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The inviscid limit problem for the smooth solutions of the Boussinesq system is studied in this paper. We prove the𝐻𝑠 convergence
result of this system as the diffusion and the viscosity coefficients vanish with the initial data belonging to 𝐻𝑠. Moreover, the 𝐻𝑠
convergence rate is given if we allow more regularity on the initial data.

1. Introduction and the Main Results

The two-dimensional Boussinesq system for the homoge-
neous incompressible fluids with diffusion and viscosity is
given by

u
𝑡
+ (u ⋅ ∇) u + ∇𝑝 = ]Δu + 𝜃e

2
,

𝜃
𝑡
+ (u ⋅ ∇) 𝜃 = 𝜅Δ𝜃,

∇ ⋅ u = 0,

𝑢|
𝑡=0

= 𝑢
0
, 𝜃|

𝑡=0
= 𝜃
0
,

(1)

where the space variable x = (𝑥
1
, 𝑥
2
) is in R2, u =

(𝑢
1

(𝑡, x), 𝑢2(𝑡, x)) is the velocity, 𝑝 = 𝑝(𝑡, x) denotes the scalar
pressure and 𝜃 = 𝜃(𝑡, x) the scalar temperature, e

2
= (0, 1),

and 𝜅 > 0 and ] > 0 denote, respectively, the molecular
diffusion and the viscosity. Such Boussinesq systems are
simple models widely used in the modeling of oceanic and
atmospheric motions, and these models also appear in many
other physical problems; see [1, 2] for more discussions. It is
also interesting to consider the system (1) without diffusion
and viscosity namely (for the sake of convenience for our limit
argument, we use different notation),

v
𝑡
+ (v ⋅ ∇) v + ∇𝜋 = 𝜌e

2
,

𝜌
𝑡
+ (v ⋅ ∇) 𝜌 = 0,

∇ ⋅ v = 0,

v|
𝑡=0

= v
0
, 𝜌|

𝑡=0
= 𝜌
0
.

(2)

Moreover, it is known that the two-dimensional viscous
(resp., inviscid) Boussinesq equations are closely related to
the three-dimensional axisymmetricNavier-Stokes equations
(resp., Euler equations) with swirl. Therefore, the Boussinesq
systems, especially in two-dimensional case, have beenwidely
studied bymany researchers, and we refer, for instance, to [3–
9] and the references therein.

It is well known that the system (1) has a unique global
in time regularity solution. Moreover, Hou and Li in [9]
obtained the global existence of smooth solution for (1) even
with the zero diffusivity case (i.e., ] > 0 and 𝜅 = 0).
Meanwhile, Chae in [5] also proved global regularity for the
2D Boussinesq system (1) both with the zero diffusivity case
(] > 0 and 𝜅 = 0) and the zero viscosity case (] = 0

and 𝜅 > 0). However, for the case ] = 0 and 𝜅 = 0, it is
only known that smooth solution exists locally in time (see,
e.g., [4]), and it is not known whether such smooth solutions
can develop singularities in finite time. In fact, as well as
the famous blow-up problem for the Navier-Stokes equations
or Euler equations, the regularity or singularity question for
the locally smooth solution of the system (2) appears also
as an outstanding open problem in the mathematical fluid
mechanics; see [10].
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In this paper, we are interested in studying the limit
behavior of the smooth solution for (1) as (], 𝜅) → 0; that
is, we study the vanishing viscosity limit of solutions of (1).
This type limit problem appears not only in the community
of applied mathematics, but also in physical reality. A good
example of this problem is the vanishing viscosity limit
of solutions of the Navier-Stokes equations which appears
as a singular limit especially in bounded domains due to
the boundary layers effect, and we refer to [11–17] and the
references therein. Most of the previous convergence results
require some loss of derivatives; namely, if the initial data
lies in the space 𝐻𝑠, usually one can obtain the convergence
results in 𝐻

𝑠 with 𝑠


< 𝑠. In this literature, Masmoudi in
[15] obtained the inviscid limit results for the Navier-Stokes
equations without loss of derivatives. Inspired by [15], in this
paper, we obtain the𝐻𝑠 convergence of the solution with the
initial data belonging to the same space.

Now we state our main results of the paper.

Theorem 1. Let 𝑠 > 3, (u],𝜅
0
, 𝜃

],𝜅
0
) ∈ H𝑠(R2;R2) × 𝐻

𝑠

(R2),
and (v

0
, 𝜌
0
) ∈ H𝑠(R2;R2) × 𝐻

𝑠

(R2) satisfying ∇ ⋅ u],𝜅
0

= 0,
∇ ⋅ v
0
= 0, and

u],𝜅
0

→ k
0
, 𝜃

],𝜅
0

→ 𝜌
0

𝑖𝑛 𝐻
𝑠

, (3)

as (], 𝜅) → 0. Assume that (u],𝜅, 𝜃],𝜅) ∈ 𝐶(R+;H𝑠 × 𝐻
𝑠

)

is the classical solution of (1) with initial data (u],𝜅
0
, 𝜃

],𝜅
0
), and

(k, 𝜌) ∈ 𝐶([0, 𝑇
∗

);H𝑠 × 𝐻
𝑠

) is the classical solution of the
inviscid system (2) with initial data (k

0
, 𝜌
0
); here; 𝑇∗ is the

maximal existence time of the solution (k, 𝜌). Then, for any
𝑇
0
∈ (0, 𝑇

∗

) and for any 𝑡 ∈ [0, 𝑇
0
], one has

(1) (convergence rate in the𝐻𝑠−2 norm)
u

],𝜅
(𝑡) − k (𝑡)

H𝑠−2 +
𝜃

],𝜅
(𝑡) − 𝜌 (𝑡)

𝐻𝑠−2

≤ 𝐶
1
(] + 𝜅 +

u
],𝜅
0

− k
0

H𝑠−2 +
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠−2
) ,

(4)

(2) (convergence rate in the 𝐻𝑠1 norm with 𝑠 − 2 < 𝑠
1
≤

𝑠 − 1)
u

],𝜅
(𝑡) − k (𝑡)

H𝑠1 +
𝜃

],𝜅
(𝑡) − 𝜌 (𝑡)

𝐻𝑠1

≤ 𝐶
2
(]
(𝑠−𝑠
1
)/2

+ 𝜅
(𝑠−𝑠
1
)/2

+
u

],𝜅
0

− k
0

H𝑠1

+
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠1
) ,

(5)

(3) (convergence rate in the𝐻𝑠2 norm with 𝑠 − 1 < 𝑠
2
< 𝑠)

u
],𝜅
(𝑡) − k(𝑡)

H𝑠2 +
𝜃

],𝜅
(𝑡) − 𝜌(𝑡)

𝐻𝑠2

≤ 𝐶
3
(]
(𝑠−𝑠
2
)/2

+ 𝜅
(𝑠−𝑠
2
)/2

+
u

],𝜅
0

− k
0



𝑠−𝑠
2

H𝑠−1

+
𝜃

],𝜅
0

− 𝜌
0



𝑠−𝑠
2

𝐻
𝑠−1
) ,

(6)

(4) (convergence in the𝐻𝑠 norm)
u

],𝜅
− k

𝐶([0,𝑇
0
];H𝑠)

+
𝜃

],𝜅
− 𝜌

𝐶([0,𝑇
0
];𝐻
𝑠
)
→ 0 as (], 𝜅) → 0,

(7)

where the constants 𝐶
𝑖
(𝑖 = 1, 2, 3) in (4)–(6) are dependent of

𝑇
0
and the𝐻𝑠 norm of the initial data (k

0
, 𝜌
0
), but independent

of the parameters ] and 𝜅.

Of course, we can generalize the previous results to
arbitrary spatial dimension case with 𝑠 > 3 replaced by 𝑠 >
(𝑛/2)+2.The important part ofTheorem 1 is the convergence
result (7). This result tells us that the 𝐻𝑠 convergence can
be maintained by the solution at its arbitrary existence time.
We emphasize that 𝑇∗ is not assumed to be small; indeed,
the standard energy estimate yields that the classical solution
(k, 𝜌) blows up at time𝑇∗ if and only if ‖k(𝑡)‖H𝑠 +‖𝜌(𝑡)‖𝐻𝑠 →
∞ as 𝑡 ↑ 𝑇∗. Note that the rate of𝐻𝑠 convergence depends on
howwe regularize our initial data; see (75) in the next section.
Moreover, if one allows more regularity on the initial data
(k
0
, 𝜌
0
), then we can obtain the following 𝐻

𝑠 convergence
rate.

Theorem 2. Suppose that the same assumptions as Theorem 1
hold. Moreover, one assumes that (v

0
, 𝜌
0
) ∈ H𝑠+𝛿 × 𝐻𝑠+𝛿 with

𝛿 ∈ (0, 2]. Then, for any 𝑡 ∈ [0, 𝑇
0
], there hold

u
],𝜅
(𝑡) − k (𝑡)

H𝑠 +
𝜃

],𝜅
(𝑡) − 𝜌 (𝑡)

𝐻𝑠

≤ 𝐶
4
(]
𝛿/2

+ 𝜅
𝛿/2

+
u

],𝜅
0

− k
0

H𝑠 +
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠
) ,

1 ≤ 𝛿 ≤ 2,

(8)
u

],𝜅
(𝑡) − k (𝑡)

H𝑠 +
𝜃

],𝜅
(𝑡) − 𝜌 (𝑡)

𝐻𝑠

≤ 𝐶
5
(]
𝛿/2

+ 𝜅
𝛿/2

+
u

],𝜅
0

− k
0

H𝑠 +
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠
)

+ 𝐶(
u

],𝜅
0

− k
0

H𝑠−2 +
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠−2
)
𝛿

, 0 < 𝛿 < 1,

(9)

where the constants𝐶
4
and𝐶

5
depend only on𝑇

0
, ‖V
0
‖H𝑠+𝛿 , and

‖𝜌
0
‖
𝐻
𝑠+𝛿 .

Finally, we end this section by setting some notations
which will be used throughout the paper. For 𝑝 ∈ [1,∞],
‖ ⋅ ‖
𝐿
𝑝 denotes the norm in the Lebesgue space 𝐿𝑝(R𝑛). We

set the operator 𝐽 := (𝐼 − Δ)
1/2, and for 𝑠 ∈ R, we denote

by 𝐻𝑠,𝑝(R𝑛) the nonhomogeneous Sobolev spaces with the
norm defined as

‖⋅‖
𝐻
𝑠,𝑝 :=

𝐽
𝑠

⋅
𝐿𝑝

. (10)

If 𝑝 = 2, for brevity, we write 𝐻𝑠(R𝑛) instead of 𝐻𝑠,2(R𝑛).
Obviously, 𝐻0(R𝑛) = 𝐿

2

(R𝑛). In some places, we use
the notation H𝑠(R𝑛;R𝑘) to mean that this space consists
of vector-valued functions f : R𝑛 → R𝑘 with each
component of f belonging to𝐻𝑠(R𝑛). If there is no confusion,
the spacesH𝑠(R𝑛) andH𝑠(R𝑛;R𝑘) will be simply denoted by
𝐻
𝑠. For f , g ∈ 𝐿2(R𝑛;R𝑘), we denote by ⟨f , g⟩ the usual inner

product of f and g; namely,

⟨f , g⟩ := ∫
R𝑛

f (x) ⋅ g (x) 𝑑x. (11)
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For any Banach space B, the space 𝐿𝑝(0, 𝑇;B) consists of all
strongly measurable functions u : [0, 𝑇] → B equipped with
the norm

‖u‖
𝐿
𝑝
(0,𝑇;B) := (∫

𝑇

0

‖u (𝑡)‖𝑃B𝑑𝑡)
1/𝑝

< ∞ (12)

for 1 ≤ 𝑝 < ∞, and

‖u‖
𝐿
∞
(0,𝑇;B) = ess sup

𝑡∈[0,𝑇]

‖u(𝑡)‖B < ∞. (13)

And the space 𝐶([0, 𝑇];B) denotes the set of continuous
functions u : [0, 𝑇] → B with

‖u‖
𝐶([0,𝑇];B) = max

𝑡∈[0,𝑇]

‖u(𝑡)‖B < ∞. (14)

In this paper, the letter 𝐶 is a generic constant and its
value may change at each appearance. Moreover, every 𝐶 is
independent of the parameters ] and 𝜅.

2. Proof of Theorem 1

In this section, we present the proof of Theorem 1. To this
goal, we need the following calculus inequality, the proof of
which can be found in [18, 19].

Lemma 3. Assume that 𝑠 > 0 and 𝑝 ∈ (1, +∞). If 𝑓, 𝑔 ∈

S(R𝑛), the Schwartz class, then
𝐽
𝑠

(𝑓𝑔) − 𝑓 (𝐽
𝑠

𝑔)
𝐿𝑝

≤ 𝐶 (
∇𝑓

𝐿𝑝1
𝑔
𝐻𝑠−1,𝑝2

+
𝑓
𝐻𝑠,𝑝3

𝑔
𝐿𝑝4

) ,

(15)

𝐽
𝑠

(𝑓𝑔)
𝐿𝑝

≤ 𝐶 (
𝑓
𝐿𝑝1

𝑔
𝐻𝑠,𝑝2

+
𝑓
𝐻𝑠,𝑝3

𝑔
𝐿𝑝4

) (16)

with 𝑝
2
, 𝑝
3
∈ (1, +∞) such that

1

𝑝
=

1

𝑝
1

+
1

𝑝
2

=
1

𝑝
3

+
1

𝑝
4

. (17)

Of course, Lemma 3 also holds when𝑓 and 𝑔 are replaced
by vector-valued functions. Using (15) and (16), we have the
following result.

Lemma 4. Let 𝑠 > 1 + (𝑛/2). Then,

(1) for any f , g ∈ H𝑠(R𝑛;R𝑛) ∩H𝑟(R𝑛;R𝑛) with ∇ ⋅ f = 0,
there hold

⟨𝐽
𝑟

((f ⋅ ∇) g) , 𝐽𝑟g⟩ ≤ 𝐶‖f‖
𝐻
𝑠

g


2

𝐻
𝑟 , 1 < 𝑟 ≤ 𝑠, (18)

⟨𝐽
𝑟

((f ⋅ ∇) g) , 𝐽𝑟g⟩

≤ 𝐶‖f‖
𝐻
𝑠

g


2

𝐻
𝑟 + 𝐶‖f‖𝐻𝑟

g
𝐻𝑟

g
𝐻𝑠

, 𝑟 > 𝑠;

(19)

(2) for any f ∈ H𝑠(R𝑛;R𝑛), g, h ∈ H𝑟(R𝑛;R𝑛) with 𝑟 ∈

[0, 𝑠 − 1], there holds
⟨𝐽
𝑟

((g ⋅ ∇) f) , 𝐽𝑟h⟩ ≤ 𝐶‖f‖
𝐻
𝑠

g
𝐻𝑟‖

h‖
𝐻
𝑟 . (20)

Proof. Using the divergence free condition and the commu-
nicator estimate (15), one sees

⟨𝐽
𝑟

((f ⋅ ∇) g) , 𝐽𝑟g⟩

=
⟨𝐽
𝑟

((f ⋅ ∇) g) − (f ⋅ 𝐽𝑟∇) g, 𝐽𝑟g⟩

≤ 𝐶 (‖∇f‖
𝐿
∞


𝐽
𝑟−1

∇g𝐿2 +
𝐽
𝑟f𝐿𝑝

∇g
𝐿𝑞

)
𝐽
𝑟g𝐿2

≤ 𝐶 (‖f‖
𝐻
𝑠

g
𝐻𝑟

+ ‖f‖
𝐻
𝑟,𝑝

g
𝐻1,𝑞

)
g
𝐻𝑟

,

(21)

where 𝑝 and 𝑞 satisfy 1/𝑝 + 1/𝑞 = 1/2 (1 < 𝑝 < ∞). Since
𝑠 > 1 + (𝑛/2) and 𝑟 ∈ (1, 𝑠], we can always choose 𝑝, 𝑞 such
that𝐻𝑠 → 𝐻

𝑟,𝑝 and𝐻𝑟−1 → 𝐿
𝑞. In the case 𝑟 > 𝑠, we choose

𝑝 = 2 and 𝑞 = ∞. Hence, the estimates (18) and (19) follow
immediately. For the estimate (20), the case 𝑟 = 0 is treated
by the Hölder inequality, and for 𝑟 > 0, we use (16); then,

⟨𝐽
𝑟

((g ⋅ ∇) f) , 𝐽𝑟h⟩

≤ 𝐶 (
𝐽
𝑟g𝐿2‖∇f‖𝐿∞ +

g
𝐿𝑝

𝐽
𝑟

∇f𝐿𝑞)
𝐽
𝑟h𝐿2

≤ 𝐶 (
g
𝐻𝑟‖

f‖
𝐻
𝑠 +

g
𝐿𝑝‖

f‖
𝐻
𝑟+1,𝑞) ‖h‖

𝐻
𝑟 .

(22)

With the condition, we can choose 𝑝 and 𝑞 satisfying𝐻𝑟 →
𝐿
𝑝, 𝐻𝑠 → 𝐻

𝑟+1,𝑞, and 1/𝑝 + 1/𝑞 = 1/2 (1 < 𝑝 < ∞), and
thus (20) follows.

To proveTheorem 1,we first establish the uniformbounds
for the solutions of (1) with the bound independent of ] and
𝜅.

Lemma 5. With the same hypotheses as Theorem 1, then there
exist 𝑇 > 0 and 𝐶 > 0 such that for sufficiently small ], 𝜅 > 0,
there holds

u
],𝜅𝐶([0,𝑇];𝐻𝑠)

+
𝜃

],𝜅𝐶([0,𝑇];𝐻𝑠)
≤ 𝐶 (23)

with 𝑇 and 𝐶 both depending only on the 𝐻𝑠 norm of (k
0
, 𝜌
0
)

and not depending on ] and 𝜅.

Proof. From the first equation of (1), we have

(𝐽
𝑠u],𝜅)
𝑡
+ 𝐽
𝑠

[(u],𝜅 ⋅ ∇) u],𝜅] + ∇𝐽𝑠𝑝],𝜅

= ]Δ𝐽
𝑠u],𝜅 + 𝐽𝑠𝜃],𝜅e

2
.

(24)

Multiplying this equation by 𝐽𝑠u],𝜅 and integrating the result,
while noting that

∫
R2
∇𝐽
𝑠

𝑝
],𝜅

⋅ 𝐽
𝑠u],𝜅𝑑𝑥 = −∫

R2
𝐽
𝑠

𝑝
],𝜅

⋅ 𝐽
𝑠

(∇ ⋅ u],𝜅) 𝑑𝑥 = 0,


∫
R2
𝐽
𝑠

[(u],𝜅 ⋅ ∇)u],𝜅] ⋅ 𝐽𝑠u],𝜅𝑑𝑥

≤ 𝐶

𝐽
𝑠u],𝜅
3

𝐿
2 ,

(25)

where we have used the estimate (18) in the previous inequal-
ity, then we obtain

1

2

𝑑

𝑑𝑡

𝐽
𝑠u],𝜅
2

𝐿
2 + ]

∇𝐽
𝑠u],𝜅
2

𝐿
2

≤ 𝐶
𝐽
𝑠u],𝜅
3

𝐿
2 +

𝐽
𝑠u],𝜅𝐿2

𝐽
𝑠

𝜃
],𝜅𝐿2

,

(26)
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which gives

𝑑

𝑑𝑡

u
],𝜅𝐻𝑠

≤ 𝐶
u

],𝜅

2

𝐻
𝑠 +

𝜃
],𝜅𝐻𝑠

. (27)

Using the same argument to the second equation of (1), we
can obtain

1

2

𝑑

𝑑𝑡

𝐽
𝑠

𝜃
],𝜅

2

𝐿
2 + 𝜅

∇𝐽
𝑠

𝜃
],𝜅

2

𝐿
2 ≤ 𝐶

𝐽
𝑠u],𝜅𝐿2

𝐽
𝑠

𝜃
],𝜅

2

𝐿
2 . (28)

Then, we have

𝑑

𝑑𝑡

𝜃
],𝜅𝐻𝑠

≤ 𝐶
u

],𝜅𝐻𝑠
𝜃

],𝜅𝐻𝑠
. (29)

Hence, it concludes from the estimates (27) and (29) that

𝑑

𝑑𝑡
𝜑
],𝜅
(𝑡) ≤ 𝐶(𝜑

],𝜅
(𝑡))
2

,

𝜑
],𝜅
(𝑡) :=

u
],𝜅
(𝑡)
𝐻𝑠

+
𝜃

],𝜅
(𝑡)
𝐻𝑠

+ 1.

(30)

Solving this ODE gives

𝜑
],𝜅
(𝑡) ≤

𝜑
],𝜅
(0)

1 − 𝐶𝜑],𝜅
(0) 𝑡

. (31)

Since (3) holds, we may assume 𝜑],𝜅
(0) ≤ 𝐶

0
for small ] and

𝜅 that here,𝐶
0
depends only on ‖k

0
‖
𝐻
𝑠 and ‖𝜌

0
‖
𝐻
𝑠 . Hence, we

finally arrive at

𝜑
],𝜅
(𝑡) ≤

𝐶
0

1 − 𝐶𝐶
0
𝑡
. (32)

The estimate (23) follows from the previous inequality pro-
vided that we select 𝑇 such that 𝑇 < 1/𝐶𝐶

0
(e.g., we can

choose 𝑇 = 1/2𝐶𝐶
0
).The proof of Lemma 5 is complete.

Remark 6. From the proof of Lemma 5, we also see the
solution of system (2) satisfying

‖k‖
𝐶([0,𝑇];𝐻

𝑠
)
+
𝜌
𝐶([0,𝑇];𝐻𝑠)

≤ 𝐶, (33)

where 𝑇 and 𝐶 are the same as (23).

Remark 7. For fixed 𝑇
0
∈ (0, 𝑇

∗

), without loss of generality,
we may assume that the time 𝑇 determined by Lemma 5
satisfies 𝑇 < 𝑇

0
. Indeed, as will be seen in the proof of

Theorem 1, no matter how small the 𝑇 is, we can always use
bootstrap argument to extend the interval [0, 𝑇] into our
desired time interval [0, 𝑇

0
].

In the following, we define w],𝜅
:= u],𝜅 − k and 𝜒

],𝜅
:=

𝜃
],𝜅

− 𝜌. Considering the equations, for (u],𝜅, 𝜃],𝜅) and (k, 𝜌),
we see (w],𝜅

, 𝜒
],𝜅
) satisfying

w],𝜅
𝑡

+ (k ⋅ ∇)w],𝜅
+ (w],𝜅

⋅ ∇)u],𝜅 + ∇ (𝑝],𝜅
− 𝜋)

= ]Δw],𝜅
+ ]Δk + 𝜒

],𝜅e
2
,

𝜒
],𝜅
𝑡

+ (k ⋅ ∇) 𝜒
],𝜅

+ (w],𝜅
⋅ ∇) 𝜃

],𝜅
= 𝜅Δ𝜒

],𝜅
+ 𝜅Δ𝜌,

∇ ⋅ w],𝜅
= 0,

w],𝜅
|
𝑡=0

= u],𝜅
0

− k
0
,

𝜒
],𝜅
|
𝑡=0

= 𝜃
],𝜅
0

− 𝜌
0
.

(34)

For the sake of convenience, we often omit the superscripts
] and 𝜅 in the succeeding arguments; hence, wmeans w],𝜅, 𝜃
stands for 𝜃],𝜅, and so on.

Proof of Theorem 1. We split the proof into several steps.

Step 1. We first show that (4) holds on [0, 𝑇]. By using (18)
and (20) with 𝑟 = 𝑠 − 2, we can obtain the𝐻𝑠−2 energy for w
as

1

2

𝑑

𝑑𝑡
‖w‖2
𝐻
𝑠−2 + ]‖∇w‖2

𝐻
𝑠−2

≤ 𝐶 (‖k‖
𝐻
𝑠 + ‖u‖

𝐻
𝑠) ‖w‖2

𝐻
𝑠−2

+ ]‖Δk‖
𝐻
𝑠−2‖w‖

𝐻
𝑠−2 +

𝜒
𝐻𝑠−2‖

w‖
𝐻
𝑠−2

≤ 𝐶‖w‖2
𝐻
𝑠−2 + 𝐶]‖w‖

𝐻
𝑠−2 +

𝜒
𝐻𝑠−2‖

w‖
𝐻
𝑠−2 ,

(35)

where we have used the uniform estimates (23) and (33) in
the last step. Hence, we get

𝑑

𝑑𝑡
‖w‖
𝐻
𝑠−2 ≤ 𝐶‖w‖

𝐻
𝑠−2 + 𝐶] +

𝜒
𝐻𝑠−2

. (36)

Similarly, the𝐻𝑠−2 energy estimate for 𝜒 can be written as

1

2

𝑑

𝑑𝑡

𝜒


2

𝐻
𝑠−2 + 𝜅

∇𝜒


2

𝐻
𝑠−2

≤ 𝐶 (‖Δk‖
𝐻
𝑠

𝜒


2

𝐻
𝑠−2 + ‖w‖𝐻𝑠−2‖𝜃‖𝐻𝑠

𝜒
𝐻𝑠−2

)

+ 𝜅
Δ𝜌

𝐻𝑠−2
𝜒
𝐻𝑠−2

≤ 𝐶
𝜒


2

𝐻
𝑠−2 + 𝐶‖w‖𝐻𝑠−2

𝜒
𝐻𝑠−2

+ 𝐶𝜅
𝜒
𝐻𝑠−2

(37)

which gives

𝑑

𝑑𝑡

𝜒
𝐻𝑠−2

≤ 𝐶
𝜒
𝐻𝑠−2

+ 𝐶‖w‖
𝐻
𝑠−2 + 𝐶𝜅. (38)

Therefore, one has

𝑑

𝑑𝑡
𝜙
1
(𝑡) ≤ 𝐶𝜙

1
(𝑡) + 𝐶] + 𝐶𝜅,

𝜙
1
(𝑡) := ‖w (𝑡)‖

𝐻
𝑠−2 +

𝜒 (𝑡)
𝐻𝑠−2

.

(39)

Then, the Gronwall inequality yields that for all 𝑡 ∈ [0, 𝑇](⊂

[0, 𝑇
0
]),

𝜙
1
(𝑡) ≤ 𝑒

𝐶𝑡

𝜙
1
(0) + 𝐶 (] + 𝜅) 𝑡𝑒

𝐶𝑡

≤ 𝐶
1
(𝜙
1
(0) + ] + 𝜅) ,

(40)

where 𝐶
1
:= 𝑒
𝐶𝑇
0(1 + 𝐶𝑇

0
) with 𝐶 depending on ‖V

0
‖
𝐻
𝑠 and

‖𝜌
0
‖
𝐻
𝑠 .
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Step 2. We show that (5) holds on [0, 𝑇]. Applying the
estimates (18) and (20) with 𝑟 = 𝑠

1
, then we can easily obtain

the𝐻𝑠1 energy for w as

1

2

𝑑

𝑑𝑡
‖w‖2
𝐻
𝑠
1
+ ]‖∇w‖2

𝐻
𝑠
1

≤ 𝐶 (‖k‖
𝐻
𝑠 + ‖u‖

𝐻
𝑠) ‖w‖2

𝐻
𝑠
1

+ ]‖∇k‖
𝐻
𝑠−1‖∇w‖

𝐻
2𝑠
1
−𝑠+1 +

𝜒
𝐻𝑠1 ‖

w‖
𝐻
𝑠
1

≤ 𝐶‖w‖2
𝐻
𝑠
1
+ 𝐶]‖∇w‖

𝐻
2𝑠
1
−𝑠+1 +

𝜒
𝐻𝑠1 ‖

w‖
𝐻
𝑠
1
.

(41)

Since 𝑠
1
∈ (𝑠 − 2, 𝑠 − 1], we have 𝑠

1
− 1 < 2𝑠

1
− 𝑠 + 1 ≤

𝑠
1
. By the Gagliardo-Nirenberg interpolation inequality and

Young’s inequality, we have

𝐶‖∇w‖
𝐻
2𝑠
1
−𝑠+1

≤ 𝐶‖∇w‖𝑠−𝑠1−1
𝐻
𝑠
1
−1
‖∇w‖2−𝑠+𝑠1
𝐻
𝑠
1

≤ 𝐶‖w‖2(𝑠−𝑠1−1)/(𝑠−𝑠1)
𝐻
𝑠
1

+ ‖∇w‖2
𝐻
𝑠
1
.

(42)

Inserting this inequality into (41) and using Young’s inequal-
ity again, we thus get

1

2

𝑑

𝑑𝑡
‖∇w‖2
𝐻
𝑠
1

≤ 𝐶‖∇w‖2
𝐻
𝑠
1
+ 𝐶]‖w‖2(𝑠−𝑠1−1)/(𝑠−𝑠1)

𝐻
𝑠
1

+
𝜒
𝐻𝑠1 ‖

w‖
𝐻
𝑠
1

≤ 𝐶‖w‖2
𝐻
𝑠
1
+ 𝐶]
𝑠−𝑠
1 + 𝐶

𝜒


2

𝐻
𝑠
1
.

(43)

With similar argument as abovementioned, we can also
obtain the𝐻𝑠1 energy for 𝜒 as

1

2

𝑑

𝑑𝑡

𝜒


2

𝐻
𝑠
1
≤ 𝐶

𝜒


2

𝐻
𝑠
1
+ 𝐶‖w‖2

𝐻
𝑠
1
+ 𝐶𝜅
𝑠−𝑠
1 . (44)

The previous two estimates give

𝑑

𝑑𝑡
𝜙
2
(𝑡) ≤ 𝐶𝜙

2
(𝑡) + 𝐶]

𝑠−𝑠
1 + 𝐶𝜅

𝑠−𝑠
1 ,

𝜙
2
(𝑡) := ‖w(𝑡)‖2

𝐻
𝑠
1
+
𝜒(𝑡)



2

𝐻
𝑠
1
,

(45)

and by the Gronwall inequality we get

𝜙
2
(𝑡) ≤ 𝑒

𝐶𝑡

𝜙
2
(0) + 𝐶 (]

𝑠−𝑠
1 + 𝜅
𝑠−𝑠
1) 𝑡𝑒
𝐶𝑡

≤ 𝐶
2
(𝜙
2
(0) + ]

𝑠−𝑠
1 + 𝜅
𝑠−𝑠
1) ,

∀𝑡 ∈ [0, 𝑇] ,

(46)

which implies that the estimate (5) holds on [0, 𝑇] with 𝐶
2
:=

𝑒
𝐶𝑇
0(1 + 𝐶𝑇

0
).

Step 3. To prove (7), we need to regularize the initial data.
Define 𝜓(𝑥) ∈ 𝐶∞

0
(R2) by

𝜓 (𝑥) =

{

{

{

𝑐
0
exp(− 1

1 − |𝑥|
2
) , |𝑥| < 1,

0, |𝑥| ≥ 1,

(47)

where the constant 𝑐
0
is selected so that ∫

R2
𝜓(𝑥)𝑑𝑥 = 1. Let

𝜓
𝜖
(𝑥) = 𝜖

−2

𝜌(𝜖
−1

𝑥), and define the mollification J
𝜖
𝑓 of 𝑓 ∈

𝐿
1

loc(R
2

) by (J
𝜖
𝑓)(𝑥) = (𝜓

𝜖
∗ 𝑓)(𝑥). By this definition, one

can seeJ
𝜖
𝑓 ∈ 𝐶

∞; moreover, if 𝑓 ∈ 𝐻
𝑠, we haveJ

𝜖
𝑓 → 𝑓

in𝐻𝑠 as 𝜖 → 0 and

Lim
𝜖→0

J𝜖𝑓 − 𝑓
𝑠−𝑘

≤ 𝐶
𝑠𝑘
𝜖
𝑘𝑓

𝑠
,

J𝜖𝑓
𝑠+𝑘

≤
𝐶
𝑠𝑘

𝜖𝑘

𝑓
𝑠
.

(48)

For the proof of these properties, see Lemma 3.5 in [20]. Now
let (k𝜖, 𝜌𝜖) be the solution of the inviscid system (2) with
initial data (J

𝜖
k
0
,J
𝜖
𝜌
0
); namely, (k𝜖, 𝜌𝜖) solves the equations

k
𝜖

𝑡
+ (k
𝜖

⋅ ∇) k
𝜖

+ ∇𝜋
𝜖

= 𝜌
𝜖e
2
,

𝜌
𝜖

𝑡
+ (k
𝜖

⋅ ∇) 𝜌
𝜖

= 0,

∇ ⋅ k
𝜖

= 0,

k
𝜖

|
𝑡=0

= J
𝜖
k
0
, 𝜌
𝜖

|
𝑡=0

= J
𝜖
𝜌
0
.

(49)

So, the𝐻𝑠 energy for k𝜖 and 𝜌𝜖 can be written as
1

2

𝑑

𝑑𝑡

k
𝜖

2

𝐻
𝑠 ≤ 𝐶

k
𝜖

3

𝐻
𝑠 +

k
𝜖𝐻𝑠

𝜌
𝜖𝐻𝑠

,

1

2

𝑑

𝑑𝑡

𝜌
𝜖

2

𝐻
𝑠 ≤ 𝐶

k
𝜖𝐻𝑠

𝜌
𝜖

2

𝐻
𝑠 .

(50)

With the same discussion as Lemma 5, we know that there
exist 𝑇 > 0 and 𝐶 > 0 both only depending on the𝐻𝑠 norm
of (k
0
, 𝜌
0
) such that

k
𝜖𝐶([0,𝑇];𝐻𝑠)

+
𝜌
𝜖𝐶([0,𝑇];𝐻𝑠)

≤ 𝐶. (51)

Moreover, taking the𝐻𝑠+𝑘 energy for k𝜖 and 𝜌𝜖 and using (19),
then for 𝑘 ∈ N+,

1

2

𝑑

𝑑𝑡

k
𝜖

2

𝐻
𝑠+𝑘

≤ 𝐶
k
𝜖𝐻𝑠

k
𝜖

2

𝐻
𝑠+𝑘

+
k
𝜖𝐻𝑠+𝑘

𝜌
𝜖𝐻𝑠+𝑘

≤ 𝐶
k
𝜖

2

𝐻
𝑠+𝑘

+ 𝐶
𝜌
𝜖

2

𝐻
𝑠+𝑘 ,

(52)

1

2

𝑑

𝑑𝑡

𝜌
𝜖

2

𝐻
𝑠+𝑘

≤ 𝐶
k
𝜖𝐻𝑠

𝜌
𝜖

2

𝐻
𝑠+𝑘

+ 𝐶
k
𝜖𝐻𝑠+𝑘

𝜌
𝜖𝐻𝑠+𝑘

𝜌
𝜖𝐻𝑠

≤ 𝐶
k
𝜖

2

𝐻
𝑠+𝑘 + 𝐶

𝜌
𝜖

2

𝐻
𝑠+𝑘 .

(53)

Using (48), we deduce from the Previous energy estimate that

k
𝜖𝐶([0,𝑇];𝐻𝑠+𝑘)

+
𝜌
𝜖𝐶([0,𝑇];𝐻𝑠+𝑘)

≤
𝐶𝑒
𝐶𝑇
0

𝜖𝑘
, 𝑘 ∈ N

+ (54)

where 𝐶 depends only on 𝑘, ‖k
0
‖
𝐻
𝑠 , and ‖𝜌

0
‖
𝐻
𝑠 . Without loss

of generality, in the following, we may assume 𝑇 = 𝑇, where
that 𝑇 is determined by Lemma 5.
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Step 4. Set k̃𝜖 = k𝜖 − k and 𝜌𝜖 = 𝜌
𝜖

− 𝜌; then, from (2) and
(49), we know that (k̃𝜖, 𝜌𝜖) satisfies

k̃
𝜖

𝑡
+ (k ⋅ ∇) k̃

𝜖

+ (k̃
𝜖

⋅ ∇) k
𝜖

+ ∇ (𝜋
𝜖

− 𝜋) = 𝜌
𝜖e
2
,

𝜌
𝜖

𝑡
+ (k ⋅ ∇) 𝜌

𝜖

+ (k̃
𝜖

⋅ ∇) 𝜌
𝜖

= 0.

(55)

Using (18) with 𝑟 = 𝑠, we have

⟨𝐽
𝑠

((k
𝜖

⋅ ∇) k̃
𝜖

) , 𝐽
𝑠

k̃
𝜖

⟩
 ≤ 𝐶

k
𝜖𝐻𝑠

k̃
𝜖

2

𝐻
𝑠 . (56)

By the Cauchy-Schwarz inequality and (16), one has

⟨𝐽
𝑠

((k̃
𝜖

⋅ ∇) k
𝜖

) , 𝐽
𝑠

k̃
𝜖

⟩


≤ 𝐶 (
𝐽
𝑠

k̃
𝜖𝐿2

∇k
𝜖𝐿∞

+
k̃
𝜖𝐿∞

𝐽
𝑠

∇k
𝜖𝐿2

)
𝐽
𝑠

k̃
𝜖𝐿2

≤ 𝐶 (
k̃
𝜖𝐻𝑠

k
𝜖𝐻𝑠

+
k̃
𝜖𝐿∞

k
𝜖𝐻𝑠+1

)
k̃
𝜖𝐻𝑠

.

(57)

With these two estimates, it is easy to obtain the following𝐻𝑠
energy estimate for k̃𝜖:

1

2

𝑑

𝑑𝑡

k̃
𝜖

2

𝐻
𝑠

≤ 𝐶 (
k
𝜖𝐻𝑠

+ ‖k‖
𝐻
𝑠)
k̃
𝜖

2

𝐻
𝑠

+ 𝐶
k̃
𝜖𝐿∞

k
𝜖𝐻𝑠+1

k̃
𝜖𝐻𝑠

+
𝜌
𝜖𝐻𝑠

k̃
𝜖𝐻𝑠

≤ 𝐶
k̃
𝜖

2

𝐻
𝑠 + 𝐶𝑒

𝐶𝑇
0𝜖
−1k̃
𝜖𝐿∞

k̃
𝜖𝐻𝑠

+
𝜌
𝜖𝐻𝑠

k̃
𝜖𝐻𝑠

,

(58)

where we have used (54) and the uniform estimate (51) in
the last step. Similarly, we can obtain the following𝐻𝑠 energy
estimate for 𝜌𝜖:

1

2

𝑑

𝑑𝑡

𝜌
𝜖

2

𝐻
𝑠

≤ 𝐶 (‖k‖
𝐻
𝑠 +

𝜌
𝜖𝐻𝑠

)
𝜌
𝜖

2

𝐻
𝑠

+ 𝐶
k̃
𝜖𝐿∞

𝜌
𝜖𝐻𝑠+1

𝜌
𝜖𝐻𝑠

≤ 𝐶
𝜌
𝜖

2

𝐻
𝑠 + 𝐶𝑒

𝐶𝑇
0𝜖
−1k̃
𝜖𝐿∞

𝜌
𝜖𝐻𝑠

.

(59)

Now, we have to estimate ‖ k̃𝜖‖
𝐿
∞ . From (55), we take the𝐻𝑠−2

energy for (k̃𝜖, 𝜌𝜖) and obtain (using (18) and (20))

1

2

𝑑

𝑑𝑡

k̃
𝜖

2

𝐻
𝑠−2

≤ 𝐶
k̃
𝜖

2

𝐻
𝑠−2 + 𝐶

𝜌
𝜖𝐻𝑠−2

k̃
𝜖𝐻𝑠−2

,

(60)

1

2

𝑑

𝑑𝑡

𝜌
𝜖

2

𝐻
𝑠−2

≤ 𝐶
𝜌
𝜖

2

𝐻
𝑠−2 + 𝐶

𝜌
𝜖𝐻𝑠−2

k̃
𝜖𝐻𝑠−2

;

(61)

Then, the Gronwall inequality and (48) yield
k̃
𝜖

(𝑡)
𝐻𝑠−2

+
𝜌
𝜖

(𝑡)
𝐻𝑠−2

≤ 𝑒
𝐶𝑇
0 (
k̃
𝜖

(0)
𝐻𝑠−2

+
𝜌
𝜖

(0)
𝐻𝑠−2

)

≤ 𝐶𝑒
𝐶𝑇
0𝜖
2

,

(62)

for all 𝑡 ∈ [0, 𝑇], which in turn by Sobolev embedding
theorem gives ‖k̃𝜖(𝑡)‖

𝐿
∞ + ‖𝜌

𝜖

(𝑡)‖
𝐿
∞ ≤ 𝐶𝑒

𝐶𝑇
0𝜖
2 since 𝑠 > 3.

Inserting this estimate into (58) and (59), we can see

𝑑

𝑑𝑡
𝜙
3
≤ 𝐶𝑒
𝐶𝑇
0𝜙
3
+ 𝐶𝑒
𝐶𝑇
0𝜖, 𝜙

3
:=
k̃
𝜖𝐻𝑠

+
𝜌
𝜖𝐻𝑠

, (63)

where we have used the relation 𝑒𝐶𝑇0 ⋅ 𝑒𝐶𝑇0 = 𝑒
2𝐶𝑇
0 =: 𝑒
𝐶𝑇
0 in

the last step since the value of 𝐶 at each appearance may be
different. Hence, the Gronwall inequality gives

𝜙
3
(𝑡) ≤ 𝑒

𝐶𝑇
0
𝑒
𝐶𝑇
0

(1 + 𝐶𝑇
0
𝑒
𝐶𝑇
0) (𝜙
3
(0) + 𝜖) ,

∀𝑡 ∈ [0, 𝑇] .

(64)

Step 5. Let U𝜖 = u − k𝜖, Θ𝜖 = 𝜃 − 𝜌
𝜖, and recall that here

u = u],𝜅 and 𝜃 = 𝜃
],𝜅; so, one can deduce from (2) and (55)

that (U𝜖, Θ𝜖) solves

U𝜖
𝑡
+ (u ⋅ ∇)U𝜖 + (U𝜖 ⋅ ∇) k𝜖 + ∇ (𝑝 − 𝜋𝜖)

= ]ΔU𝜖 + ]Δk
𝜖

+ Θ
𝜖e
2
,

Θ
𝜖

𝑡
+ (u ⋅ ∇)Θ𝜖 + (U𝜖 ⋅ ∇) 𝜌𝜖 = 𝜅ΔΘ

𝜖

+ 𝜅Δ𝜌
𝜖

.

(65)

Using the same reasonings that lead to (58), we have the 𝐻𝑠
energy estimate for U𝜖 as

1

2

𝑑

𝑑𝑡

U
𝜖

2

𝐻
𝑠 + ]

∇U
𝜖

2

𝐻
𝑠

≤ 𝐶 (‖u‖
𝐻
𝑠 +

k
𝜖𝐻𝑠

)
U
𝜖

2

𝐻
𝑠

+ 𝐶
k
𝜖𝐻𝑠+1

U
𝜖𝐿∞

U
𝜖𝐻𝑠

+ ]
k
𝜖𝐻𝑠+2

U
𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

U
𝜖𝐻𝑠

≤ 𝐶
U
𝜖

2

𝐻
𝑠 + 𝐶𝑒

𝐶𝑇
0𝜖
−1U
𝜖𝐿∞

U
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0]𝜖
−2U
𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

U
𝜖𝐻𝑠

,

(66)

which yields

𝑑

𝑑𝑡

U
𝜖𝐻𝑠

≤ 𝐶
U
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0𝜖
−1U
𝜖𝐿∞

+ 𝐶𝑒
𝐶𝑇
0]𝜖
−2

+
Θ
𝜖𝐻𝑠

.

(67)

Similarly, we can obtain the𝐻𝑠 energy for Θ𝜖 as

𝑑

𝑑𝑡

Θ
𝜖𝐻𝑠

≤ 𝐶
Θ
𝜖𝐻𝑠

+ 𝐶
U
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0𝜖
−1U
𝜖𝐿∞

+ 𝐶𝑒
𝐶𝑇
0𝜅𝜖
−2

.

(68)
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Now, we should estimate ‖ U𝜖‖
𝐿
∞ . Note that U𝜖 = w − k̃𝜖; so,

U
𝜖𝐿∞

≤ ‖w‖
𝐿
∞ +

k̃
𝜖𝐿∞

. (69)

By (40), (62), and Sobolev embedding theorem, we have

‖w‖
𝐿
∞
(0,𝑇;𝐿

∞
)
≤ 𝐶‖w‖

𝐿
∞
(0,𝑇;𝐻

𝑠−2
)
≤ 𝐶
1
(𝜙
1
(0) + ] + 𝜅) ,

k̃
𝜖𝐿∞(0,𝑇;𝐿∞)

≤ 𝐶
k̃
𝜖𝐿∞(0,𝑇;𝐻𝑠−2)

≤ 𝐶𝑒
𝐶𝑇
0𝜖
2

,

(70)

which gives

U
𝜖𝐿∞

≤ 𝐶
∗

(𝜙
1
(0) + ] + 𝜅 + 𝜖

2

) ,

𝐶
∗

:= max {𝐶
1
, 𝐶𝑒
𝐶𝑇
0} .

(71)

Inserting this estimate into (67) and (68), one has

𝑑

𝑑𝑡
𝜙
4
≤ 𝐶𝜙
4
+ 𝐶𝑒
𝐶𝑇
0𝜖
−1U
𝜖𝐿∞

+ 𝐶𝑒
𝐶𝑇
0

(] + 𝜅) 𝜖
−2

≤ 𝐶𝜙
4
+ 𝐶𝑒
𝐶𝑇
0𝜖
−1

𝐶
∗

(𝜙
1
(0) + ] + 𝜅 + 𝜖

2

)

+ 𝐶𝑒
𝐶𝑇
0

(] + 𝜅) 𝜖
−2

≤ 𝐶
∗∗

𝜙
4
+ 𝐶
∗∗

𝜖 + 𝐶
∗∗

𝜖
−1

𝜙
1
(0) + 𝐶

∗∗

𝜖
−2

(] + 𝜅) ,

(72)

where 𝜙
4

:= ‖U𝜖‖
𝐻
𝑠 + ‖Θ

𝜖

‖
𝐻
𝑠 and 𝐶

∗∗

:= max{𝐶,
𝐶𝑒
𝐶𝑇
0𝐶
∗

, 𝐶𝑒
𝐶𝑇
0}. By the Gronwall inequality, one obtains

𝜙
4
(𝑡)

≤ 𝑒
𝐶
∗∗

𝑇
0 (1 + 𝐶

∗∗

𝑇
0
)

× (𝜙
4
(0) + 𝜖 + 𝜖

−1

𝜙
1
(0) + 𝜖

−2

(] + 𝜅)) .

(73)

Recall that

w = U𝜖 + k̃
𝜖

, 𝜒 = Θ
𝜖

+ 𝜌
𝜖

; (74)

therefore, it follows from (64) and (73) that

‖w (𝑡)‖
𝐻
𝑠 +

𝜒 (𝑡)
𝐻𝑠

≤ 𝜙
3
(𝑡) + 𝜙

4
(𝑡)

≤ 𝐶 (𝜙
3
(0) + 𝜙

4
(0) + 𝜖 + 𝜖

−1

𝜙
1
(0) + 𝜖

−2

(] + 𝜅))

≤ 2𝐶 (𝜙
3
(0) + ‖w (0)‖

𝐻
𝑠 +

𝜒 (0)
𝐻𝑠

+𝜖 + 𝜖
−1

𝜙
1
(0) + 𝜖

−2

(] + 𝜅))

(75)

for all 𝑡 ∈ [0, 𝑇], where we use 𝜙
4
(0) ≤ 𝜙

1
(0) + 𝜙

3
(0) in the

last step and

𝐶 := max {𝑒𝐶
∗∗

𝑇
0 (1 + 𝐶

∗∗

𝑇
0
) , 𝑒
𝐶𝑇
0
𝑒
𝐶𝑇
0

(1 + 𝐶𝑇
0
𝑒
𝐶𝑇
0)} .

(76)

Note that (3) gives

‖w (0)‖
𝐻
𝑠 +

𝜒 (0)
𝐻𝑠

=
u

],𝜅
0

− k
0

𝐻𝑠
+
𝜃

],𝜅
0

− 𝜌
0

𝐻𝑠
→ 0

(77)

as (], 𝜅) → 0, and the property of the operatorJ
𝜖
yields

𝜙
3
(0) =

k̃
𝜖

(0)
𝐻𝑠

+
𝜌
𝜖

(0)
𝐻𝑠

=
k
𝜖

(0) − k (0)
𝐻𝑠

+
𝜌
𝜖

(0) − 𝜌 (0)
𝐻𝑠

=
J𝜖k0 − k

0

𝐻𝑠
+
J𝜖𝜌0 − 𝜌0

𝐻𝑠
→ 0

(78)

as 𝜖 → 0. Now, we choose 𝜖 = 𝜖(], 𝜅) > 0 satisfying the
following properties:

(1) lim
(],𝜅)→0𝜖 = 0,

(2) lim
(],𝜅)→0𝜖

−1

𝜙
1
(0) = lim

(],𝜅)→0𝜖
−1

(‖ u],𝜅
0
− k
0
‖
𝐻
𝑠−2+ ‖

𝜃
],𝜅
0

− 𝜌
0
‖
𝐻
𝑠−2) = 0,

(3) lim
(],𝜅)→0𝜖

−2

(] + 𝜅) = 0.

Hence, combining the previous convergence results, it is easy
to obtain from (75) that

lim
(],𝜅)→0

(
w

],𝜅𝐶([0,𝑇];𝐻𝑠)
+
𝜒

],𝜅𝐶([0,𝑇];𝐻𝑠)
) = 0. (79)

Step 6. By now, we have proved that (4), (5), and (7) hold on
the time interval [0, 𝑇]. Now our aim is to show that these
three results still hold on [0, 𝑇

0
]. Define 𝑇

1
:= 𝑇; now choose

(u],𝜅(𝑇
1
), 𝜃

],𝜅
(𝑇
1
)) and (k(𝑇

1
), 𝜌(𝑇
1
)) as the new initial data,

and one can see that the limit relation (3) still holds in the time
𝑇
1
. Moreover, from Lemma 3, we know that ‖u],𝜅(𝑇

1
)‖
𝐻
𝑠 ,

‖𝜃
],𝜅
(𝑇
1
)‖
𝐻
𝑠 , ‖k(𝑇

1
)‖
𝐻
𝑠 , and ‖𝜌(𝑇

1
)‖
𝐻
𝑠 depend only on the

𝐻
𝑠 norm of the initial data (k

0
, 𝜌
0
). Then, we repeat the

previous argument and find a positive sequence {𝑇
𝑘
}
∞

𝑘=1
such

that (4), (5), and (7) hold on [0, 𝑇
1
+ ⋅ ⋅ ⋅ + 𝑇

𝑘
]. We assert that

∑
∞

𝑘=1
𝑇
𝑘
= 𝑇
∗. Indeed, if ∑∞

𝑘=1
𝑇
𝑘
= �̃� < 𝑇

∗, and then the
blow-up criterion implies that we can still extend [0, �̃�] to
some bigger interval, so we can continue this procedure as
long as ‖k(𝑡)‖

𝐻
𝑠 +‖𝜌(𝑡)‖

𝐻
𝑠 < ∞, and by the blow up criterion

again, we get our assertion. Since 𝑇
0
< 𝑇
∗, after finite times

iteration, we obtain the convergence results (4), (5), and (7).
Finally, since (7) holds, we have ‖u],𝜅 − k‖

𝐶([0,𝑇
0
];𝐻
𝑠
)
+

‖𝜃
],𝜅

− 𝜌‖
𝐶([0,𝑇

0
];𝐻
𝑠
)
≤ 𝐶; then, the convergence result (6)

follows from (5) and the following interpolation inequality:

𝑓
𝐻𝑠
 ≤ 𝐶

𝑓


𝑠−𝑠


𝐻
𝑠−1

𝑓


1−(𝑠−𝑠


)

𝐻
𝑠 , 𝑠



∈ [𝑠 − 1, 𝑠] . (80)

Therefore, we finish the proof of Theorem 1.

3. The 𝐻𝑠 Convergence Rate with Some Loss of
Derivatives

In this section, we will prove Theorem 2, and we still use the
same notations that are used in the proof of Theorem 1.

Proof of Theorem 2. Since (7) holds, without loss of general-
ity, we may assume that

‖u‖
𝐶([0,𝑇

0
];𝐻
𝑠
)
+ ‖𝜃‖
𝐶([0,𝑇

0
];𝐻
𝑠
)
≤ 𝐶 (81)

for small ] and 𝜅. By the extra regularity of the initial data
(k
0
, 𝜌
0
), using the same reasonings that lead to (54) and the



8 Abstract and Applied Analysis

same extension method as Step 6 in the proof of Theorem 1,
then we obtain

k
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+𝛿
)
+
𝜌
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+𝛿
)
≤ 𝐶, (82)

k
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+2
)
+
𝜌
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+2
)
≤ 𝐶𝑒
𝐶𝑇
0𝜖
𝛿−2

. (83)

Now the proof is divided into two cases.

Case 1 (0 ≤ 𝛿 ≤ 2). In this case, the estimate (82) implies
k
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+1
)
+
𝜌
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+1
)
≤ 𝐶. (84)

Using the estimates ‖k̃𝜖‖
𝐿
∞ ≤ 𝐶‖k̃𝜖‖

𝐻
𝑠 and (84), we deduce

from the first inequality of (58) that

1

2

𝑑

𝑑𝑡

k̃
𝜖

2

𝐻
𝑠 ≤ 𝐶

k̃
𝜖

2

𝐻
𝑠 +

𝜌
𝜖𝐻𝑠

k̃
𝜖𝐻𝑠

. (85)

Similarly, one can infer from the first inequality of (59) that

1

2

𝑑

𝑑𝑡

𝜌
𝜖

2

𝐻
𝑠 ≤ 𝐶

𝜌
𝜖

2

𝐻
𝑠 + 𝐶

𝜌
𝜖𝐻𝑠

k̃
𝜖𝐻𝑠

. (86)

The previous two inequalities together with (48) give

k̃
𝜖

(𝑡)
𝐻𝑠

+
𝜌
𝜖

(𝑡)
𝐻𝑠

≤ 𝐶𝑒
𝐶𝑇
0𝜖
𝛿

, ∀𝑡 ∈ [0, 𝑇
0
] . (87)

On the other hand, from (81) and the first inequality of (66),
we can get

1

2

𝑑

𝑑𝑡

U
𝜖

2

𝐻
𝑠 ≤ 𝐶

U
𝜖

2

𝐻
𝑠

+ ]
k
𝜖𝐻𝑠+2

U
𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

U
𝜖𝐻𝑠

≤ 𝐶
U
𝜖

2

𝐻
𝑠 + 𝐶𝑒

𝐶𝑇
0]𝜖
𝛿−2U

𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

U
𝜖𝐻𝑠

,

(88)

where we have used (83) in the last step. Simultaneously, the
𝐻
𝑠 energy estimate for Θ𝜖 is estimated as

1

2

𝑑

𝑑𝑡

Θ
𝜖

2

𝐻
𝑠 ≤ 𝐶

Θ
𝜖

2

𝐻
𝑠

+ 𝐶
Θ
𝜖𝐻𝑠

U
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0𝜅𝜖
𝛿−2Θ

𝜖𝐻𝑠
.

(89)

Then Gronwall inequality yields that
U
𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

≤ 𝑒
𝐶𝑇
0
𝑒
𝐶𝑇
0

(1 + 𝐶𝑇
0
𝑒
𝐶𝑇
0)

× (
U
𝜖

(0)
𝐻𝑠

+
Θ
𝜖

(0)
𝐻𝑠

+ (𝜅 + ]) 𝜖
𝛿−2

) .

(90)

Combining (87) and (90), we can arrive at

‖w‖
𝐻
𝑠 +

𝜒
𝐻𝑠

≤ 𝐶
4
(‖w (0)‖

𝐻
𝑠 +

𝜒 (0)
𝐻𝑠

+ (𝜅 + ]) 𝜖
𝛿−2

+ 𝜖
𝛿

)

(91)

for some 𝐶
4
> 0, from which we know that (8) holds by

choosing 𝜖𝛿 = (𝜅 + ])𝜖𝛿−2.

Case 2 (0 < 𝛿 < 1). In this case, we have

V
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+1
)
+
𝜌
𝜖𝐶([0,𝑇

0
];𝐻
𝑠+1
)
≤ 𝐶𝑒
𝐶𝑇
0𝜖
𝛿−1

. (92)

And also one obtains from (48) and the first inequality of (62)
k̃
𝜖𝐿∞

+
𝜌
𝜖𝐿∞

≤ 𝑒
𝐶𝑇
0 (
Ṽ
𝜖

(0)
𝐻𝑠−2

+
𝜌
𝜖

(0)
𝐻𝑠−2

)

≤ 𝐶𝑒
𝐶𝑇
0𝜖
2+𝛿

.

(93)

Applying the previous two estimates into (58) and (59), we get

𝑑

𝑑𝑡

k̃
𝜖𝐻𝑠

≤ 𝐶
k̃
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0𝜖
1+2𝛿

+
𝜌
𝜖𝐻𝑠

,

𝑑

𝑑𝑡

𝜌
𝜖𝐻𝑠

≤ 𝐶
𝜌
𝜖𝐻𝑠

+ 𝐶𝑒
𝐶𝑇
0𝜖
1+2𝛿

,

(94)

which yields that
k̃
𝜖𝐻𝑠

+
𝜌
𝜖𝐻𝑠

≤ 𝑒
𝐶𝑇
0
𝑒
𝐶𝑇
0

(1 + 𝐶𝑇
0
𝑒
𝐶𝑇
0)

× (
k̃
𝜖

(0)
𝐻𝑠

+
𝜌
𝜖

(0)
𝐻𝑠

+ 𝜖
1+2𝛿

)

≤ 𝐶𝑒
𝐶𝑇
0
𝑒
𝐶𝑇
0

(1 + 𝑇
0
𝑒
𝐶𝑇
0) 𝜖
𝛿

.

(95)

On the other hand, the estimates (71) and (93) imply

U
𝜖𝐿∞

≤ 𝐶


(𝜙
1
(0) + ] + 𝜅 + 𝜖

2+𝛿

) ,

𝐶


:= max {𝐶∗, 𝐶𝑒𝐶𝑇0} .
(96)

Then, we insert this inequality and (83) and (92) into (66) and
obtain

𝑑

𝑑𝑡

U
𝜖𝐻𝑠

≤ 𝐶
U
𝜖𝐻𝑠

+ 𝐶𝐶


𝑒
𝐶𝑇
0𝜖
𝛿−1

(𝜙
1
(0) + ] + 𝜅 + 𝜖

2+𝛿

)

+ 𝐶𝑒
𝐶𝑇
0]𝜖
𝛿−2

+
Θ
𝜖𝐻𝑠

.

(97)

In the same way, the estimate (68) is replaced by

𝑑

𝑑𝑡

Θ
𝜖𝐻𝑠

≤ 𝐶
Θ
𝜖𝐻𝑠

+ 𝐶
U
𝜖𝐻𝑠

+ 𝐶𝐶


𝑒
𝐶𝑇
0𝜖
𝛿−1

(𝜙
1
(0) + ] + 𝜅 + 𝜖

2+𝛿

)

+ 𝐶𝑒
𝐶𝑇
0𝜅𝜖
𝛿−2

.

(98)
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Hence, by the Gronwall inequality, we have
U
𝜖𝐻𝑠

+
Θ
𝜖𝐻𝑠

≤ 𝐶


(
U
𝜖

(0)
𝐻𝑠

+
Θ
𝜖

(0)
𝐻𝑠

+𝜖
𝛿−1

𝜙
1
(0) + (] + 𝜅) 𝜖

𝛿−2

+ 𝜖
1+2𝛿

)

(99)

for some 𝐶 > 0. This inequality, together with (95), gives

‖w‖
𝐻
𝑠 +

𝜒
𝐻𝑠

≤ 𝐶
5
(‖w (0)‖

𝐻
𝑠 +

𝜒 (0)
𝐻𝑠

+𝜖
𝛿−1

𝜙
1
(0) + (] + 𝜅) 𝜖

𝛿−2

+ 𝜖
𝛿

)

(100)

for some 𝐶
5
> 0. So, (9) follows from (100) provided that we

choose 𝜖 satisfying 𝜖 = 𝜙
1
(0) + (𝜅 + ])(1/2).
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