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The aim of this paper is to present new results related to the 𝑞-Bernstein polynomials 𝐵
𝑛,𝑞

(𝑓; 𝑥) of unbounded functions in the case
𝑞 > 1 and to illustrate those results using numerical examples. As a model, the behavior of polynomials 𝐵

𝑛,𝑞
(𝑓; 𝑥) is examined both

theoretically and numerically in detail for functions on [0, 1] satisfying 𝑓(𝑥) ∼ 𝐾𝑥
−𝛼 as 𝑥 → 0

+, where 𝛼 > 0 and 𝐾 ̸= 0 are real
numbers.

1. Introduction

In 1912, precisely a century ago, Bernstein [1] published his
famous proof of the Weierstrass approximation theorem by
introducing polynomials, known today as the Bernstein poly-
nomials. Later, it was found that these polynomials possess
many remarkable properties, which made them an area of
intensive research with wide range of applications. See, for
example [2, 3]. The importance of the Bernstein polynomials
led to the discovery of their numerous generalizations aimed
to provide appropriate tools for various areas of mathematics,
such as approximation theory, computer-aided geometric
design, and the statistical inference.

Due to the speedy development of the 𝑞-calculus, recent
generalizations based on the 𝑞-integers have emerged. A.
Lupaş was the person who pioneered the work on the 𝑞-
versions of the Bernstein polynomials. In 1987, he introduced
(cf. [4]) a 𝑞-analogue of the Bernstein operator and inves-
tigated its approximation and shape-preserving properties.
See also [5]. Subsequently, another generalization, called the
𝑞-Bernstein polynomials, was brought into the spotlight by
Phillips [6] and was studied afterwards by a number of
authors from different perspectives.

To define these polynomials, let us recall some notions
related to the 𝑞-calculus. See, for example, [7], Ch. 10. Let

𝑞 > 0. For any nonnegative integer 𝑘, the 𝑞-integer [𝑘]
𝑞
is

defined by

[𝑘]
𝑞
:= 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞

𝑘−1

(𝑘 = 1, 2, . . .) , [0]
𝑞
:= 0, (1)

and the 𝑞-factorial [𝑘]
𝑞
! is defined by

[𝑘]
𝑞
! := [1]

𝑞
[2]
𝑞
⋅ ⋅ ⋅ [𝑘]

𝑞
(𝑘 = 1, 2, . . .) , [0]

𝑞
! := 1. (2)

For integers 𝑘, 𝑛 with 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial
coefficient [ 𝑛

𝑘
]
𝑞
is defined by

[
𝑛

𝑘
]

𝑞

:=
[𝑛]
𝑔
!

[𝑘]
𝑞
![𝑛 − 𝑘]

𝑞
!
. (3)

We also use the following standard notations:

(𝑎; 𝑞)
0
:= 1, (𝑎; 𝑞)

𝑘
:=

𝑘−1

∏

𝑠=0

(1 − 𝑎𝑞
𝑠

) ,

(𝑎; 𝑞)
∞

:=

∞

∏

𝑠=0

(1 − 𝑎𝑞
𝑠

) .

(4)

Definition 1. Let 𝑓 : [0, 1] → R. The 𝑞-Bernstein polynomial
of 𝑓 is

𝐵
𝑛,𝑞

(𝑓; 𝑥) :=

𝑛

∑

𝑘=0

𝑓(
[𝑘]
𝑞

[𝑛]
𝑞

)𝑝
𝑛𝑘

(𝑞; 𝑥) , 𝑛 = 1, 2, . . . , (5)
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where the 𝑞-Bernstein basic polynomials𝑝
𝑛𝑘
(𝑞; 𝑥) are given by

𝑝
𝑛𝑘

(𝑞; 𝑥) := [
𝑛

𝑘
]

𝑞

𝑥
𝑘

(𝑥; 𝑞)
𝑛−𝑘

, 𝑘 = 0, 1, . . . 𝑛. (6)

Polynomials 𝑝
𝑛0
(𝑞; 𝑥), 𝑝

𝑛1
(𝑞; 𝑥), . . ., and 𝑝

𝑛𝑛
(𝑞; 𝑥) form

the 𝑞-Bernstein basis in the linear space of the polynomials
of degree at most 𝑛.

Note that for 𝑞 = 1, 𝐵
𝑛,𝑞

(𝑓; 𝑥) is the classical Bernstein
polynomial 𝐵

𝑛
(𝑓; 𝑥). Conventionally, the name 𝑞-Bernstein

polynomials is reserved for the case 𝑞 ̸= 1.
Over the past years, the 𝑞-Bernstein polynomials have

remained under intensive study, and new researches concern-
ing not only the properties of the 𝑞-Bernstein polynomials,
but also their various generalizations are constantly coming
out (see, e.g., papers [8–14]). A detailed review of the results
on the 𝑞-Bernstein polynomials along with the extensive
bibliography has been provided in [10].

The popularity of the 𝑞-Bernstein polynomials is
attributed to the fact that they are closely related to
the 𝑞-binomial and the 𝑞-deformed Poisson probability
distributions; see [15]. The 𝑞-binomial distribution plays
an important role in the 𝑞-boson theory, providing a 𝑞-
deformation for the quantum harmonic formalism. More
specifically, it has been used to construct the binomial
state for the 𝑞-boson. Meanwhile, its limit form called the
𝑞-deformed Poisson distribution defines the distribution of
energy in a 𝑞-analogue of the coherent state; see [16].

It has been known that the 𝑞-Bernstein polynomials
inherit some of the properties of the classical Bernstein poly-
nomials. For example, they possess the following endpoint
interpolation property:

𝐵
𝑛,𝑞

(𝑓; 0) = 𝑓 (0) , 𝐵
𝑛,𝑞

(𝑓; 1) = 𝑓 (1) ,

𝑛 = 1, 2, . . . , 𝑞 > 0,

(7)

and have linear functions as their fixed points:

𝐵
𝑛,𝑞

(𝑎𝑥 + 𝑏; 𝑥) = 𝑎𝑥 + 𝑏, 𝑛 = 1, 2, . . . , 𝑞 > 0. (8)

The latter follows from the identity:

𝑛

∑

𝑘=0

𝑝
𝑛𝑘

(𝑞; 𝑥) = 1 ∀𝑛 = 1, 2, . . . , and all 𝑞 > 0. (9)

Nevertheless, the convergence properties of the 𝑞-
Bernstein polynomials for 𝑞 ̸= 1 are essentially different from
those of the classical ones. What is more, the cases 0 < 𝑞 < 1

and 𝑞 > 1 in terms of convergence are not similar to each
other. See, for example [10].This lack of similarity stems from
the fact that while for 0 < 𝑞 < 1, the 𝑞-Bernstein operators
given by

𝐵
𝑛,𝑞

: 𝑓 → 𝐵
𝑛,𝑞

(𝑓; ⋅) (10)

are positive linear operators on 𝐶[0, 1]; this is no longer valid
for 𝑞 > 1. In addition, the case 𝑞 > 1 is aggravated by the
rather irregular behavior of basic polynomials (6), which, in
this case, combine the fast increase in magnitude with the

sign oscillations. For details see [17], where it has been shown
that the norm ‖𝐵

𝑛,𝑞
‖ increases rather rapidly in both 𝑛 and 𝑞,

namely,


𝐵
𝑛,𝑞


∼

2

𝑒
⋅
𝑞
(𝑛(𝑛−1)/2)

𝑛
as 𝑛 → ∞, 𝑞 → +∞. (11)

In the present paper, the 𝑞-Bernstein polynomials in the
case 𝑞 > 1 are studied for unbounded functions—a problem
which has not been considered before. The approximation of
unbounded functions by the classical Bernstein polynomials
was investigated by Lorentz in [2] and, recently, by Weba in
[18].

Throughout the paper, 𝑞 > 1 is assumed to be fixed. In
presenting the results, the notation J

𝑞
is used for the time

scale:

J
𝑞
:= {0} ∪ {𝑞

−𝑗

}
∞

𝑗=0

. (12)

First, we prove that for a certain class of unbounded func-
tions on [0, 1], their sequence of the 𝑞-Bernstein polynomials
is approximating on J

𝑞
. Further, the behavior of𝐵

𝑛,𝑞
(𝑓; 𝑥) has

been considered for functions 𝑓 : [0, 1] → R which are
continuous on (0, 1] and satisfy

𝑓 (𝑥) ∼ 𝐾𝑥
−𝛼 as 𝑥 → 0

+

, (13)

where 𝛼 > 0 and 𝐾 ∈ R \ {0}. Previously, the 𝑞-Bernstein
polynomials with 𝑞 > 1 of the power functions 𝑥

𝛼, where
𝛼 > 0, were studied in [19]. There, it was proved that in the
case 𝛼 > 0, 𝐵

𝑛,𝑞
(𝑥
𝛼

; 𝑥) → 𝑥
𝛼 uniformly on [0, 1] if and only

if 𝛼 ∈ N.
Numerical examples are used both to illustrateTheorems

3 and 6 and also to discuss the significance of the assumptions
therein. All the numerical results have been calculated in a
Maple 8 environment.

2. The 𝑞-Bernstein Polynomials of
Unbounded Functions

It has been known that for 𝑞 > 1, all functions continuous on
[0, 1] are approximated by their 𝑞-Bernstein polynomials on
the time scale J

𝑞
. Here, it will be proved that this fact remains

true for functions which are continuous from the left at all
points of J

𝑞
.

For 𝑓 : [0, 1] → R, 𝑗 ∈ Z
+
and 𝑡 ∈ [0, 𝑞

−𝑗

], we set

Ω
𝑓,𝑞
−𝑗 (𝑡) = sup

𝑥∈[𝑞−𝑗−𝑡,𝑞−𝑗]


𝑓 (𝑥) − 𝑓 (𝑞

−𝑗

)

. (14)

Lemma 2. Let 𝑓 : [0, 1] → R be bounded on [𝑞
−𝑗

, 1], where
𝑗 ∈ N, and let 𝑀

𝑗
= sup

𝑥∈[𝑞
−𝑗

,1]
|𝑓(𝑥)|. Then, for 𝑛 large

enough, the following estimate holds:


𝐵
𝑛,𝑞

(𝑓; 𝑞
−𝑗

) − 𝑓 (𝑞
−𝑗

)

≤ Ω
𝑓,𝑞
−𝑗 (

1

𝑞𝑛 − 1
) +

2𝑀
𝑗
[𝑗]
𝑞

𝑞𝑛
.

(15)
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Proof. For 𝑗 = 0, the statement is obvious due to the endpoint
interpolation property (7).Therefore, it is assumed that 𝑗 ≥ 1.

First, it should be noticed that 𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) ≥ 0 with
𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) = 0 for 𝑘 > 𝑗, and that, by virtue of (9),
∑
𝑗

𝑘=0
𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) = 1.Then, for 𝑛 > 𝑗, the following equality
is true:

𝐵
𝑛,𝑞

(𝑓; 𝑞
−𝑗

) =

𝑗

∑

𝑘=0

𝑓(
[𝑛 − 𝑘]

𝑞

[𝑛]
𝑞

)𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) . (16)

Then

𝐵
𝑛,𝑞

(𝑓; 𝑞
−𝑗

) − 𝑓 (𝑞
−𝑗

)


≤

𝑗

∑

𝑘=0



𝑓(
[𝑛 − 𝑘]

𝑞

[𝑛]
𝑞

) − 𝑓 (𝑞
−𝑗

)



𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

)

≤



𝑓(

[𝑛 − 𝑗]
𝑞

[𝑛]
𝑞

) − 𝑓 (𝑞
−𝑗

)



⋅ 𝑝
𝑛,𝑛−𝑗

(𝑞; 𝑞
−𝑗

)

+ 2𝑀
𝑗
⋅

𝑗−1

∑

𝑘=0

𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

)

(17)

for 𝑛 large enough to satisfy [𝑛 − 𝑗 + 1]
𝑞
/[𝑛]
𝑞
> 𝑞
−𝑗. Since



[𝑛 − 𝑗]
𝑞

[𝑛]
𝑞

− 𝑞
−𝑗



=
𝑞
𝑗

− 1

𝑞𝑗 (𝑞𝑛 − 1)
≤

1

𝑞𝑛 − 1
,

𝑝
𝑛,𝑛−𝑗

(𝑞; 𝑞
−𝑗

) = (1 −
1

𝑞𝑛
) ⋅ ⋅ ⋅ (1 −

1

𝑞𝑛−𝑗+1
) ≤ 1,

(18)

the first term can be estimated as follows:


𝑓(
[𝑛 − 𝑘]

𝑞

[𝑛]
𝑞

) − 𝑓 (𝑞
−𝑗

)



⋅ 𝑝
𝑛,𝑛−𝑗

(𝑞; 𝑞
−𝑗

)

≤ Ω
𝑓,𝑞
−𝑗 (

1

𝑞𝑛 − 1
) .

(19)

To estimate the second term, one can write

𝑗−1

∑

𝑘=0

𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) = 1 − 𝑝
𝑛,𝑛−𝑗

(𝑞; 𝑞
−𝑗

)

= 1 − (1 −
1

𝑞𝑛
) ⋅ ⋅ ⋅ (1 −

1

𝑞𝑛−𝑗+1
) .

(20)

By virtue of the inequality 1 − (1 − 𝛼
1
) ⋅ ⋅ ⋅ (1 − 𝛼

𝑚
) ≤ ∑
𝑚

𝑘=1
𝛼
𝑘
,

which is satisfied for all 𝛼
1
, . . . , 𝛼

𝑚
∈ (0, 1), it follows that

𝑗−1

∑

𝑘=0

𝑝
𝑛,𝑛−𝑘

(𝑞; 𝑞
−𝑗

) ≤
1

𝑞𝑛

𝑗−1

∑

𝑘=0

𝑞
𝑘

=

[𝑗]
𝑞

𝑞𝑛
. (21)

With the help of Lemma 2, the following result can be
derived easily.

Theorem 3. If 𝑓 : [0, 1] → R is continuous from the left at
𝑥 = 𝑞

−𝑗 and bounded on [𝑞
−𝑗

, 1], then 𝐵
𝑛,𝑞

(𝑓; 𝑞
−𝑗

) → 𝑓(𝑞
−𝑗

)

as 𝑛 → ∞.

Proof. The statement follows immediately from estimate (15).
Indeed, lim

𝑡→0
+Ω
𝑓,𝑞
−𝑗(𝑡) = 0 since 𝑓 is continuous from the

left at 𝑞−𝑗, and lim
𝑛→∞

((2𝑀
𝑗
[𝑗]
𝑞
)/(𝑞
𝑛

)) = 0 since 𝑀
𝑗
< ∞.

Corollary 4. If 𝑓 : [0, 1] → R is continuous from the left at
every 𝑞

−𝑗, 𝑗 ∈ N, then 𝐵
𝑛,𝑞

(𝑓; 𝑞
−𝑗

) → 𝑓(𝑞
−𝑗

) as 𝑛 → ∞ for
all 𝑞−𝑗 ∈ J

𝑞
.

Remark 5. The conditions of the theorem are essential and
cannot be left out entirely, as it will be shown by Example 8.
Furthermore, it is not difficult to see that if 𝑓(𝑥) is bounded
on [𝑞
−𝑗

, 1], then the condition

lim
𝑛→∞

𝑓(

[𝑛 − 𝑗]
𝑞

[𝑛]
𝑞

) = 𝑓 (𝑞
−𝑗

) (22)

is necessary for the approximation at 𝑥 = 𝑞
−𝑗.

The power functions 𝑥−𝛼, 𝛼 > 0 supply a natural family
of functions discontinuous at 0 satisfying the conditions of
Theorem 3 for all 𝑞−𝑗 ∈ J

𝑞
\ {0}. Therefore, it is interesting

to consider the 𝑞-Bernstein polynomials of functions whose
behavior at 0 is similar to that of the power functions. The
next theorem investigates the behavior of the 𝑞-Bernstein
polynomials of such functions on the set R \ J

𝑞
.

Theorem 6. Let 𝑓 : [0, 1] → R so that 𝑓(𝑥) ∈ 𝐶(0, 1] and
lim
𝑥→0

+𝑥
𝛼

𝑓(𝑥) = 𝐾 ̸= 0. Then, for 𝑞 ≥ 2,

𝐵
𝑛,𝑞

(𝑓; 𝑥) → ∞ as 𝑛 → ∞ ∀𝑥 ∈ R \ J
𝑞
. (23)

Proof. We set 𝑢(𝑥) = 𝑥
𝛼

𝑓(𝑥), 𝑥 ∈ (0, 1] with 𝑢(0) = 𝐾. It
can be readily seen that

𝐵
𝑛,𝑞

(𝑓; 𝑥)

= 𝑓 (0) 𝑝
𝑛0

(𝑞; 𝑥) +

𝑛

∑

𝑘=1

𝑢(
[𝑘]
𝑞

[𝑛]
𝑞

)
[𝑛]
𝛼

𝑞

[𝑘]
𝛼

𝑞

𝑝
𝑛𝑘

(𝑞; 𝑥)

= (−1)
𝑛

[𝑛]
𝛼

𝑞
𝑞
𝑛(𝑛−1)/2

𝑥
𝑛

⋅ {
𝑓 (0)

[𝑛]
𝛼

𝑞

+

𝑛

∑

𝑘=1

𝑢 ([𝑘]
𝑞
/[𝑛]
𝑞
) (−1)

𝑘

𝑞
𝑘

(𝑞
−𝑛

; 𝑞)
𝑘

[𝑘]
𝛼

𝑞
(𝑞𝑘 − 1) ⋅ ⋅ ⋅ (𝑞 − 1)

× (
1

𝑥
;
1

𝑞
)

𝑛−𝑘

}

= (−1)
𝑛

[𝑛]
𝛼

𝑞
𝑞
𝑛(𝑛−1)/2

𝑥
𝑛

⋅ {
𝑓 (0)

[𝑛]
𝛼

𝑞

+

∞

∑

𝑘=1

𝑐
𝑘𝑛

(𝑞; 𝑥)} ,

(24)
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where

𝑐
𝑘𝑛

(𝑞; 𝑥)

=

{{

{{

{

𝑢([𝑘]
𝑞
/[𝑛]
𝑞
) (−1)

𝑘

𝑞
𝑘

(𝑞
−𝑛

; 𝑞)
𝑘

[𝑘]
𝛼

𝑞
(𝑞𝑘 − 1) ⋅ ⋅ ⋅ (𝑞 − 1)

⋅ (
1

𝑥
;
1

𝑞
)

𝑛−𝑘

if 𝑘 ≤ 𝑛,

0 if 𝑘 > 𝑛.

(25)

Since, if 𝑥 ̸= 0, [𝑛]
𝛼

𝑞
𝑞
𝑛(𝑛−1)/2

𝑥
𝑛

→ ∞ and (𝑓(0)/[𝑛]
𝛼

𝑞
) → 0 as

𝑛 → ∞, it suffices to prove that lim
𝑛→∞

∑
∞

𝑘=1
𝑐
𝑘𝑛
(𝑞; 𝑥) ̸= 0

whenever 𝑥 ∉ J
𝑞
. Let max

𝑥∈[0,1]
|𝑢(𝑥)| = 𝑀. Then, it is not

difficult to see that

𝑐𝑘𝑛 (𝑞; 𝑥)
 ≤

𝑀𝑞
𝑘

[𝑘]
𝛼

𝑞
(𝑞𝑘 − 1) ⋅ ⋅ ⋅ (𝑞 − 1)

⋅ (−
1

|𝑥|
;
1

𝑞
)

∞

=: 𝑑
𝑘
(𝑞; 𝑥)

(26)

and that by the ratio test, ∑∞
𝑘=1

𝑑
𝑘
(𝑞; 𝑥) < ∞. Hence, by the

Lebesgue dominated convergence theorem,

lim
𝑛→∞

∞

∑

𝑘=1

𝑐
𝑘𝑛

(𝑞; 𝑥) =

∞

∑

𝑘=1

( lim
𝑛→∞

𝑐
𝑘𝑛

(𝑞; 𝑥))

= (
1

𝑥
;
1

𝑞
)

∞

⋅

∞

∑

𝑘=1

𝐾(−1)
𝑘

𝑞
𝑘

[𝑘]
𝛼

𝑞
(𝑞𝑘 − 1) ⋅ ⋅ ⋅ (𝑞 − 1)

=: 𝐾(
1

𝑥
;
1

𝑞
)

∞

⋅

∞

∑

𝑘=1

(−1)
𝑘

𝑎
𝑘
.

(27)

Obviously, 𝐾(1/𝑥; 1/𝑞)
∞

̸= 0 if 𝑥 ∉ J
𝑞
, and it is left to show

that
∞

∑

𝑘=1

(−1)
𝑘

𝑎
𝑘

̸= 0 for 𝑞 ≥ 2. (28)

Consider
𝑎
𝑘+1

𝑎
𝑘

=
𝑞

𝑞𝑘+1 − 1
⋅

[𝑘]
𝛼

𝑞

[𝑘 + 1]
𝛼

𝑞

≤
𝑞

𝑞𝑘+1 − 1
≤

𝑞

𝑞2 − 1
< 1 if 𝑞 ≥ 2.

(29)

Consequently,
∞

∑

𝑘=1

(−1)
𝑘

𝑎
𝑘

= − (𝑎
1
− 𝑎
2
) − (𝑎

3
− 𝑎
4
) − ⋅ ⋅ ⋅ − (𝑎

2𝑘−1
− 𝑎
2𝑘
) − ⋅ ⋅ ⋅ < 0.

(30)

The grouping of terms is justified, because the series is
absolutely convergent.

As a result, one concludes that lim
𝑛→∞

∑
∞

𝑘=1
𝑐
𝑘𝑛
(𝑞; 𝑥) ̸= 0

when 𝑥 ∉ J
𝑞
, and the proof is complete.
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Figure 1: Graphs of 𝑦 = 𝑔(𝑥) and 𝑦 = 𝐵
𝑛,2

(𝑔; 𝑥), 𝑛 = 4.

3. Numerical Examples

In this section, we provide the results of some numerical
experiments to exemplify the validity of the theoretical results
through a few test examples performed using high-precision
computations with Maple 8. All of these computations are
performed with 1000 digits so as to minimize the round-off
errors, and 3 or 8 digits are used in showing the results in the
tables.

Example 7. Let 𝑔(𝑥) be defined by

𝑔 (𝑥) =
{

{

{

1

√𝑥
if 𝑥 ∈ (0, 1]

0 if 𝑥 = 0.

(31)

The graphs of 𝑦 = 𝑔(𝑥) and 𝑦 = 𝐵
𝑛,𝑞

(𝑔; 𝑥) for 𝑞 = 2, 𝑛 = 4 are
exhibited in Figure 1. Similarly, Figure 2 represents the graphs
of 𝑦 = 𝑔(𝑥) and 𝑦 = 𝐵

𝑛,𝑞
(𝑔; 𝑥) for 𝑞 = 2, 𝑛 = 5, 6 over the

subintervals [0, 0.3], [0.3, 0.5], and [0.5, 1], respectively.

In addition, in Table 1, the values of the error function
𝐸(𝑛, 𝑞, 𝑥) := 𝐵

𝑛,𝑞
(𝑔; 𝑥) − 𝑔(𝑥) with 𝑞 = 2 at some points

𝑥 ∈ [0, 1] are presented. These points are taken both in J
𝑞

and in [0, 1] \ J
𝑞
. It can be observed from the table that

for 𝑗 < 𝑛, the values of the error function at the points
of J
𝑞
are close to 0, while, at the points in between, they

become rather large in magnitude, as it can be noticed from
the upper part of Table 1. On the other hand, if 𝑥 ≤ 𝑞

−𝑗 with
𝑗 > 𝑛, then |𝐸(𝑛, 𝑞, 𝑥)| ≥ 𝑔(𝑥) − 𝑔(1/[𝑛]

𝑞
) = 1/√𝑥 − √[𝑛]

𝑞
.

The bottom part of the table refers to this case. Finally, the
middle part of the table shows the transition between the two
cases.

In general, if a function 𝑓 : [0, 1] → R does not satisfy
the conditions ofTheorem 3, then neither the approximation
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Table 1: The values of 𝐸(𝑛, 𝑞, 𝑥) = 𝐵
𝑛,𝑞

(𝑔; 𝑥) − 𝑔(𝑥) for 𝑞 = 2 at some points 𝑥 ∈ [0, 1].

𝑥 𝐸(5, 𝑞, 𝑥) 𝐸(10, 𝑞, 𝑥) 𝐸(20, 𝑞, 𝑥) 𝐸(30, 𝑞, 𝑥) 𝐸(50, 𝑞, 𝑥)

(𝑞 + 1)/2𝑞 −106. 4.50 × 10
12

3.61 × 10
56

3.68 × 10
130

7.77 × 10
368

1/𝑞 9.7 × 10
−3

2.78 × 10
−3

2.79 × 10
−7

2.73 × 10
−10

2.6 × 10
−16

(𝑞 + 1)/2𝑞
2

6.25 −7.34 × 10
9

−5.73 × 10
50

−5.71 × 10
121

−1.15 × 10
354

1/𝑞
2

4.28 × 10
−2

1.14 × 10
−3

1.19 × 10
−6

1.16 × 10
−9

1.1 × 10
−15

(𝑞 + 1)/2𝑞
3

−1.0 3.13 × 10
7

2.37 × 10
45

2.3 × 10
113

4.43 × 10
339

1/𝑞
3

0.154 1.55 × 10
−3

3.91 × 10
−6

3.82 × 10
−9

3.64 × 10
−15

...
...

...
...

...
...

1/𝑞
19

−724. 𝐸(5, 𝑞, 𝑥) + 6.20 × 10
−2 109. 7.32 × 10

−2

6.98 × 10
−8

(𝑞 + 1)/2𝑞
20

−836. 𝐸(5, 𝑞, 𝑥) + 4.65 × 10
−2 −38.6 −1.48 × 10

18

−1.27 × 10
142

1/𝑞
20

−1.02 × 10
3

𝐸(5, 𝑞, 𝑥) + 3.10 × 10
−2 −355. 0.207 1.98 × 10

−7

...
...

...
...

...
...

1/𝑞
49

−2.37 × 10
7

𝐸(5, 𝑞, 𝑥) + 5.78 × 10
−11

𝐸(5, 𝑞, 𝑥) + 1.91 × 10
−6

𝐸(5, 𝑞, 𝑥) + 6.25 × 10
−2 3.58 × 10

6

(𝑞 + 1)/2𝑞
50

−2.74 × 10
7

𝐸(5, 𝑞, 𝑥) + 4.33 × 10
−11

𝐸(5, 𝑞, 𝑥) + 1.43 × 10
−6

𝐸(5, 𝑞, 𝑥) + 4.69 × 10
−2 −1.26 × 10

6

1/𝑞
50

−3.36 × 10
7

𝐸(5, 𝑞, 𝑥) + 2.89 × 10
−11

𝐸(5, 𝑞, 𝑥) + 9.54 × 10
−7

𝐸(5, 𝑞, 𝑥) + 3.12 × 10
−2 −1.16 × 10

7

Table 2: The values of 𝐸(𝑛, 𝑞, 𝑥) = 𝐵
𝑛,𝑞

(ℎ; 𝑥) − ℎ(𝑥) for 𝑞 = 2 at some points 𝑥 ∈ [0, 1].

𝑥 𝐸(5, 𝑞, 𝑥) 𝐸(10, 𝑞, 𝑥) 𝐸(20, 𝑞, 𝑥) 𝐸(30, 𝑞, 𝑥) 𝐸(50, 𝑞, 𝑥)

(𝑞 + 1)/2𝑞 142. 3.92 × 10
4

2.32 × 10
9

1.37 × 10
14

4.79 × 10
23

1/𝑞 56.2 2.04 × 10
3

2.10 × 10
6

2.15 × 10
9

2.25 × 10
15

(𝑞 + 1)/2𝑞
2

18.2 187. 1.11 × 10
4

6.39 × 10
5

2.13 × 10
9

1/𝑞
2

5.2675781 𝐸(5, 𝑞, 𝑥) + 0.70900154 𝐸(5, 𝑞, 𝑥) + 0.73239899 𝐸(5, 𝑞, 𝑥) + 0.73242185 𝐸(5, 𝑞, 𝑥) + 0.73242187

(𝑞 + 1)/2𝑞
3

1.81 0.486 2.75 × 10
−2

1.55 × 10
−3

4.91 × 10
−6

1/𝑞
3

0.384 1.36 × 10
−2

1.34 × 10
−5

1.3 × 10
−8

1.24 × 10
−14

...
...

...
...

...
...

1/𝑞
19

2.38 × 10
−20

6.98 × 10
−46

4.68 × 10
−97

3.13 × 10
−148

1.40 × 10
−250

(𝑞 + 1)/2𝑞
20

7.53 × 10
−21

5.24 × 10
−47

1.98 × 10
−99

7.45 × 10
−152

1.05 × 10
−256

1/𝑞
20

1.49 × 10
−21

1.36 × 10
−48

8.93 × 10
−103

5.83 × 10
−157

2.48 × 10
−265

...
...

...
...

...
...

1/𝑞
49

1.79 × 10
−56

3.68 × 10
−127

1.21 × 10
−268

3.97 × 10
−410

4.28 × 10
−693

(𝑞 + 1)/2𝑞
50

5.66 × 10
−57

2.76 × 10
−128

5.12 × 10
−271

9.46 × 10
−414

3.23 × 10
−699

1/𝑞
50

1.12 × 10
−57

7.19 × 10
−130

2.31 × 10
−274

7.4 × 10
−419

7.60 × 10
−708

on J
𝑞
nor the divergence of {𝐵

𝑛,𝑞
(𝑓; 𝑥)} for all 𝑥 ∈ R \ J

𝑞

is guaranteed. This fact is illustrated by the following
example.

Example 8. Consider the function ℎ defined by

ℎ (𝑥) =

{{

{{

{

𝑞

1 − 𝑞𝑥
−

𝑞
2

𝑞 − 1
if 𝑥 ∈ [𝑞

−2

, 𝑞
−1

)

0 otherwise.
(32)

Then, for 𝑛 large enough,

𝐵
𝑛,𝑞

(ℎ; 𝑥) = ℎ(
[𝑛 − 1]

𝑞

[𝑛]
𝑞

)𝑝
𝑛,𝑛−1

(𝑞; 𝑥)

=
𝑞 (𝑞
𝑛

− 1) − 𝑞
2

𝑞 − 1
⋅
𝑞
𝑛

− 1

𝑞 − 1
𝑥
𝑛−1

(1 − 𝑥)

∼
𝑞
3

(1 − 𝑥)

(𝑞 − 1)
2

⋅ (𝑞
2

𝑥)
𝑛−1

, 𝑛 → ∞.

(33)
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Figure 2: Graphs of 𝑦 = 𝑔(𝑥) and 𝑦 = 𝐵
𝑛,2

(𝑔; 𝑥), 𝑛 = 5, 6.

Therefore,

lim
𝑛→∞

𝐵
𝑛,𝑞

(ℎ; 𝑥) =

{{{{{{

{{{{{{

{

0 if |𝑥| < 𝑞
−2

,

∞ if |𝑥| > 𝑞
−2

, 𝑥 ̸= 1,

𝑞 (𝑞 + 1)

𝑞 − 1
if 𝑥 = 𝑞

−2

,

0 if 𝑥 = 1.

(34)

Consequently, for the error function 𝐸(𝑛, 𝑞, 𝑥), one has

lim
𝑛→∞

𝐸 (𝑛, 𝑞, 𝑥) =

{{{{{{

{{{{{{

{

0 if 𝑥 ∈ [0, 𝑞
−2

) ,

+∞ if 𝑥 ∈ (𝑞
−2

, 1) ,

𝑞 (𝑞 + 1)

𝑞 − 1
if 𝑥 = 𝑞

−2

,

0 if 𝑥 = 1.

(35)

If 𝑥 = −𝑞
−2, the limit does not exist. Figure 3 exhibits the

graphs of 𝑦 = ℎ(𝑥) and 𝑦 = 𝐵
𝑛,𝑞

(ℎ; 𝑥) for 𝑞 = 2, 𝑛 = 4, while
Figure 4 provides those of 𝑦 = ℎ(𝑥) and 𝑦 = 𝐵

𝑛,𝑞
(ℎ; 𝑥) for

𝑞 = 2, 𝑛 = 5, 6 over the subintervals [0, 0.6] and [0.6, 1]. In
addition, in Table 2, the values of the error function 𝐸(𝑛, 𝑞, 𝑥)

with 𝑞 = 2 at some points 𝑥 ∈ [0, 1] which are taken both in
J
𝑞
and in [0, 1] \ J

𝑞
are presented.

It can be observed from the first three rows that as
𝑛 increases, the values of the error function become very
large—a trend which reflects its behavior on (𝑞

−2

, 1). At the
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−20

Figure 3: Graphs of 𝑦 = ℎ(𝑥) and 𝑦 = 𝐵
𝑛,2

(ℎ; 𝑥), 𝑛 = 4.

point 𝑥 = 𝑞
−2, the values approach 6 from below, whereas for

the remaining part of the table, the values of error function
come close to zero as 𝑛 increases, which is in full agreement
with the limit given by (35).
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Figure 4: Graphs of 𝑦 = ℎ(𝑥) and 𝑦 = 𝐵
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(ℎ; 𝑥), 𝑛 = 5, 6.
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