛
(𝑦) 𝑔
2

𝑥
(𝑦)










𝑀

𝑥

+ ∫

∞

𝑥

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
2

𝑥
(𝑦) 𝑑𝑦

= 𝑚 (𝑥) − 𝑀


𝑛
(𝑥) (𝑔

1

𝑥
(𝑥) − 𝑔

2

𝑥
(𝑥))

+ (𝑀


𝑛
(0) 𝑔
1

𝑥
(0) − 𝑀



𝑛
(𝑀) 𝑔

2

𝑥
(𝑀))

+ ∫

𝑥

0

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
1

𝑥
(𝑦) 𝑑𝑦

+ ∫

∞

𝑥

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
2

𝑥
(𝑦) 𝑑𝑦.

(25)

So

𝑀


𝑛
(𝑥) (𝑔

1

𝑥
(𝑥) − 𝑔

2

𝑥
(𝑥))

= 𝑚 (𝑥) + (𝑀


𝑛
(0) 𝑔
1

𝑥
(0) − 𝑀



𝑛
(𝑀) 𝑔

2

𝑥
(𝑀))

+ ∫

𝑥

0

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
1

𝑥
(𝑦)

+ ∫

∞

𝑥

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
2

𝑥
(𝑦) 𝑑𝑦.

(26)

Furthermore, we see that

𝑀


𝑛
(𝑥) =

1

𝑔
1

𝑥
(𝑥) − 𝑔

2

𝑥
(𝑥)

× {𝜕
𝑥
[𝑚 (𝑥) + (𝑀



𝑛
(0) 𝑔
1

𝑥
(0) − 𝑀



𝑛
(𝑀) 𝑔

2

𝑥
(𝑀))

+ ∫

𝑥

0

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
1

𝑥
(𝑦)

+∫

∞

𝑥

𝑀


𝑛
(𝑦) 𝜕
𝑦
𝑔
2

𝑥
(𝑦) 𝑑𝑦]

−𝑀


𝑛
(𝑥) 𝜕
𝑥
(𝑔
1

𝑥
(𝑥) − 𝑔

2

𝑥
(𝑥)) } .

(27)

In view of the expression of 𝑅
𝑥
(𝑦), we know that 𝜕𝑚

𝑦
𝑅
𝑥
(𝑦) are

bounded for 𝑚 = 1, 2, 3. It follows that 𝑀
𝑛
(𝑥) is bounded

from the boundedness of 𝑔
1

𝑥
(𝑦), 𝑔

2

𝑥
(𝑦), 𝜕

𝑦
𝑔
1

𝑥
(𝑦), 𝜕

𝑦
𝑔
2

𝑥
(𝑦),

and 𝑀


𝑛
(𝑥). In the same way, 𝑁

𝑛
(𝑥), 𝑁

𝑛
(𝑥), and 𝑁



𝑛
(𝑥) are

bounded.

Lemma 8. Assume that 𝐹(𝑥, 𝑦, 𝑧), 𝐺(𝑥, 𝑦, 𝑧) are continuous
bounded functions for 𝑥 ∈ [0, +∞), 𝑦, 𝑧 ∈ (−∞, +∞), and
𝐹(𝑥, 𝑦, 𝑧), 𝐺(𝑥, 𝑦, 𝑧) ∈ 𝑊

1
[0, +∞) as 𝑦 = 𝑦(𝑥) ∈ 𝑊

2
, 𝑧 =

𝑧(𝑥) ∈ 𝑊
2
, then





𝑢
𝑛




𝑊
2

≤ 𝐶,




V
𝑛




𝑊
2

≤ 𝐷, (𝐶,𝐷 are constants) . (28)
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Proof.





𝑀
𝑛






2

𝑊
2

= ⟨𝑀
𝑛
,𝑀
𝑛
⟩ = ∫

∞

0

(4𝑀
2

𝑛
+ 5𝑀

2

𝑛
+ 𝑀
2

𝑛
) 𝑑𝑥.

(29)

Note that (14) and the assumptions, by Lemma 7, |𝑀(𝑖)
𝑛
(𝑥)| ≤

𝐶
𝑖, 𝑖 = 0, 1, 2, thus ‖𝑀

𝑛
‖ ≤ 𝐶, where 𝐶 = max{𝐶0, 𝐶1, 𝐶2},

from (19), we have ‖𝑢
𝑛
‖
𝑊
2

≤ ‖𝑀
𝑛
‖
𝑊
2

≤ 𝐶. In the same way,
we obtain ‖V

𝑛
‖
𝑊
2

≤ 𝐷.

3.3. Construction the of Another Iterative Sequence
𝑢
𝑛
(𝑥) and V

𝑛
(𝑥)

Theorem 9. Let {𝑥
𝑖
}
∞

𝑖=1
be dense on [0, +∞); if the solution of

(2) exists and unique, then the solution satisfies the form

𝑢 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
) , V (𝑝𝑥

𝑘
)) 𝜓
𝑖
(𝑥) ,

V (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V (𝑥
𝑘
) , 𝑢 (𝑞𝑥

𝑘
)) 𝜓
𝑖
(𝑥) .

(30)

Proof. Note that ⟨𝑢(𝑥), 𝜑
𝑖
(𝑥)⟩ = 𝑢(𝑥

𝑖
) and {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is an

orthonormal basis of𝑊
2
[0, +∞); hence we have

𝑢 (𝑥) =

∞

∑

𝑖=1

⟨𝑢 (𝑥) , 𝜓
𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

⟨𝑢 (𝑥) ,

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥)⟩𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽i𝑘 ⟨𝑢 (𝑥) , 𝜓
𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨L𝑢 (𝑥) , 𝜑

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
) , V (𝑝𝑥

𝑘
)) 𝜓
𝑖
(𝑥) .

(31)

In the same manner

V (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V (𝑥
𝑘
) , 𝑢 (𝑞𝑥

𝑘
)) 𝜓
𝑖
(𝑥) . (32)

In the following, a newmethod of solving (2) is presented.
Equations (31) and (32) can be denoted by

𝑢 (𝑥) =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) , (33)

V (𝑥) =

∞

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) , (34)

where 𝐴
𝑖

= ∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑥
𝑘
, 𝑢(𝑥
𝑘
), V(𝑝𝑥

𝑘
)) and 𝐵

𝑖
=

∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐺(𝑥
𝑘
, V(𝑥
𝑘
), 𝑢(𝑞𝑥

𝑘
)). In fact,𝐴

𝑖
and 𝐵

𝑖
are unknown;

we will approximate𝐴
𝑖
and 𝐵

𝑖
by using the known𝐴

𝑖
and 𝐵

𝑖
.

We take 𝑢
1
(𝑥) = 0, V

1
(𝑥) = 0 and define the following

iterative sequence

𝑢
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) ,

V
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) ,

(35)

where

𝐴
1
= 𝛽
11
𝐹 (𝑥
1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
))

𝐴
2
=

2

∑

𝑘=1

𝛽
2𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))

...

𝐴
𝑛−1

=

𝑛−1

∑

𝑘=1

𝛽
𝑛𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) ,

(36)

𝐵
1
= 𝛽
11
𝐺 (𝑥
1
, V
1
(𝑥
1
) , 𝑢
1
(𝑞𝑥
1
))

𝐵
2
=

2

∑

𝑘=1

𝛽
2𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
))

...

𝐵
𝑛−1

=

𝑛−1

∑

𝑘=1

𝛽
𝑛𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
)) .

(37)

Next, lemmas are given.

Lemma 10. The following iterative sequences

𝑢
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

V
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥)

(38)

satisfy

L𝑢
𝑛
(𝑥
𝑗
) = 𝐹 (𝑥

𝑗
, 𝑢
𝑗
(𝑥
𝑗
) , V
𝑗
(𝑝𝑥
𝑗
)) ,

LV
𝑛
(𝑥
𝑗
) = 𝐺 (𝑥

𝑗
, V
𝑗
(𝑥
𝑗
) , 𝑢
𝑗
(𝑞𝑥
𝑗
)) , 𝑗 ≤ 𝑛 − 1,

(39)

respectively.
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Proof. If 𝑗 = 1,

L𝑢
𝑛
(𝑥
1
) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))L𝜓

𝑖
(𝑥
1
)

=

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))

× ⟨L𝜓
𝑖
(𝑥) , 𝜑

1
(𝑥)⟩

=

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))

× ⟨𝜓
𝑖
(𝑥) , 𝜓

1
(𝑥)⟩ ,

𝛽
11
L𝑢
𝑛
(𝑥
1
) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))

× ⟨𝜓
𝑖
(𝑥) , 𝜓

1
(𝑥)⟩

= 𝛽
11
𝐹 (𝑥
1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
)) ,

(40)

so,

L𝑢
𝑛
(𝑥
1
) = 𝐹 (𝑥

1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
)) . (41)

If 𝑗 = 2,

L𝑢
𝑛
(𝑥
2
) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
))L𝜓

𝑖
(𝑥
2
)

=

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) ⟨𝜓
𝑖
(𝑥) , 𝜓

2
(𝑥)⟩ ,

(42)

𝛽
21
× (40) +𝛽

22
× (42), we have

𝛽
21
L𝑢
𝑛
(𝑥
1
) + 𝛽
22
L𝑢
𝑛
(𝑥
2
)

=

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) ⟨𝜓
𝑖
(𝑥) , 𝜓

2
(𝑥)⟩

= 𝛽
21
𝐹 (𝑥
1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
))

+ 𝛽
22
𝐹 (𝑥
2
, 𝑢
2
(𝑥
2
) , V
2
(𝑝𝑥
2
)) ,

(43)

by (41), L𝑢
𝑛
(𝑥
2
) = 𝐹(𝑥

2
, 𝑢
2
(𝑥
2
), V
2
(𝑝𝑥
2
)). In the same way,

we have

L𝑢
𝑛
(𝑥
𝑗
) = 𝐹 (𝑥

𝑗
, 𝑢
𝑗
(𝑥
𝑗
) , V
𝑗
(𝑝𝑥
𝑗
)) , 𝑗 ≤ 𝑛 − 1. (44)

Similarly,

LV
𝑛
(𝑥
𝑗
) = 𝐹 (𝑥

𝑗
, V
𝑗
(𝑥
𝑗
) , 𝑢
𝑗
(𝑞𝑥
𝑗
)) , 𝑗 ≤ 𝑛 − 1. (45)

Theorem 11. The iterative form

�̃�
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, �̃�
𝑛−1

(𝑥
𝑘
) , Ṽ
𝑛−1

(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

Ṽ
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, Ṽ
𝑛−1

(𝑥
𝑘
) , �̃�
𝑛−1

(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

�̃�
1
(0) = Ṽ

1
(0) = 0

(46)

and the iterative form

𝑢
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽i𝑘𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

V
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) ,

𝑢
1
(0) = V

1
(0) = 0

(47)

are the same.

Proof. In Lemma 10, let 𝑛 − 1 = 𝑘; then

L𝑢
𝑘+1

(𝑥
𝑘
) = 𝐹 (𝑥

𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) , (48)

but

L𝑢
𝑛
(𝑥
𝑘
) = 𝐹 (𝑥

𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) , (49)

thus

𝑢
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐿𝑢
𝑘+1

(𝑥
𝑘
) 𝜓
𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
L𝑢
𝑛
(𝑥
𝑘
) 𝜓
𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨L𝑢
𝑛
(𝑥) , 𝜑

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝑢
𝑛
(𝑥) , 𝜓

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

⟨𝑢
𝑛
(𝑥) , 𝜓

𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥) .

(50)

Equation (46) can be written as

L𝑀
𝑛
(𝑥) = 𝐹 (𝑥, �̃�

𝑛−1
(𝑥) , Ṽ

𝑛−1
(𝑝𝑥)) ,

�̃�
𝑛
(𝑥) = 𝑃

𝑛
𝑀
𝑛
(𝑥) .

(51)
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In fact,𝑀
𝑛
(𝑥)=∑

∞

𝑖=1
∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑥
𝑘
, �̃�
𝑛−1

(𝑥
𝑘
), Ṽ
𝑛−1

(𝑝𝑥
𝑘
))𝜓
𝑖
(𝑥);

then

L�̃�
𝑛
(𝑥
𝑗
) = L𝑃

𝑛
𝑀
𝑛
(𝑥
𝑗
)

= ⟨L𝑃
𝑛
𝑀
𝑛
(𝑥) , 𝜑

𝑗
(𝑥)⟩

= ⟨𝑃
𝑛
𝑀
𝑛
(𝑥) , 𝜓

𝑗
(𝑥)⟩

= ⟨𝑀
𝑛
(𝑥) , 𝜓

𝑗
(𝑥)⟩

= ⟨L𝑀
𝑛
(𝑥) , 𝜑

𝑗
(𝑥)⟩

= L𝑀
𝑛
(𝑥
𝑗
) ,

(52)

by (51) and (52), we have

�̃�
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, �̃�
𝑛−1

(𝑥
𝑘
) , Ṽ
𝑛−1

(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
L𝑀
𝑛
(𝑥
𝑘
) 𝜓
𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
L�̃�
𝑛
(𝑥
𝑘
) 𝜓
𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨L�̃�
𝑛
(𝑥) , 𝜑

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨�̃�
𝑛
(𝑥) , 𝜓

𝑘
(𝑥)⟩ 𝜓

𝑖
(𝑥)

=

𝑛−1

∑

𝑖=1

⟨�̃�
𝑛
(𝑥) , 𝜓

𝑖
(𝑥)⟩ 𝜓

𝑖
(𝑥) .

(53)

Equation (53) is the same as (50). We may prove for Ṽ
𝑛
(𝑥)

similarly.

So, by Theorem 11 and Lemma 8, we have the following
Theorem.

Theorem 12. Under the conditions of Lemma 8,

𝑢
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) 𝜓
𝑖
(𝑥) , (54)

V
𝑛
(𝑥) =

𝑛−1

∑

𝑖=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
)) 𝜓
𝑖
(𝑥) (55)

satisfy ‖𝑢
𝑛
(𝑥)‖ ≤ 𝐶, ‖V

𝑛
(𝑥)‖ ≤ 𝐷.

Lemma 13. If 𝑢(𝑥) and V(𝑥) ∈ 𝑊
2
[0, +∞), then there exists

𝑀
1
,𝑀
2

> 0, such that |𝑢(𝑥)| ≤ 𝑀
1
‖𝑢(𝑥)‖

𝑊
2

and |V(𝑥)| ≤

𝑀
2
‖V(𝑥)‖

𝑊
2

.

Proof. It is easy to obtain from the properties in the
reproducing kernel space.

By Lemma 13 and Theorem 12, it is easy to obtain the
following Lemma 14.

Lemma 14. If 𝑢
𝑛
(𝑥)

‖⋅‖
𝑊2

→ 𝑢(𝑥)(𝑛 → ∞), V
𝑛
(𝑥)

‖⋅‖
𝑊2

→

V(𝑥)(𝑛 → ∞), 𝑥
𝑛

→ 𝑦(𝑛 → ∞), and 𝐹(𝑥, 𝑦, 𝑧) and
𝐺(𝑥, 𝑦, 𝑧) satisfy the conditions of Lemma 8, then

𝐹 (𝑥
𝑛
, 𝑢
𝑛−1

(𝑥
𝑛
) , V
𝑛−1

(𝑝𝑥
𝑛
))

→ 𝐹 (𝑦, 𝑢 (𝑦) , V (𝑝𝑦)) as 𝑛 → ∞,

𝐺 (𝑥
𝑛
, V
𝑛−1

(𝑥
𝑛
) , 𝑢
𝑛−1

(𝑞𝑥
𝑛
))

→ 𝐺 (𝑦, V (𝑦) , 𝑢 (𝑞𝑦)) as 𝑛 → ∞.

(56)

Theorem 15. Let {𝑥
𝑖
}
∞

𝑖=1
be dense in [0, +∞), and 𝐹(𝑥, 𝑦, 𝑧)

and 𝐺(𝑥, 𝑦, 𝑧) satisfy the conditions of Lemma 8, then the n-
term approximate solutions 𝑢

𝑛
(𝑥) and V

𝑛
(𝑥) in (35) converge to

the exact solution u(𝑥) and V(𝑥) of (2), respectively, and 𝑢(𝑥) =

∑
∞

𝑖=1
𝐴
𝑖
𝜓
𝑖
(𝑥), V(𝑥) = ∑

∞

𝑖=1
𝐵
𝑖
𝜓
𝑖
(𝑥), where 𝐴

𝑖
and 𝐵

𝑖
are given,

respectively, by (36), and (37).

Proof. (1) Firstly, we will prove the convergence of
𝑢
𝑛
(𝑥), V
𝑛
(𝑥).

By (35), we infer that

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) + 𝐴

𝑛
𝜓
𝑛
(𝑥) , (57)

V
𝑛+1

(𝑥) = V
𝑛
(𝑥) + 𝐵

𝑛
𝜓
𝑛
(𝑥) . (58)

From the orthogonality of {𝜓
𝑖
(𝑥)}
∞

𝑖=1
, it follows that





𝑢
𝑛+1






2

𝑊
2

=




𝑢
𝑛






2

𝑊
2

+ (𝐴
𝑛
)

2

=




𝑢
𝑛−1






2

𝑊
2

+ (𝐴
𝑛−1

)

2

+ (𝐴
𝑛
)

2

...

=




𝑢
1






2

𝑊
2

+

𝑛

∑

𝑖=1

(𝐴
𝑖
)

2

,

(59)





V
𝑛+1






2

𝑊
2

=




V
𝑛






2

𝑊2

+ (𝐵
𝑛
)

2

=




V
𝑛−1






2

𝑊
2

+ (𝐵
𝑛−1

)

2

+ (𝐵
𝑛
)

2

...

=




V
1






2

𝑊
2

+

𝑛

∑

𝑖=1

(𝐵
𝑖
)

2

.

(60)

From (59) and (60), we know sequence ‖𝑢
𝑛
‖
𝑊
2

and ‖V
𝑛
‖
𝑊
2

is
increasing. By Theorem 12, ‖𝑢

𝑛
‖
𝑊
2

and ‖V
𝑛
‖
𝑊2

are bounded;
hence ‖𝑢

𝑛
‖
𝑊
2

and ‖V
𝑛
‖
𝑊
2

are convergent such that
∞

∑

𝑖=1

(𝐴
𝑖
)

2

< ∞,

∞

∑

𝑖=1

(𝐵
𝑖
)

2

< ∞.

(61)
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This implies that

𝐴
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐹 (𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
) , V
𝑘
(𝑝𝑥
𝑘
)) ∈ 𝑙
2

(𝑖 = 1, 2 , . . .) ,

(62)

𝐵
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐺 (𝑥
𝑘
, V
𝑘
(𝑥
𝑘
) , 𝑢
𝑘
(𝑞𝑥
𝑘
)) ∈ 𝑙
2

(𝑖 = 1, 2, . . .) .

(63)

Without loss of generality, assume𝑚 > 𝑛; we have





𝑢
𝑚
(𝑥) − 𝑢

𝑛
(𝑥)






2

𝑊
2

=




𝑢
𝑚
(𝑥) − 𝑢

𝑚−1
(𝑥)

+ 𝑢
𝑚−1

(𝑥) − 𝑢
𝑚−2

(𝑥)

+ ⋅ ⋅ ⋅ +𝑢
𝑛+1

(𝑥) − 𝑢
𝑛
(𝑥)






2

𝑊
2

≤




𝑢
𝑚
(𝑥) − 𝑢

𝑚−1
(𝑥)






2

𝑊
2

+ ⋅ ⋅ ⋅ +




𝑢
𝑛+1

(𝑥) − 𝑢
𝑛
(𝑥)






2

𝑊
2

=

𝑚

∑

𝑖=𝑛+1

(𝐴
𝑖
)

2

→ 0, (𝑛 → ∞) ,





V
𝑚
(𝑥) − V

𝑛
(𝑥)






2

𝑊
2

=




V
𝑚
(𝑥) − V

𝑚−1
(𝑥)

+ V
𝑚−1

(𝑥) − V
𝑚−2

(𝑥)

+ ⋅ ⋅ ⋅ + V
𝑛+1

(𝑥) − V
𝑛
(𝑥)






2

𝑊2

≤




V
𝑚
(𝑥) − V

𝑚−1
(𝑥)






2

𝑊2

+ . . . +




V
𝑛+1

(𝑥) − V
𝑛
(𝑥)






2

𝑊2

=

𝑚

∑

𝑖=𝑛+1

(𝐵i)
2

→ 0, (𝑛 → ∞) .

(64)

Considering the completeness of𝑊
2
[0, +∞), there exist 𝑢(𝑥)

and V(𝑥) in𝑊
2
[0, +∞) such that

𝑢
𝑛
(𝑥)

‖⋅‖

→ 𝑢 (𝑥) as 𝑛 → ∞,

V
𝑛
(𝑥)

‖⋅‖

→ V (𝑥) as 𝑛 → ∞.

(65)

(2) Secondly, we will prove that 𝑢(𝑥) and V(𝑥) are the
solutions of (2).

By Lemma 14 and the proof of (1), we may know that
𝑢
𝑛
(𝑥), and V

𝑛
(𝑥) respectively, converge uniformly to 𝑢(𝑥) and

V(𝑥) (𝑛 → ∞). Taking limits in (35), we have

𝑢 (𝑥) =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) ,

V (𝑥) =

∞

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) .

(66)

Since

(L𝑢) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐴
𝑖
⟨L𝜓
𝑖
, 𝜑
𝑗
⟩

=

∞

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
,L
∗
𝜑
𝑗
⟩

=

∞

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
, 𝜓
𝑗
⟩ ,

(67)

in the same way, we have

(LV) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐵
𝑖
⟨𝜓
𝑖
, 𝜓
𝑗
⟩ , (68)

it follows that

𝑛

∑

𝑗=1

𝛽
𝑛𝑗

(L𝑢) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
,

𝑛

∑

𝑗=1

𝛽
𝑛𝑗
𝜓
𝑗
⟩

=

∞

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
, 𝜓
𝑛
⟩

= 𝐴
𝑛
,

𝑛

∑

𝑗=1

𝛽
𝑛𝑗

(LV) (𝑥
𝑗
) =

∞

∑

𝑖=1

𝐵
𝑖
⟨𝜓
𝑖
,

𝑛

∑

𝑗=1

𝛽
𝑛𝑗
𝜓
𝑗
⟩

=

∞

∑

𝑖=1

𝐵
𝑖
⟨𝜓
𝑖
, 𝜓
𝑛
⟩

= 𝐵
𝑛
.

(69)

If 𝑛 = 1, then

(L𝑢) (𝑥
1
) = 𝐹 (𝑥

1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
)) , (70)

(LV) (𝑥
1
) = 𝐺 (𝑥

1
, V
1
(𝑥
1
) , 𝑢
1
(𝑞𝑥
1
)) . (71)

If 𝑛 = 2, then

𝛽
21

(L𝑢) (𝑥
1
)+𝛽
22

(L𝑢) (𝑥
2
)

= 𝛽
21
𝐹 (𝑥
1
, 𝑢
1
(𝑥
1
) , V
1
(𝑝𝑥
1
))

+ 𝛽
22
𝐹 (𝑥
2
, 𝑢
2
(𝑥
2
) , V
2
(𝑝𝑥
2
)) ,

𝛽
21

(LV) (𝑥
1
)+𝛽
22

(LV) (𝑥
2
)

= 𝛽
21
𝐺 (𝑥
1
, V
1
(𝑥
1
) , 𝑢
1
(𝑞𝑥
1
))

+ 𝛽
22
𝐺 (𝑥
2
, V
2
(𝑥
2
) , 𝑢
2
(𝑞𝑥
2
)) .

(72)

From (70) and (71), it is clear that

(L𝑢) (𝑥
2
) = 𝐹 (𝑥

2
, 𝑢
2
(𝑥
2
) , V
2
(𝑝𝑥
2
)) ,

(LV) (𝑥
2
) = 𝐺 (𝑥

2
, V
2
(𝑥
2
) , 𝑢
2
(𝑞𝑥
2
)) .

(73)
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Furthermore, it is easy to see by induction that

(L𝑢) (𝑥
𝑗
) = 𝐹 (𝑥

𝑗
, 𝑢
𝑗
(𝑥
𝑗
) , V
𝑗
(𝑝𝑥
𝑗
)) , 𝑗 = 1, 2, . . . , (74)

(LV) (𝑥
𝑗
) = 𝐺 (𝑥

𝑗
, V
𝑗
(𝑥
𝑗
) , 𝑢
𝑗
(𝑞𝑥
𝑗
)) , 𝑗 = 1, 2, . . . . (75)

Since {𝑥
𝑖
}
∞

𝑖=1
is dense in [0, +∞), for any 𝑦 ∈ [0, +∞), there

exists subsequence {𝑥
𝑛
𝑗

} such that

𝑥
𝑛
𝑗

→ 𝑦 as 𝑗 → ∞. (76)

Hence, let 𝑗 → ∞ in (74), and (75); by Lemma 14 and the
continuity of 𝐹(𝑥, 𝑢(𝑥), V(𝑝𝑥)) and𝐺(𝑥, V(𝑥), 𝑢(𝑞𝑥)), we have

(L𝑢) (𝑦) = 𝐹 (𝑦, 𝑢 (𝑦) , V (𝑝𝑦)) , (77)

(LV) (𝑦) = 𝐺 (𝑦, V (𝑦) , 𝑢 (𝑞𝑦)) . (78)

That is, 𝑢(𝑥) and V(𝑥) are the solutions of (2) and

𝑢 (𝑥) =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) , (79)

V (𝑥) =

∞

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) , (80)

where 𝐴
𝑖

= ∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐹(𝑥
𝑘
, 𝑢
𝑘
(𝑥
𝑘
), V
𝑘
(𝑝𝑥
𝑘
)) and 𝐵

𝑖
=

∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝐺(𝑥
𝑘
, V
𝑘
(𝑥
𝑘
), 𝑢
𝑘
(𝑞𝑥
𝑘
)).

In the proof of the convergence inTheorem 15we only use
‖𝑢
𝑛
‖ ≤ 𝐶, ‖V

𝑛
‖ ≤ 𝐷; thus we obtain the following corollary.

Corollary 16. Suppose ‖𝑢
𝑛
‖ and ‖V

𝑛
‖ are bounded; then the

iterative sequence (35) is convergent to the exact solution of (2).

Theorem 17. Assume 𝑢(𝑥) and V(𝑥) are the solutions of (2),
𝑟
1

𝑛
= ‖𝑢(𝑥) − 𝑢

𝑛
(𝑥)‖
𝑊
2

and 𝑟
2

𝑛
= ‖V(𝑥) − V

𝑛
(𝑥)‖
𝑊
2

are the
approximate errors of 𝑢

𝑛
(𝑥), V
𝑛
(𝑥), where 𝑢

𝑛
(𝑥) and V

𝑛
(𝑥) are

given by (35). Then the errors 𝑟1
𝑛
, 𝑟2
𝑛
are monotone decreasing

in the sense of ‖ ⋅ ‖
𝑊
2

.

Proof. From (35), and (79), it follows that






𝑟
1

𝑛
(𝑥)







2

𝑊
2

=












∞

∑

𝑖=𝑛+1

𝐴
𝑖
𝜓
𝑖
(𝑥)












2

𝑊
2

=

∞

∑

𝑖=𝑛+1

(𝐴
𝑖
)

2

.

(81)

In the same way, we obtain from (35), (80)






𝑟
2

𝑛
(𝑥)







2

𝑊
2

=












∞

∑

𝑖=𝑛+1

𝐵
𝑖
𝜓
𝑖
(𝑥)












2

𝑊
2

=

∞

∑

𝑖=𝑛+1

(𝐵
𝑖
)

2

.

(82)

Equations (81) and (82) show that the errors 𝑟
1

𝑛
and 𝑟

2

𝑛
are

monotone decreasing in the sense of ‖ ⋅ ‖
𝑊2

.

4. Numerical Examples

In order to demonstrate the efficiency of our algorithm
for solving (2), we will present two numerical examples
in the reproducing kernel space 𝑊

2
[0, +∞). Let 𝑛 be the

number of discrete points in [0, +∞). Denote 𝐸
𝑢

𝑛
(𝑥)

def
=

|(𝑢(𝑥) − 𝑢
𝑛
(𝑥))/𝑢(𝑥)|, 𝐸V

𝑛
(𝑥)

def
= |(V(𝑥) − V

𝑛
(𝑥))/V(𝑥)|. All

computations are performed by theMathematica 5.0 software
package. Results obtained by the method are compared with
the exact solution of each example and are found to be in good
agreement with each other.

Example 18. In this example we consider the problem

𝑢


(𝑥) =

3

1 + 𝑢(𝑥)
2
+ 2𝑥 cos(V (1

3

𝑥)) + 𝑓 (𝑥) ,

V


(𝑥) = 2𝑒
−V(𝑥)

+ 4𝑥
3 sin(𝑢 (

1

2

𝑥)) + 𝑔 (𝑥) ,

𝑢 (0) = 0, V (0) = 0,

(83)

with exact solution 𝑢(𝑥) = 𝑥𝑒
−𝑥, V(𝑥) = sin𝑥, and

𝑓(𝑥) = 𝑒
−𝑥

− 𝑒
−𝑥

𝑥 − (3/(1 + 𝑒
−2
𝑥
2
)) − 2𝑥 cos(sin(𝑥/3)),

𝑔(𝑥) = −2𝑒
− sin𝑥

+ cos𝑥 − 4𝑥
3 sin((1/2)𝑥𝑒−𝑥/2). Applying the

presented method in Section 3, we calculate the approximate
solution 𝑢

50
(𝑥) and V

50
(𝑥) in [0, 1] as follows.

Step 1. By the method of the appendix, the corresponding
reproducing kernel functions can be obtained.

Step 2. Choosing a dense subset in [0, 1], then we get the
orthogonalization coefficients 𝛽

𝑖𝑘
.

Step 3. According to (10), we can get the normal orthogonal
systems {𝜓

𝑖
(𝑥)}
50

𝑖=1
.

Step 4. Selecting the initial value 𝑢
0
(𝑥) = V

0
(𝑥) = 0, we

obtain 𝑢
1
(𝑥), 𝑢
2
(𝑥), . . . , 𝑢

50
(𝑥) and V

1
(𝑥), V
2
(𝑥), . . . , V

50
(𝑥) by

(19) developed in the paper.

Thegraphs of the superimposed image emerge in Figure 1.
At the same time, we have computed the approximate
solutions 𝑢

𝑛
(𝑥) and V

𝑛
(𝑥) (𝑛 = 300, 900) in [0, 3] and also

calculated the relative errors 𝐸
𝑢

𝑛
and 𝐸

V
𝑛
in Table 1. The root

mean square errors (RMSE) about 𝑢(𝑥)with 𝑢
𝑛
and V(𝑥)with

V
𝑛
are shown in Table 2.

Example 19. Considering equations

𝑢


(𝑥) = 3 cos (𝑢 (𝑥)) + 2𝑥 sin(V (
1

5

𝑥)) + 𝑓 (𝑥) ,

V


(𝑥) = 2 sin (V (𝑥)) + 4𝑥
3 cos(𝑢 (

1

3

𝑥)) + 𝑔 (𝑥) ,

𝑢 (0) = 0, V (0) = 0.

(84)
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Figure 1: The left is the superimposed image of 𝑢(𝑥) with 𝑢
50
(𝑥) in [0, 1]. The right is the superimposed image of V(𝑥) with V

50
(𝑥) in [0, 1].

Table 1: Relative errors in [0, 3] for Example 18.

Node 𝐸
𝑢

300
𝐸
V
300

𝐸
𝑢

900
𝐸
V
300

0.3 4.97833𝑒 − 5 8.4527𝑒 − 5 5.53163𝑒 − 6 9.39806𝑒 − 6

0.6 4.43080𝑒 − 5 7.3330𝑒 − 5 4.92288𝑒 − 6 8.15664𝑒 − 6

0.9 3.86801𝑒 − 5 6.6731𝑒 − 5 4.29733𝑒 − 6 7.42512𝑒 − 6

1.2 3.41875𝑒 − 5 6.1845𝑒 − 5 3.79797𝑒 − 6 6.88400𝑒 − 6

1.5 3.09088𝑒 − 5 5.7095𝑒 − 5 3.43349𝑒 − 6 6.35872𝑒 − 6

1.8 2.87391𝑒 − 5 5.1303𝑒 − 5 3.19221𝑒 − 6 5.71898𝑒 − 6

2.1 2.75649𝑒 − 5 4.3153𝑒 − 5 3.06149𝑒 − 6 4.81984𝑒 − 6

2.4 2.7288𝑒 − 5 3.0422𝑒 − 5 3.03034𝑒 − 6 3.41736𝑒 − 6

2.7 2.7829𝑒 − 5 6.7566𝑒 − 5 3.09008𝑒 − 6 8.12936𝑒 − 7

3.0 2.90670𝑒 − 5 7.5017𝑒 − 5 3.23206𝑒 − 6 8.72219𝑒 − 6

Table 2: The RMS errors in [0, 3] for Example 18.

𝑛 √∑
𝑛

𝑖=1
(𝑢
𝑛
(𝑥
𝑖
) − 𝑢(𝑥

𝑖
))
2

/𝑛 √∑
𝑛

𝑖=1
(V
𝑛
(𝑥
𝑖
) − V(𝑥

𝑖
))
2

/𝑛

300 9.95194𝑒 − 6 4.00007𝑒 − 5

900 1.10551𝑒 − 6 4.45554𝑒 − 6

The true solutions are 𝑢(𝑥) = 5𝑥, V(𝑥) = 4 tan(𝑥), 𝑓(𝑥) =

5 − 3 cos(5𝑥) − 2𝑥 sin(4 tan(1/5)), 𝑔(𝑥) = −4𝑥
3 cos(5𝑥/3) +

4sec𝑥2 − 2 sin(4 tan𝑥). The numerical results are given in
Figure 2 and Tables 3 and 4. The figures and tables illustrate
that the method given in the paper is efficient.

5. Conclusion

In this paper, RKHSM has been successfully applied to
find the solutions of systems of nonlinear IDDEs with
proportional delays. The efficiency and accuracy of the
proposed decomposition method were demonstrated by two
test problems. It is concluded from above tables and figures
that the RKHSM is an accurate and efficient method to solve
IDDEs with proportional delays. Moreover, the method is
also effective for solving some nonlinear initial-boundary
value problems and nonlocal boundary value problems.

Table 3: Relative errors in [0, 4] for Example 19.

Node 𝐸
𝑢

800
𝐸
V
800

𝐸
𝑢

1200
𝐸
𝑢

1200

0.4 8.06470𝑒 − 5 4.94886𝑒 − 5 3.58334𝑒 − 5 2.20033𝑒 − 5

0.8 1.07473𝑒 − 4 5.27211𝑒 − 5 4.77632𝑒 − 5 2.34475𝑒 − 5

1.2 2.56877𝑒 − 4 5.32904𝑒 − 5 1.14199𝑒 − 4 2.37040𝑒 − 5

1.6 1.19110𝑒 − 4 5.01608𝑒 − 5 5.29170𝑒 − 5 2.23098𝑒 − 5

2.0 8.56122𝑒 − 5 4.35915𝑒 − 5 3.80383𝑒 − 5 1.93810𝑒 − 5

2.4 2.27843𝑒 − 4 3.52666𝑒 − 5 1.01280𝑒 − 4 1.56705𝑒 − 5

2.8 1.38237𝑒 − 4 2.74018𝑒 − 5 6.13912𝑒 − 5 1.21676𝑒 − 5

3.2 7.26035𝑒 − 5 2.15572𝑒 − 5 3.22429𝑒 − 5 9.56745𝑒 − 6

3.6 1.86684𝑒 − 5 1.80587𝑒 − 5 8.29627𝑒 − 5 8.01449𝑒 − 6

4.0 1.50042𝑒 − 4 1.64230𝑒 − 5 6.66348𝑒 − 5 7.14957𝑒 − 6

Table 4: The RMS errors in [0, 4] for Example 19.

𝑛 √∑
𝑛

𝑖=1
(𝑢
𝑛
(𝑥
𝑖
) − 𝑢(𝑥

𝑖
))
2

/𝑛 √∑
𝑛

𝑖=1
(V
𝑛
(𝑥
𝑖
) − V(𝑥

𝑖
))
2

/𝑛

800 1.87807𝑒 − 3 7.85856𝑒 − 5

1200 8.34276𝑒 − 4 3.48826𝑒 − 5

Appendix

The Reproducing Kernel Space 𝑊
2
[0,𝑚]

𝑊
2
[0, 𝑚] is defined as 𝑊

2
[0, 𝑚] = {𝑢(𝑥) | 𝑢

 are absolutely
continuous real value functions, 𝑢 ∈ 𝐿

2
[0, 𝑚], 𝑢(0) = 0}.

The inner product in 𝑊
2
[0, 𝑚] is given by

⟨𝑢 (𝑦) , V (𝑦)⟩
𝑊
2

= ∫

𝑚

0

(4𝑢V + 5𝑢

V

+ 𝑢

V

) 𝑑𝑦, (A.1)

where 𝑢, V ∈ 𝑊
2
[0, 𝑚] and the norm ‖𝑢‖

𝑊
2

is denoted by
‖𝑢‖
𝑊
2

= √⟨𝑢, 𝑢⟩
𝑊
2

.

Theorem A.1. The space 𝑊
2
[0, 𝑚] is a reproducing kernel

space; that is, for any 𝑢(𝑦) ∈ 𝑊
2
[0, 𝑚] and each fixed 𝑥 ∈

[0,𝑚], there exists 𝑅
𝑥
(𝑦) ∈ 𝑊

2
[0, 𝑚], 𝑦 ∈ [0,𝑚], such that
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Figure 2: The left is the superimposed image of 𝑢(𝑥) with 𝑢
50
(𝑥) in [0, 1]. The right is the superimposed image of V(𝑥) with V

50
(𝑥) in [0, 1].

⟨𝑢(𝑦), 𝑅
𝑥
(𝑦)⟩
𝑊
2
[0,𝑚]

= 𝑢(𝑥).The reproducing kernel𝑅
𝑥
(𝑦) can

be denoted by

𝑅
𝑥
(𝑦) = {

𝑐
1
𝑒
𝑦
+ 𝑐
2
𝑒
−𝑦

+ 𝑐
3
𝑒
2𝑦

+ 𝑐
4
𝑒
−2𝑦

, 𝑦 ≤ 𝑥,

𝑑
1
𝑒
𝑦
+ 𝑑
2
𝑒
−𝑦

+ 𝑑
3
𝑒
2𝑦

+ 𝑑
4
𝑒
−2𝑦

, 𝑦 > 𝑥.

(A.2)

Proof. Applying to the integrations by parts for (A.1), we
have

⟨𝑢 (𝑦) , 𝑅
𝑥
(𝑦) ⟩
𝑊
2
[0,𝑚]

= ∫

𝑚

0

𝑢 (𝑦) [4𝑅
𝑥
(𝑦) − 5𝑅



𝑥
(𝑦) + 𝑅

(4)

𝑥
(𝑦)] 𝑑𝑦

+ 5𝑢 (𝑦) 𝑅


𝑥
(𝑦)










𝑚

0

+ 𝑢

(𝑦) 𝑅


𝑥
(𝑦)










𝑚

0

− 𝑢 (𝑦) 𝑅
(3)

𝑥
(𝑦)










𝑚

0

.

(A.3)

Since 𝑅
𝑥
(𝑦) ∈ 𝑊

2
[0, 𝑚], it follows that

𝑅
𝑥
(0) = 0. (A.4)

For 𝑢(𝑦) ∈ 𝑊
2
[0, 𝑚], thus, 𝑢(0) = 0.

Suppose that 𝑅
𝑥
(𝑦) satisfies the following generalized

differential equations:

4𝑅
𝑥
(𝑦) − 5𝑅



𝑥
(𝑦) + 𝑅

(4)

𝑥
(𝑦) = 𝛿 (𝑦 − 𝑥) ,

5𝑅


𝑥
(𝑚) − 𝑅

(3)

𝑥
(𝑚) = 0,

𝑅


𝑥
(𝑚) = 0,

𝑅


𝑥
(0) = 0.

(A.5)

Then ⟨𝑢(𝑦), 𝑅
𝑥
(𝑦)⟩
𝑊
2
[0,𝑚]

= ∫

𝑚

0
𝑢(𝑦)𝛿(𝑦 − 𝑥)𝑑𝑦 = 𝑢(𝑥).

Hence, 𝑅
𝑥
(𝑦) is the reproducing kernel of space 𝑊

2
[0, 𝑚].

In the following, we will get the expression of the
reproducing kernel 𝑅

𝑥
(𝑦).

The characteristic equation of 𝑅
𝑥
(𝑦)−5𝑅



𝑥
(𝑦)+𝑅

(4)

𝑥
(𝑦) =

𝛿(𝑦 − 𝑥) is given by 𝜆
4
− 5𝜆
2
+ 4 = 0, and the characteristic

roots are 𝜆
1,2

= ±1, 𝜆
3,4

= ±2.
We denote 𝑅

𝑥
(𝑦) by

𝑅
𝑥
(𝑦) = {

𝑐
1
𝑒
𝑦
+ 𝑐
2
𝑒
−𝑦

+ 𝑐
3
𝑒
2𝑦

+ 𝑐
4
𝑒
−2𝑦

, 𝑦 ≤ 𝑥,

𝑑
1
𝑒
𝑦
+ d
2
𝑒
−𝑦

+ 𝑑
3
𝑒
2𝑦

+ 𝑑
4
𝑒
−2𝑦

, 𝑦 > 𝑥.

(A.6)

By the definition of space 𝑊
2
[0, 𝑚], coefficients 𝑐

1
, . . . , 𝑐

4
,

𝑑
1
, . . . , 𝑑

4
satisfy

𝑅
(𝑘)

𝑥
(𝑥 + 0) = 𝑅

(𝑘)

𝑥
(𝑥 − 0) (𝑘 = 0, 1, 2) ,

𝑅
(3)

𝑥
(𝑚) − 5𝑅



𝑥
(𝑚) = 0,

𝑅
(3)

𝑥
(𝑥 + 0) − 𝑅

(3)

𝑥
(𝑥 − 0) = 1,

𝑅


𝑥
(𝑚) = 0,

𝑅


𝑥
(0) = 0,

𝑅
𝑥
(0) = 0,

(A.7)

from which, the unknown coefficients of (A.6) can be
obtained:

𝑐
1
=

𝑒
−2𝑥

(4𝑒
3𝑚

−7𝑒
3𝑥

− 9𝑒
2𝑚+𝑥

+7𝑒
6𝑚+𝑥

+9𝑒
4𝑚+3𝑥

−4𝑒
3𝑚+4𝑥

)

6 (−7 − 9𝑒
2𝑚

+9𝑒
4𝑚

+7𝑒
6𝑚

)

𝑐
2
=

𝑒
−2𝑥

(−4𝑒
3𝑚

+7𝑒
3𝑥

+9𝑒
2𝑚+𝑥

−7𝑒
6𝑚+𝑥

−9𝑒
4𝑚+3𝑥

+4𝑒
3𝑚+4𝑥

)

6 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6m

)
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𝑐
3
=

𝑒
−2𝑥

(−9𝑒
4𝑚

−7𝑒
6𝑚

+7𝑒
4𝑥

+8𝑒
3𝑚+𝑥

−8𝑒
3(𝑚+𝑥)

+9𝑒
2𝑚+4𝑥

)

12 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

𝑐
4
=

−𝑒
−2𝑥

(−9𝑒
4𝑚

−7𝑒
6𝑚

+7𝑒
4𝑥

+8𝑒
3𝑚+𝑥

−8𝑒
3(𝑚+𝑥)

+9𝑒
2𝑚+4𝑥

)

12 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

𝑑
1
=

−

𝑒
−2𝑥

(−1 + 𝑒
2𝑥
) (4𝑒
3𝑚

+ 7𝑒
𝑥
− 9𝑒
4𝑚+𝑥

+ 4𝑒
3𝑚+2𝑥

)

6 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

𝑑
2
=

𝑒
2𝑚−2𝑥

(−1 + 𝑒
2𝑥
) (4𝑒
𝑚

+ 7𝑒
4𝑚+𝑥

− 9𝑒
𝑥
+ 4𝑒
𝑚+2𝑥

)

6 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

𝑑
3
=

𝑒
−2𝑥

(−1 + 𝑒
2𝑥
) (7 + 9𝑒

2𝑚
+ 7𝑒
2𝑥

+ 9𝑒
2(𝑚+𝑥)

− 8𝑒
3𝑚+𝑥

)

12 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

𝑑
4
=

−

𝑒
3𝑚−2𝑥

(−1+𝑒
2𝑥
) (9𝑒
𝑚
+7𝑒
3𝑚

+9𝑒
𝑚+2𝑥

−8𝑒
𝑥
+7𝑒
3𝑚+2𝑥

)

12 (−7 − 9𝑒
2𝑚

+ 9𝑒
4𝑚

+ 7𝑒
6𝑚

)

.

(A.8)
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[2] E. Fečkan, “On certain type of functional differential equations,”
Mathematica Slovaca, vol. 43, no. 1, pp. 39–43, 1994.

[3] L. J. Grimm, “Existence and continuous dependence for a class
of nonlinear neutral-differential equations,” Proceedings of the
AmericanMathematical Society, vol. 29, no. 3, pp. 467–473, 1971.

[4] R. D. Driver, “A two-body problem of classical electrodynamics:
the one-dimensional case,” Annals of Physics, vol. 21, no. 1, pp.
122–142, 1963.

[5] R. J. Oberg, “On the local existence of solutions of certain
functional-differential equations,” Proceedings of the American
Mathematical Society, vol. 20, pp. 295–302, 1969.

[6] Z. Jackiewicz, “Existence and uniqueness of solutions of neutral
delay-differential equations with state dependent delays,” Funk-
cialaj Ekvacioj, vol. 30, no. 1, pp. 9–17, 1987.

[7] J. G. Si and X. P. Wang, “Analytic solutions of a second-
order iterative functional differential equation,” Computers &
Mathematics with Applications, vol. 43, no. 1-2, pp. 81–90, 2002.

[8] R. D. Nussbaum, “Existence and uniqueness theorems for some
functional differential equations of neutral type,” Journal of
Differential Equations, vol. 11, no. 3, pp. 607–623, 1972.

[9] Y. Kuang andA. Feldstein, “Monotonic and oscillatory solutions
of a linear neutral delay equation with infinite lag,” SIAM
Journal on Mathematical Analysis, vol. 21, no. 6, pp. 1633–1641,
1990.

[10] A. Iserles and Y. Liu, “On functional-differential equations
with proportional delays,” Tech. Rep. DAMTP, 1993/NA3, Cam-
bridge University, 1993.

[11] Y. K. Liu, “Stability analysis of 𝜃-methods for neutral functional-
differential equations,” Numerische Mathematik, vol. 70, no. 4,
pp. 473–485, 1995.

[12] E. Ishiwata and Y. Muroya, “Rational approximation method
for delay differential equationswith proportional delay,”Applied
Mathematics and Computation, vol. 187, no. 2, pp. 741–747, 2007.

[13] E. Ishiwata, Y. Muroya, and H. Brunner, “A super-attainable
order in collocation methods for differential equations with
proportional delay,”AppliedMathematics andComputation, vol.
198, no. 1, pp. 227–236, 2008.

[14] P. Hu, C. Huang, and S. Wu, “Asymptotic stability of linear
multistep methods for nonlinear neutral delay differential
equations,” Applied Mathematics and Computation, vol. 211, no.
1, pp. 95–101, 2009.

[15] W. Wang, Y. Zhang, and S. Li, “Stability of continuous Runge-
Kutta-type methods for nonlinear neutral delay-differential
equations,” Applied Mathematical Modelling, vol. 33, no. 8, pp.
3319–3329, 2009.

[16] W. S. Wang and S. F. Li, “On the one-leg 𝜃-methods for solving
nonlinear neutral functional differential equations,” Applied
Mathematics and Computation, vol. 193, no. 1, pp. 285–301, 2007.

[17] W. Wang, T. Qin, and S. Li, “Stability of one-leg 𝜃-methods
for nonlinear neutral differential equations with proportional
delay,”AppliedMathematics and Computation, vol. 213, no. 1, pp.
177–183, 2009.

[18] X. Chen and L. Wang, “The variational iteration method for
solving a neutral functional-differential equation with propor-
tional delays,” Computers &Mathematics with Applications, vol.
59, no. 8, pp. 2696–2702, 2010.

[19] J. Biazar and B. Ghanbari, “The homotopy perturbationmethod
for solving neutral functional differential equations with pro-
portional delays,” Journal of King Saud University, vol. 24, no. 1,
pp. 33–37, 2012.

[20] M. De la Sen, “Stability of impulsive time-varying systems and
compactness of the operators mapping the input space into the
state and output spaces,” Journal of Mathematical Analysis and
Applications, vol. 321, no. 2, pp. 621–650, 2006.

[21] M. De la Sen, R. P. Agarwal, A. Ibeas, and S. Alonso-Quesada,
“On a generalized time-varying SEIR epidemic model with
mixed point and distributed time-varying delays and combined
regular and impulsive vaccination controls,” Advances in Differ-
ence Equations, vol. 2010, Article ID 281612, 42 pages, 2010.

[22] E. Fridman and Y. Orlov, “Exponential stability of linear
distributed parameter systems with time-varying delays,” Auto-
matica, vol. 45, no. 1, pp. 194–201, 2009.



Abstract and Applied Analysis 13
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