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The main purpose of this paper is to determine the fine spectrum with respect to Goldberg’s classification of the operator defined
by the lambda matrix over the sequence spaces 𝑐

0
and c. As a new development, we give the approximate point spectrum, defect

spectrum, and compression spectrum of the matrix operator Λ on the sequence spaces 𝑐
0
and c. Finally, we present a Mercerian

theorem. Since the matrix Λ is reduced to a regular matrix depending on the choice of the sequence (𝜆
𝑘
) having certain properties

and its spectrum is firstly investigated, our work is new and the results are comprehensive.

1. Introduction

Let 𝑋 and 𝑌 be Banach spaces, and let 𝑇 : 𝑋 → 𝑌 also be a
bounded linear operator. By 𝑅(𝑇), we denote the range of 𝑇;
that is,

𝑅 (𝑇) = {𝑦 ∈ 𝑌 : 𝑦 = 𝑇𝑥, 𝑥 ∈ 𝑋} . (1)

By 𝐵(𝑋), we also denote the set of all bounded linear operators
on 𝑋 into itself. If 𝑋 is any Banach space and 𝑇 ∈ 𝐵(𝑋) then
the adjoint 𝑇∗ of 𝑇 is a bounded linear operator on the dual
𝑋
∗ of 𝑋 defined by (𝑇

∗
𝑓)(𝑥) = 𝑓(𝑇𝑥) for all 𝑓 ∈ 𝑋

∗ and
𝑥 ∈ 𝑋.

Let 𝑋 ̸= {𝜃} be a nontrivial complex normed space and
𝑇 : 𝐷(𝑇) → 𝑋 a linear operator defined on a subspace
𝐷(𝑇) ⊆ 𝑋. We do not assume that 𝐷(𝑇) is dense in 𝑋 or
that 𝑇 has closed graph {(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝐷(𝑇)} ⊆ 𝑋 × 𝑋. By
the statement “𝑇 is invertible,” it is meant that there exists a
bounded linear operator 𝑆 : 𝑅(𝑇) → 𝑋 for which 𝑆𝑇 = 𝐼 on
𝐷(𝑇) and𝑅(𝑇) = 𝑋, such that 𝑆 = 𝑇

−1 is necessarily uniquely
determined and linear; the boundedness of 𝑆 means that 𝑇
must be bounded below, in the sense that there is 𝑀 > 0 for
which ‖𝑇𝑥‖ ≥ 𝑀‖𝑥‖ for all 𝑥 ∈ 𝐷(𝑇). Associated with each
complex number, 𝛼 is the perturbed operator

𝑇
𝛼
= 𝛼𝐼 − 𝑇 (2)

defined on the same domain𝐷(𝑇) as𝑇.The spectrum 𝜎(𝑇,𝑋)

consists of those 𝛼 ∈ C, the complex field, for which 𝑇
𝛼

is not invertible, and the resolvent is the mapping from the
complement 𝜎(𝑇,𝑋) of the spectrum into the algebra of
bounded linear operators on𝑋 defined by 𝛼 → 𝑇

−1

𝛼
.

2. The Subdivisions of Spectrum

In this section, we define the parts of spectrum called point
spectrum, continuous spectrum, residual spectrum, approx-
imate point spectrum, defect spectrum, and compression
spectrum. There are many different ways to subdivide the
spectrum of a bounded linear operator. Some of them are
motivated by applications to physics, in particular, quantum
mechanics.

2.1. The Point Spectrum, Continuous Spectrum, and Residual
Spectrum. The name resolvent is appropriate since 𝑇−1

𝛼
helps

to solve the equation 𝑇
𝛼
𝑥 = 𝑦. Thus, 𝑥 = 𝑇

−1

𝛼
𝑦 provided that

𝑇
−1

𝛼
exists. More importantly, the investigation of properties

of 𝑇−1
𝛼

will be basic for an understanding of the operator 𝑇
itself. Naturally, many properties of 𝑇

𝛼
and 𝑇−1

𝛼
depend on 𝛼,

and the spectral theory is concerned with those properties.
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For instance, we are interested in the set of all 𝛼’s in the
complex plane such that 𝑇−1

𝛼
exists. Boundedness of 𝑇−1

𝛼
is

another property that will be essential. We will also ask for
what 𝛼’s the domain of 𝑇−1

𝛼
is dense in 𝑋, to name just a few

aspects. A regular value 𝛼 of 𝑇 is a complex number such that
𝑇
−1

𝛼
exists and is bounded and whose domain is dense in 𝑋.

For our investigation of 𝑇, 𝑇
𝛼
, and 𝑇

−1

𝛼
, we need some basic

concepts in the spectral theory which are given, as follows
(see [1, pages 370-371]).

The resolvent set 𝜌(𝑇,𝑋) of𝑇 is the set of all regular values
𝛼 of𝑇. Furthermore, the spectrum 𝜎(𝑇,𝑋) is partitioned into
the following three disjoint sets.

The point (discrete) spectrum 𝜎
𝑝
(𝑇,𝑋) is the set such that

𝑇
−1

𝛼
does not exist. An 𝛼 ∈ 𝜎

𝑝
(𝑇,𝑋) is called an eigenvalue of

𝑇.
The continuous spectrum 𝜎

𝑐
(𝑇,𝑋) is the set such that 𝑇−1

𝛼

exists and is unbounded, and the domain of 𝑇−1
𝛼

is dense in
𝑋.

The residual spectrum 𝜎
𝑟
(𝑇,𝑋) is the set such that 𝑇−1

𝛼

exists (and may be bounded or not) but the domain of 𝑇−1
𝛼

is not dense in𝑋.
Therefore, these three subspectra form a disjoint subdivi-

sion

𝜎 (𝑇,𝑋) = 𝜎
𝑝 (
𝑇,𝑋) ∪ 𝜎

𝑐 (
𝑇,𝑋) ∪ 𝜎

𝑟 (
𝑇,𝑋) . (3)

To avoid trivial misunderstandings, let us say that some of the
sets defined abovemay be empty.This is an existence problem
which we will have to discuss. Indeed, it is well known that
𝜎
𝑐
(𝑇,𝑋) = 𝜎

𝑟
(𝑇,𝑋) = 0 and the spectrum 𝜎(𝑇,𝑋) consists of

only the set 𝜎
𝑝
(𝑇,𝑋) in the finite-dimensional case.

2.2. The Approximate Point Spectrum, Defect Spectrum, and
Compression Spectrum. In this subsection, following Appell
et al. [2], we define three more subdivisions of the spectrum
called approximate point spectrum, defect spectrum, and
compression spectrum.

Given a bounded linear operator 𝑇 in a Banach space 𝑋,
we call a sequence (𝑥

𝑘
) in𝑋 aWeyl sequence for 𝑇 if ‖𝑥

𝑘
‖ = 1

and ‖𝑇𝑥
𝑘
‖ → 0, as 𝑘 → ∞. Then, the approximate point

spectrum 𝜎ap(𝑇,𝑋) of 𝑇 is defined by

𝜎ap (𝑇,𝑋)

:= {𝛼 ∈ C : there exists a Weyl sequence for 𝛼𝐼 − 𝑇} .

(4)

Moreover, the subspectrum

𝜎
𝛿
(𝑇,𝑋) := {𝛼 ∈ C : 𝛼𝐼 − 𝑇 is not surjective} (5)

is called the defect spectrum of 𝑇.
The two subspectra given by (4) and (5) form a (not

necessarily disjoint) subdivision

𝜎 (𝑇,𝑋) = 𝜎ap (𝑇,𝑋) ∪ 𝜎
𝛿
(𝑇,𝑋) (6)

of the spectrum. There is another subspectrum,

𝜎co (𝑇,𝑋) = {𝛼 ∈ C : 𝑅 (𝛼𝐼 − 𝑇) ̸=𝑋} (7)

which is often called compression spectrum in the literature.
The compression spectrum gives rise to another (not neces-
sarily disjoint) decomposition

𝜎 (𝑇,𝑋) = 𝜎ap (𝑇,𝑋) ∪ 𝜎co (𝑇,𝑋) (8)

of the spectrum. Clearly, 𝜎
𝑝
(𝑇,𝑋)⊆𝜎ap(𝑇,𝑋) and 𝜎co(𝑇,𝑋) ⊆

𝜎
𝛿
(𝑇,𝑋). Moreover, comparing these subspectra with those

in (3), we note that

𝜎
𝑟
(𝑇,𝑋) = 𝜎co (𝑇,𝑋) \ 𝜎

𝑝
(𝑇,𝑋) ,

𝜎
𝑐
(𝑇,𝑋) = 𝜎 (𝑇,𝑋) \ [𝜎

𝑝
(𝑇,𝑋) ∪ 𝜎co (𝑇,𝑋)] .

(9)

Sometimes it is useful to relate the spectrumof a bounded
linear operator to that of its adjoint. Building on classical exis-
tence and uniqueness, results for linear operator equations in
Banach spaces and their adjoints are also useful.

Proposition 1 (see [2, Proposition 1.3, page 28]). Spectrum
and subspectrum of an operator 𝑇 ∈ 𝐵(𝑋) and its adjoint 𝑇∗ ∈
𝐵(𝑋
∗
) are related by the following relations:

(a) 𝜎(𝑇∗, 𝑋∗) = 𝜎(𝑇,𝑋),
(b) 𝜎
𝑐
(𝑇
∗
, 𝑋
∗
) ⊆ 𝜎
𝑎𝑝
(𝑇,𝑋),

(c) 𝜎ap(𝑇
∗
, 𝑋
∗
) = 𝜎
𝛿
(𝑇,𝑋),

(d) 𝜎
𝛿
(𝑇
∗
, 𝑋
∗
) = 𝜎
𝑎𝑝
(𝑇,𝑋),

(e) 𝜎
𝑝
(𝑇
∗
, 𝑋
∗
) = 𝜎
𝑐𝑜
(𝑇,𝑋),

(f) 𝜎co(𝑇
∗
, 𝑋
∗
) ⊇ 𝜎
𝑝
(𝑇,𝑋),

(g) 𝜎(𝑇,𝑋) = 𝜎
𝑎𝑝
(𝑇,𝑋) ∪𝜎

𝑝
(𝑇
∗
, 𝑋
∗) = 𝜎

𝑝
(𝑇,𝑋) ∪

𝜎
𝑎𝑝
(𝑇
∗,𝑋∗).

The relations (c)–(f) show that the approximate point
spectrum is in a certain sense dual to the defect spectrum, and
the point spectrum is dual to the compression spectrum.The
equality (g) implies, in particular, that 𝜎(𝑇,𝑋) = 𝜎ap(𝑇,𝑋)

if 𝑋 is a Hilbert space and 𝑇 is normal. Roughly speaking,
this shows that normal (in particular, self-adjoint) operators
on the Hilbert spaces are most similar to matrices in finite
dimensional spaces (see [2]).

2.3. Goldberg’s Classification of Spectrum. If 𝑋 is a Banach
space and 𝑇 ∈ 𝐵(𝑋), then there are three possibilities for
𝑅(𝑇):

(A) 𝑅(𝑇) = 𝑋,

(B) 𝑅(𝑇) ̸= 𝑅(𝑇) = 𝑋,

(C) 𝑅(𝑇) ̸=𝑋,

and

(1) 𝑇−1 exists and is continuous,

(2) 𝑇−1 exists but is discontinuous,

(3) 𝑇−1 does not exist.
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If these possibilities are combined in all possible ways,
nine different states are created.These are labelled by:𝐴

1
,𝐴
2
,

𝐴
3
, 𝐵
1
, 𝐵
2
, 𝐵
3
,𝐶
1
,𝐶
2
, and𝐶

3
. If an operator is in state𝐶

2
, for

example, then 𝑅(𝑇) ̸=𝑋 and 𝑇
−1 exists but is discontinuous

(see [3]). Figure 1 due to Wenger [4] may be useful for the
readers.

If 𝛼 is a complex number such that 𝑇
𝛼

∈ 𝐴
1
or 𝑇
𝛼

∈

𝐵
1
, then 𝛼 ∈ 𝜌(𝑇,𝑋). All scalar values of 𝛼 not in 𝜌(𝑇,𝑋)

comprise the spectrum of 𝑇. The further classification of
𝜎(𝑇,𝑋) gives rise to the fine spectrum of 𝑇. That is, 𝜎(𝑇,𝑋)

can be divided into the subsets 𝐴
2
𝜎(𝑇,𝑋) = 0, 𝐴

3
𝜎(𝑇,𝑋),

𝐵
2
𝜎(𝑇,𝑋), 𝐵

3
𝜎(𝑇,𝑋), 𝐶

1
𝜎(𝑇,𝑋), 𝐶

2
𝜎(𝑇,𝑋), and 𝐶

3
𝜎(𝑇,𝑋).

For example, if 𝑇
𝛼
is in a given state, 𝐶

2
(say), then we write

𝛼 ∈ 𝐶
2
𝜎(𝑇,𝑋).

By the definitions given above, we can illustrate subdivi-
sion (3) in Table 1.

Observe that the case in the first row and the second
column cannot occur in a Banach space 𝑋, by the closed
graph theorem. If we are not in the third column, that is, if 𝛼 is
not an eigenvalue of 𝑇, we may always consider the resolvent
operator 𝑇−1

𝛼
(on a possibly “thin” domain of definition) as

“algebraic inverse” of 𝛼𝐼 − 𝑇.
By a sequence space, we understand a linear subspace of

the space 𝜔 = CN of all complex sequences which contain
𝜙, the set of all finitely nonzero sequences, where N =

{0, 1, 2, . . .}. We write ℓ
∞
, 𝑐, 𝑐
0
, and 𝑏V for the spaces of all

bounded, convergent, null, and bounded variation sequences
which are the Banach spaces with the sup-norm ‖𝑥‖

∞
=

sup
𝑘∈N|𝑥𝑘| and ‖𝑥‖

𝑏V = ∑
∞

𝑘=0
|𝑥
𝑘
− 𝑥
𝑘+1

|, respectively, while
𝜙 is not a Banach space with respect to any norm. Also
by ℓ
𝑝
, we denote the space of all 𝑝-absolutely summable

sequences which is a Banach space with the norm ‖𝑥‖
𝑝

=

(∑
∞

𝑘=0
|𝑥
𝑘
|
𝑝
)
1/𝑝, where 1 ≤ 𝑝 < ∞.

Let 𝜇 and ] be two sequence spaces, and let 𝐴 = (𝑎
𝑛𝑘
) be

an infinite matrix of complex numbers 𝑎
𝑛𝑘
, where 𝑘, 𝑛 ∈ N.

Then, we say that 𝐴 defines a matrix transformation from 𝜇

into ], and we denote it by writing 𝐴 : 𝜇 → ] if for every
sequence 𝑥 = (𝑥

𝑘
) ∈ 𝜇, the sequence 𝐴𝑥 = {(𝐴𝑥)

𝑛
}, the 𝐴-

transform of 𝑥, is in ], where

(𝐴𝑥)
𝑛
=

∞

∑

𝑘=0

𝑎
𝑛𝑘
𝑥
𝑘

for each 𝑛 ∈ N. (10)

By (𝜇 : ]), we denote the class of all matrices 𝐴 such that
𝐴 : 𝜇 → ]. Thus, 𝐴 ∈ (𝜇 : ]) if and only if the series on the
right side of (10) converges for each 𝑛 ∈ N and each 𝑥 ∈ 𝜇,
and we have 𝐴𝑥 = {(𝐴𝑥)

𝑛
}
𝑛∈N ∈ ] for all 𝑥 ∈ 𝜇.

Throughout this paper, let𝜆 = (𝜆
𝑘
) be a strictly increasing

sequence of positive reals tending to infinity; that is,

0 < 𝜆
0
< 𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ , lim

𝑘→∞

𝜆
𝑘
= ∞. (11)

Following Mursaleen and Noman [20], we define the matrix
Λ = (𝜆

𝑛𝑘
) of weighted mean relative to the sequence 𝜆 by

𝜆
𝑛𝑘

=

{

{

{

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑛

, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛

(12)

for all 𝑘, 𝑛 ∈ N. It is easy to show that the matrix Λ is regular
and is reduced, in the special case 𝜆

𝑘
= 𝑘 + 1 for all 𝑘 ∈ N, to

𝐶3

𝐶2

𝐶1

𝐶1 𝐶2 𝐶3

𝐵3

𝐵2

𝐵1

𝐵1 𝐵2 𝐵3

𝐴3

𝐴2

𝐴1

𝐴1 𝐴2 𝐴3

𝑇
∗

𝑇

Figure 1: State diagram for 𝐵(𝑋) and 𝐵(𝑋
∗
) for a non-reflective

Banach space𝑋.

the matrix 𝐶
1
of Cesàro mean of order one. Introducing the

concept of Λ-strong convergence, several results on Λ-strong
convergence of numerical sequences and Fourier series were
given by Móricz [21]. Since we have

𝑄
𝑛
=

𝑛

∑

𝑘=0

𝑞
𝑘
= 𝜆
𝑛
, 𝑟

𝑛𝑘
=

𝑞
𝑘

𝑄
𝑛

=

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑛

= 𝜆
𝑛𝑘 (13)

in the special case 𝑞
𝑘
= 𝜆
𝑘
− 𝜆
𝑘−1

for all 𝑘 ∈ N, the matrix Λ
is also reduced to the Riesz means 𝑅𝑞 = (𝑟

𝑛𝑘
) with respect to

the sequence 𝑞 = (𝑞
𝑘
). We say that a sequence 𝑥 = (𝑥

𝑘
) ∈ 𝜔

is 𝜆-convergent if Λ𝑥 ∈ 𝑐. In particular, we say that 𝑥 is a 𝜆-
null sequence if Λ𝑥 ∈ 𝑐

0
and we say that 𝑥 is 𝜆-bounded if

Λ𝑥 ∈ ℓ
∞
.

Lemma 2 (see [22, Theorem 1.3.6, page 6]). The matrix 𝐴 =
(𝑎
𝑛𝑘
) gives rise to a bounded linear operator 𝑇 ∈ 𝐵(𝑐) from 𝑐 to

itself if and only if

(1) the rows of𝐴 are in ℓ
1
and their ℓ

1
norms are bounded;

(2) the columns of 𝐴 are in 𝑐;
(3) the sequence of row sums of 𝐴 is in 𝑐.

The operator norm of 𝑇 is the supremum of the ℓ
1
norms

of the rows.

Corollary 3. Λ : 𝑐 → 𝑐 is a bounded linear operator with the
norm ‖Λ‖

(𝑐:𝑐)
= 1.

Lemma 4 (see [22, Example 8.4.5.A, page 129]). The matrix
𝐴 = (𝑎

𝑛𝑘
) gives rise to a bounded linear operator 𝑇 ∈ 𝐵(𝑐

0
)

from 𝑐
0
to itself if and only if

(1) the rows of𝐴 are in ℓ
1
and their ℓ

1
norms are bounded,

(2) the columns of 𝐴 are in 𝑐
0
.
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Table 1: Subdivision of spectrum of a linear operator.

1 2 3
𝑇
−1

𝛼
exists 𝑇

−1

𝛼
exists 𝑇

−1

𝛼

and is bounded and is unbounded does not exist

A 𝑅(𝛼𝐼 − 𝑇) = 𝑋 𝛼 ∈ 𝜌(𝑇,𝑋) — 𝛼 ∈ 𝜎
𝑝
(𝑇,𝑋)

𝛼 ∈ 𝜎ap(𝑇,𝑋)

𝛼 ∈ 𝜎
𝑐
(𝑇,𝑋) 𝛼 ∈ 𝜎

𝑝
(𝑇,𝑋)

B 𝑅(𝛼𝐼 − 𝑇) = 𝑋 𝛼 ∈ 𝜌(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋)

𝛼 ∈ 𝜎
𝛿
(𝑇,𝑋) 𝛼 ∈ 𝜎

𝛿
(𝑇,𝑋)

𝛼 ∈ 𝜎
𝑟
(𝑇,𝑋) 𝛼 ∈ 𝜎

𝑟
(𝑇,𝑋) 𝛼 ∈ 𝜎

𝑝
(𝑇,𝑋)

C 𝑅(𝛼𝐼 − 𝑇) ̸=𝑋 𝛼 ∈ 𝜎
𝛿
(𝑇,𝑋)

𝛼 ∈ 𝜎ap(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋)

𝛼 ∈ 𝜎
𝛿
(𝑇,𝑋) 𝛼 ∈ 𝜎

𝛿
(𝑇,𝑋)

𝛼 ∈ 𝜎co(𝑇,𝑋) 𝛼 ∈ 𝜎co(𝑇,𝑋) 𝛼 ∈ 𝜎co(𝑇,𝑋)

The operator norm of 𝑇 is the supremum of the ℓ
1
norms

of the rows.

Corollary 5. Λ : 𝑐
0
→ 𝑐
0
is a bounded linear operator with

the norm ‖Λ‖
(𝑐0 :𝑐0)

= 1.

We give a short survey concerned with the spectrum
of the linear operators defined by some triangle matrices
over certain sequence spaces. Wenger [4] examined the fine
spectrum of the integer power of the Cesàro operator in 𝑐

and Rhoades [5] generalized this result to the weighted mean
methods. The fine spectrum of the operator on the sequence
space ℓ

𝑝
was studied by González [23], where 1 < 𝑝 < ∞.

The spectrum of the Cesàro operator on the sequence spaces
𝑐
0
and 𝑏Vwere also investigated by Reade [6], Akhmedov and

Başar [7], and Okutoyi [8], respectively. The fine spectrum
of the Rhaly operators on the sequence spaces 𝑐

0
and 𝑐

were examined by Yıldırım [9]. Furthermore, Coşkun [10]
has studied the spectrum and fine spectrum for 𝑝-Cesàro
operator acting on the space 𝑐

0
. Besides, deMalafosse [11] and

Altay and Başar [12], respectively, studied the spectrum and
the fine spectrum of the difference operator on the sequence
spaces 𝑠

𝑟
and 𝑐
0
, 𝑐, where 𝑠

𝑟
denotes the Banach space of

all sequences 𝑥 = (𝑥
𝑘
) normed by ‖𝑥‖

𝑠𝑟
= sup

𝑘∈N|𝑥𝑘|/𝑟
𝑘,

(𝑟 > 0). Altay andKarakuş [24] determined the fine spectrum
of the Zweier matrix which is a band matrix as an operator
over the sequence spaces ℓ

1
and 𝑏V. In 2010, Srivastava and

Kumar [16] determined the spectra and the fine spectra of
the double sequential band matrix Δ ] on ℓ

1
, where Δ ] is

defined by (Δ ])𝑛𝑛 = ]
𝑛
and (Δ ])𝑛+1,𝑛 = −]

𝑛
for all 𝑛 ∈ N,

under certain conditions on the sequence ] = (]
𝑘
) and they

have just generalized these results by the double sequential
band matrix Δ

𝑢V defined by Δ 𝑢V𝑥 = (𝑢
𝑛
𝑥
𝑛
+ V
𝑛−1

𝑥
𝑛−1

)
𝑛∈N for

all 𝑛 ∈ N (see [18]). Altun [25] studied the fine spectra of
the Toeplitz operators, which are represented by upper and
lower triangular 𝑛-band infinite matrices, over the sequence
spaces 𝑐

0
and 𝑐. Later, Karakaya andAltun determined the fine

spectra of upper triangular double-band matrices over the
sequence spaces 𝑐

0
and 𝑐, in [26]. Quite recently, Akhmedov

and El-Shabrawy [15] obtained the fine spectrum of the
double sequential band matrix Δ

𝑎,𝑏
, defined as a double-

band matrix with the convergent sequences �̃� = (𝑎
𝑘
) and

̃
𝑏 = (𝑏

𝑘
) having certain properties, over the sequence space

𝑐. The fine spectrum with respect to Goldberg’s classification
of the operator 𝐵(𝑟, 𝑠, 𝑡) defined by a triple band matrix over
the sequence spaces ℓ

𝑝
and 𝑏V

𝑝
with 1 < 𝑝 < ∞ has

recently been studied by Furkan et al. [14]. Quite recently,
Karaisa and Başar [19] have determined the fine spectrum
of the upper triangular triple band matrix 𝐵(𝑟, 𝑠, 𝑡) over the
sequence space ℓ

𝑝
, where 0 < 𝑝 < ∞. At this stage, Table 2

may be useful.
In this work, our purpose is to determine the fine

spectrum of the operator Λ over the sequence spaces 𝑐
0
and

𝑐 with respect to Goldberg’s classification. Additionally, we
give the approximate point spectrum, defect spectrum, and
compression spectrum of the matrix operator Λ over the
spaces 𝑐

0
and 𝑐. Finally, we state and prove a Mercerian

theorem.

3. The Fine Spectrum of the Operator Λ on the
Sequence Space 𝑐

0

In this section, we examine the spectrum, the point spec-
trum, the continuous spectrum, the residual spectrum, the
fine spectrum, the approximate point spectrum, the defect
spectrum, and the compression spectrum of the operator Λ
on the sequence space 𝑐

0
. For simplicity in the notation, we

write throughout that 𝑐
𝑛
= (𝜆
𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛
for all 𝑛 ∈ N and

we use this abbreviation with other letters.

Theorem 6. 𝜎(Λ, 𝑐
0
) ⊆ {𝛼 ∈ C : |2𝛼 − 1| ≤ 1}.

Proof. Let |2𝛼 − 1| > 1. Since Λ − 𝛼𝐼 is triangle, (Λ − 𝛼𝐼)
−1

exists, and solving the matrix equation (Λ−𝛼𝐼)𝑥 = 𝑦 for 𝑥 in
terms of 𝑦 gives the matrix (Λ − 𝛼𝐼)

−1
= 𝐵 = (𝑏

𝑛𝑘
), where

𝑏
𝑛𝑘

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(−1)
𝑛−𝑘

(𝜆
𝑘
− 𝜆
𝑘−1

)

𝜆
𝑛
𝛼
2
∏
𝑛

𝑗=𝑘
(𝑐
𝑗
/𝛼 − 1)

, 0 ≤ 𝑘 ≤ 𝑛 − 1,

𝜆
𝑛

𝜆
𝑛
− 𝜆
𝑛−1

− 𝛼𝜆
𝑛

, 𝑘 = 𝑛,

0, 𝑘 > 𝑛,

(14)
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Table 2: Spectrum and fine spectrum of some triangle matrices in certain sequence spaces.

𝜎(𝐴, 𝜆) 𝜎
𝑝
(𝐴, 𝜆) 𝜎

𝑐
(𝐴, 𝜆) 𝜎

𝑟
(𝐴, 𝜆) Refer to

𝜎(𝐶
𝑝

1
, 𝑐) — — — [4]

𝜎(𝑊, 𝑐) — — — [5]
𝜎(𝐶
1
, 𝑐
0
) — — — [6]

𝜎(𝐶
1
, 𝑐
0
) 𝜎

𝑝
(𝐶
1
, 𝑐
0
) 𝜎

𝑐
(𝐶
1
, 𝑐
0
) 𝜎

𝑟
(𝐶
1
, 𝑐
0
) [7]

𝜎(𝐶
1
, 𝑏V) — — — [8]

𝜎(𝑅, 𝑐
0
) 𝜎

𝑝
(𝑅, 𝑐
0
) 𝜎

𝑐
(𝑅, 𝑐
0
) 𝜎

𝑟
(𝑅, 𝑐
0
) [9]

𝜎(𝑅, 𝑐) 𝜎
𝑝
(𝑅, 𝑐) 𝜎

𝑐
(𝑅, 𝑐) 𝜎

𝑟
(𝑅, 𝑐) [9]

𝜎(𝐶
𝑝

1
, 𝑐
0
) — — — [10]

𝜎(Δ, 𝑠
𝑟
) — — — [11]

𝜎(Δ, 𝑐
0
) — — — [11]

𝜎(Δ, 𝑐) — — — [11]
𝜎(Δ
(1)
, 𝑐) 𝜎

𝑝
(Δ
(1)
, 𝑐) 𝜎

𝑐
(Δ
(1)
, 𝑐) 𝜎

𝑟
(Δ
(1)
, 𝑐) [12]

𝜎(Δ
(1)
, 𝑐
0
) 𝜎

𝑝
(Δ
(1)
, 𝑐
0
) 𝜎

𝑐
(Δ
(1)
, 𝑐
0
) 𝜎

𝑟
(Δ
(1)
, 𝑐
0
) [12]

𝜎(𝐵(𝑟, 𝑠), ℓ
𝑝
) 𝜎

𝑝
(𝐵(𝑟, 𝑠), ℓ

𝑝
) 𝜎

𝑐
(𝐵(𝑟, 𝑠), ℓ

𝑝
) 𝜎

𝑟
(𝐵(𝑟, 𝑠), ℓ

𝑝
) [13]

𝜎(𝐵(𝑟, 𝑠), 𝑏V
𝑝
) 𝜎

𝑝
(𝐵(𝑟, 𝑠), 𝑏V

𝑝
) 𝜎

𝑐
(𝐵(𝑟, 𝑠), 𝑏V

𝑝
) 𝜎

𝑟
(𝐵(𝑟, 𝑠), 𝑏V

𝑝
) [13]

𝜎(𝐵(𝑟, 𝑠, 𝑡), ℓ
𝑝
) 𝜎

𝑝
(𝐵(𝑟, 𝑠, 𝑡), ℓ

𝑝
) 𝜎

𝑐
(𝐵(𝑟, 𝑠, 𝑡), ℓ

𝑝
) 𝜎

𝑟
(𝐵(𝑟, 𝑠, 𝑡), ℓ

𝑝
) [14]

𝜎(𝐵(𝑟, 𝑠, 𝑡), 𝑏V
𝑝
) 𝜎

𝑝
(𝐵(𝑟, 𝑠, 𝑡), 𝑏V

𝑝
) 𝜎

𝑐
(𝐵(𝑟, 𝑠, 𝑡), 𝑏V

𝑝
) 𝜎

𝑟
(𝐵(𝑟, 𝑠, 𝑡), 𝑏V

𝑝
) [14]

𝜎(Δ
𝑎,𝑏
, 𝑐) 𝜎

𝑝
(Δ
𝑎,𝑏
, 𝑐) 𝜎

𝑐
(Δ
𝑎,𝑏
, 𝑐) 𝜎

𝑟
(Δ
𝑎,𝑏
, 𝑐) [15]

𝜎(Δ ], ℓ1) 𝜎
𝑝
(Δ ], ℓ1) 𝜎

𝑐
(Δ ], ℓ1) 𝜎

𝑟
(Δ ], ℓ1) [16]

𝜎(Δ
2

𝑢V, 𝑐0) 𝜎
𝑝
(Δ
2

𝑢V, 𝑐0) 𝜎
𝑐
(Δ
2

𝑢V, 𝑐0) 𝜎
𝑟
(Δ
2

𝑢V, 𝑐0) [17]
𝜎(Δ
𝑢V, ℓ1) 𝜎

𝑝
(Δ
𝑢V, ℓ1) 𝜎

𝑐
(Δ
𝑢V, ℓ1) 𝜎

𝑟
(Δ
𝑢V, ℓ1) [18]

𝜎(𝐵

(𝑟, 𝑠, 𝑡), ℓ

𝑝
) 𝜎

𝑝
(𝐵

(𝑟, 𝑠, 𝑡), ℓ

𝑝
) 𝜎

𝑐
(𝐵

(𝑟, 𝑠, 𝑡), ℓ

𝑝
) 𝜎

𝑟
(𝐵

(𝑟, 𝑠, 𝑡), ℓ

𝑝
) [19]

for all 𝑘, 𝑛 ∈ N. Thus, we observe that






(Λ − 𝛼𝐼)

−1


(𝑐0 :𝑐0)

= sup
𝑛∈N

∞

∑

𝑘=0





𝑏
𝑛𝑘





. (15)

The inequality |2𝛼 − 1| > 1 is equivalent to 𝛾 > −1, where
−(1/𝛼) = 𝛾 + 𝑖𝛽. For all 𝛼 ∈ C,









1 −

𝑐
𝑗

𝛼









=






1 + (𝛾 + 𝑖𝛽) 𝑐

𝑗






≥ 1 + 𝛾𝑐

𝑗
(16)

holds for all 𝑗 ∈ N. So, 1/|1 − (𝑐
𝑗
/𝛼)| ≤ 1/(1 + 𝛾𝑐

𝑗
).

Firstly we take −1 < 𝛾 < 0. Since 0 < 𝑐
𝑗
≤ 1, we have

1 + 𝛾 ≤ 1 + 𝛾𝑐
𝑗
< 1. Therefore 1/(1 + 𝛾𝑐

𝑗
) < 1/(1 + 𝛾) and

1 < 1/(1 + 𝛾) < ∞ for 0 < 1 + 𝛾 < 1.
∞

∑

𝑘=0





𝑏
𝑛𝑘





=

𝑛

∑

𝑘=0





𝑏
𝑛𝑘





<

𝜆
𝑛−1

𝜆
𝑛|
𝛼|
2
(1 + 𝛾)

𝑛+1
+

1

|𝛼| (1 + 𝛾)

< ∞.

(17)

Secondly we get 0 ≤ 𝛾. Since 1 < 1 + 𝛾𝑐
𝑗
≤ 1 + 𝛾, 1/(1 +

𝛾𝑐
𝑗
) < 1. So,

∞

∑

𝑘=0





𝑏
𝑛𝑘





=

𝑛

∑

𝑘=0





𝑏
𝑛𝑘





<

𝜆
𝑛−1

𝜆
𝑛|
𝛼|
2
+

1

|𝛼|

< ∞. (18)

Therefore, we have






(Λ − 𝛼𝐼)

−1


(𝑐0 :𝑐0)

= sup
𝑛∈N

𝑛

∑

𝑘=0





𝑏
𝑛𝑘





< ∞, (19)

that is, (Λ − 𝛼𝐼)
−1

∈ (𝑐
0
: 𝑐
0
). But for |2𝛼 − 1| ≤ 1,






(Λ − 𝛼𝐼)

−1


(𝑐0 :𝑐0)

= ∞, (20)

that is, (Λ − 𝛼𝐼)
−1 is not in 𝐵(𝑐

0
). This completes the proof.

Theorem 7. Define 𝜇 and 𝜂 by 𝜇 = lim sup
𝑗→∞

𝑐
𝑗
and 𝜂 =

lim inf
𝑗→∞

𝑐
𝑗
. Then,

{𝛼 ∈ C :










𝛼 −

1

2 − 𝜇










≤

1 − 𝜇

2 − 𝜇

} ∪ 𝑆 ⊆ 𝜎 (Λ, 𝑐
0
) ,

where 𝑆 = {𝑐
𝑗
: 𝑗 ∈ N}.

(21)

Proof. Let |𝛼 − 1/(2 − 𝜇)| < (1 − 𝜇)/(2 − 𝜇) and 𝛼 ̸= 𝑐
𝑗
for any

𝑗 ∈ N. Then,

1 −

𝑐
𝑗

𝛼

=

𝜆
𝑗
𝜆
𝑗−1

𝜆
𝑗
𝜆
𝑗−1

−

𝑐
𝑗

𝛼

=

𝜆
𝑗−1

𝜆
𝑗

[

𝜆
𝑗

𝜆
𝑗−1

−

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

+ (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

]

=

𝜆
𝑗−1

𝜆
𝑗

[1 + (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

] .

(22)
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So we have,





𝑏
𝑛𝑘





=

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑘−1|

𝛼|
2
∏
𝑛

𝑗=𝑘






1 + (1 − 1/𝛼) ((𝜆

𝑗
− 𝜆
𝑗−1

) /𝜆
𝑗−1

)







.

(23)

Note that |1 + (1 − 𝛼
−1
)(𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

| ≤ 1 if and only if

[1 + (1 + 𝛾)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

]

2

+ (𝛽

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

)

2

≤ 1, (24)

where −𝛼−1 = 𝛾 + 𝑖𝛽. So, one can see that

2 (1 + 𝛾)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

+ [(1 + 𝛾)
2
+ 𝛽
2
] (

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

)

2

≤ 0,

(25)

which is equivalent to the inequality

2 (1 + 𝛾) + [(1 + 𝛾)
2
+ 𝛽
2
] (

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

) ≤ 0. (26)

For inequality (26) to be true for all sufficiently large 𝑗, it is
sufficient to have

lim sup
𝑗→∞

[2 (1 + 𝛾) + [(1 + 𝛾)
2
+ 𝛽
2
]

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

] < 0. (27)

We can write (𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

= 𝜆
𝑗
(𝜆
𝑗
− 𝜆
𝑗−1

)/(𝜆
𝑗
𝜆
𝑗−1

) and
𝜆
𝑗
/𝜆
𝑗−1

= 1/(1 − 𝑐
𝑗
). Therefore,

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

=

𝑐
𝑗

1 − 𝑐
𝑗

, (28)

lim sup
𝑗→∞

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

=

𝜇

1 − 𝜇

, (29)

since the function 𝑔 defined by 𝑔(𝑥) = 𝑥/(1−𝑥) is monotone
increasing in 𝑥 for 0 < 𝑥 < 1.

For (27) to be true for all sufficiently large 𝑗, it is sufficient
to have 𝜇 satisfying

2 (1 + 𝛾) + [(1 + 𝛾)
2
+ 𝛽
2
]

𝜇

1 − 𝜇

< 0 (30)

which is equivalent to









𝛼 −

1

2 − 𝜇










<

1 − 𝜇

2 − 𝜇

. (31)

Therefore, for all 𝑛 ≥ 𝑁, for some fixed𝑁,
𝑛−1

∑

𝑘=𝑁





𝑏
𝑛𝑘





=

𝑛−1

∑

𝑘=𝑁

𝜆
𝑘
−𝜆
𝑘−1

𝜆
𝑘−1|

𝛼|
2
∏
𝑛

𝑗=𝑘






1+(1−1/𝛼) ((𝜆

𝑗
−𝜆
𝑗−1

) /𝜆
𝑗−1

)







≥

1

|𝛼|
2

𝑛−1

∑

𝑘=𝑁

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑘−1

(32)

which diverges in the light of (29).
If 𝛼 = 𝑐

𝑗
for any 𝑗 ∈ N, then clearly 𝛼 lies in the spectrum

of Λ. This completes the proof.

Theorem 8. 𝜎(Λ, 𝑐
0
) ⊆ {𝛼 ∈ C : |𝛼 − 1/(2 − 𝜂)| ≤ (1 − 𝜂)/(2 −

𝜂)} ∪ 𝑆.

Proof. Let 𝛼 be fixed and satisfy the inequality










𝛼 −

1

2 − 𝜂










>

1 − 𝜂

2 − 𝜂

, (33)

and 𝛼 ̸= 𝑐
𝑗
for any 𝑗 ∈ N. We will show that 𝛼 ∈ 𝜌(Λ, 𝑐

0
). From

Theorem 6, we need consider only those values of 𝛼 satisfying
|2𝛼 − 1| > 1; that is, 𝛾 > −1. Under the assumption on 𝛼, we
wish to verify that












1 + (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1












> 1 (34)

for all sufficiently large 𝑗. It will be sufficient to show that

lim inf
𝑗→∞

{2 (1 + 𝛾) + [(1 + 𝛾)
2
+ 𝛽
2
]

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

} > 0, (35)

that is,

2 (1 + 𝛾) + [(1 + 𝛾)
2
+ 𝛽
2
]

𝜂

1 − 𝜂

> 0 (36)

which is equivalent to (33).
Define the function 𝑓 by 𝑓(𝑡) = 1 + 2(1 + 𝛾)𝑡 + [(1 + 𝛾)

2
+

𝛽
2
]𝑡
2. 𝑓 has a minumum at 𝑡

0
= −(1 + 𝛾)/[(1 + 𝛾)

2
+ 𝛽
2
]. The

above inequality is equivalent to 𝜂(𝛾2 + 𝛽
2
) + 2𝛾 > 𝜂 − 2 and

is also equivalent to

𝜂

2 (1 − 𝜂)

> −

1 + 𝛾

(1 + 𝛾)
2
+ 𝛽
2

= 𝑡
0
. (37)

Therefore, for those values of 𝜂 satisfying (37), 𝑓 is monotone
increasing. Let 𝜖 > 0 and small. Then 𝑓(𝜂/(1 − 𝜂) − 𝜖) =
𝑓(𝜂/(1 − 𝜂)) − (2𝜖)𝑔(𝜖), where 𝑔(𝜖) = 1 + 𝛾 + [(1 + 𝛾)

2
+

𝛽
2
][𝜂/(1 − 𝜂) − 𝜖/2]. Note that 𝑔(𝜖) > 0 for small 𝜖, since

𝑓 is monotone increasing for 𝑡 > 𝜂/[2(1 − 𝜂)], we will now
show that 𝑓(𝜂/(1 − 𝜂)) > 1. From (37),

𝛾
2
+ 𝛽
2
+

2𝛾

𝜂

>

𝜂 − 2

𝜂

(38)

which is equivalent to











1

1 − 𝜂

−

𝜂

𝛼 (1 − 𝜂)











> 1. (39)

But 1/(1 − 𝜂) = 1 + 𝜂/(1 − 𝜂), so we have 𝑓(𝜂/(1 − 𝜂)) =
|1 + (1 − 𝛼

−1
)𝜂/(1 − 𝜂)|

2

> 1. Now choose 𝜖 > 0 and so small
that𝑓(𝜂/(1−𝜂)−𝜖) =𝑓(𝜂/(1−𝜂))−2𝜖𝑔(𝜖) =𝑚

2
> 1.Then, by

the definition of 𝜂, there exists an𝑁 such that 𝑛 > 𝑁 implies
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(𝜆
𝑛+1

− 𝜆
𝑛
)/𝜆
𝑛
> 𝜂/(1 − 𝜂) − 𝜖, so that 𝑓((𝜆

𝑛+1
− 𝜆
𝑛
)/𝜆
𝑛
) >

𝑓(𝜂/(1 − 𝜂) − 𝜖) =𝑚
2. Using (23),





𝑏
𝑛𝑘










𝑏
𝑛+1,𝑘






=

(𝜆
𝑘
−𝜆
𝑘−1

) /𝜆
𝑘−1|

𝛼|
2
∏
𝑛

𝑗=𝑘






1+(1−1/𝛼)((𝜆

𝑗
−𝜆
𝑗−1

)/𝜆
𝑗−1

)







(𝜆
𝑘
−𝜆
𝑘−1

) /𝜆
𝑘−1|

𝛼|
2
∏
𝑛+1

𝑗=𝑘






1+(1−1/𝛼)((𝜆𝑗

−𝜆
𝑗−1

)/𝜆
𝑗−1

)







=










1 + (1 −

1

𝛼

)

𝜆
𝑛+1

− 𝜆
𝑛

𝜆
𝑛










= 𝑓(

𝜆
𝑛+1

− 𝜆
𝑛

𝜆
𝑛

) > 𝑚
2
> 1,

(40)

for all 𝑛 ≥ 𝑁. Therefore {|𝑏
𝑛𝑘
|} is monotone decreasing in 𝑛

for each 𝑘, 𝑛 > 𝑁, so that 𝐵 has bounded columns. It remains
to show that 𝐵 has finite norm.

For 𝜖 being used, from (29), we can enlarge 𝑁, if
necessary, to ensure that (𝜆

𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛−1

< 𝜇/(1 − 𝜇) + 1

for 𝑛 ≥ 𝑁. From (23),
𝑛−1

∑

𝑘=𝑁





𝑏
𝑛𝑘






=

𝑛−1

∑

𝑘=𝑁

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑘−1|

𝛼|
2
∏
𝑛

𝑗=𝑘






1 + (1 − 1/𝛼) ((𝜆

𝑗
− 𝜆
𝑗−1

) /𝜆
𝑗−1

)







≤

1

|𝛼|
2
(

𝜇

1−𝜇

+1)

𝑛−1

∑

𝑘=𝑁

1

∏
𝑛

𝑗=𝑘






1+(1−1/𝛼) ((𝜆𝑗

−𝜆
𝑗−1

) /𝜆
𝑗−1

)







≤

1

|𝛼|
2
(

𝜇

1 − 𝜇

+ 1)

𝑛−1

∑

𝑘=𝑁

𝑚
−𝑛+𝑘−1

< 𝐻,

(41)

where𝐻 is a constant independent of 𝑛. Further





𝑏
𝑛𝑛





=

𝜆
𝑛

|𝛼|




𝜆
𝑛
− ((𝜆
𝑛
− 𝜆
𝑛−1

) /𝛼)





=

𝜆
𝑛

|𝛼|




𝜆
𝑛−1

+ (1 − 1/𝛼) (𝜆𝑛
− 𝜆
𝑛−1

)





=

𝜆
𝑛
/𝜆
𝑛−1

|𝛼|




1 + (1 − 1/𝛼) ((𝜆𝑛

− 𝜆
𝑛−1

) /𝜆
𝑛−1

)





=

1 + (𝜆
𝑛
− 𝜆
𝑛−1

) /𝜆
𝑛−1

|𝛼|




1 + (1 − 1/𝛼) ((𝜆

𝑛
− 𝜆
𝑛−1

) /𝜆
𝑛−1

)





<

1 + 𝜇/ (1 − 𝜇) + 1

|𝛼|𝑚

.

(42)

Hence, 𝐵 has a finite norm.

Corollary 9. Let 𝛿 = lim
𝑗→∞

𝑐
𝑗
exist. Then,

𝜎 (Λ, 𝑐
0
) = {𝛼 ∈ C :









𝛼 −

1

2 − 𝛿









≤

1 − 𝛿

2 − 𝛿

} ∪ 𝑆. (43)

If 𝑇 ∈ 𝐵(𝑐
0
) with the matrix 𝐴, then it is known that the

adjoint operator𝑇∗ : 𝑐∗
0

→ 𝑐
∗

0
is dened by the transpose𝐴𝑡 of

the matrix𝐴. It should be noted that the dual space 𝑐∗
0
of 𝑐
0
is

isometrically isomorphic to the Banach space ℓ
1
of absolutely

summable sequences normed by ‖𝑥‖ = ∑
∞

𝑘=0
|𝑥
𝑘
|.

Theorem 10. Let 𝛿 be defined as in Corollary 9. Then,
𝜎
𝑝
(Λ
∗
, 𝑐
∗

0
) = {𝛼 ∈ C : |𝛼 − 1/(2 − 𝛿)| < (1 − 𝛿)/(2 − 𝛿)} ∪ 𝑆.

Proof. Suppose that Λ∗𝑥 = 𝛼𝑥 for 𝑥 ̸= 𝜃 in 𝑐
∗

0
≅ ℓ
1
. Then, by

solving the system of linear equations

𝑥
1
=

𝜆
1
− 𝜆
0

𝜆
0

(1 −

1

𝛼

) 𝑥
0
,

𝑥
2
=

𝜆
2
− 𝜆
1

𝜆
0

(1 −

𝑐
1

𝛼

)(1 −

1

𝛼

)𝑥
0

...

𝑥
𝑛
=

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
0

(1 −

1

𝛼

) 𝑥
0

𝑛−1

∏

𝑗=1

(1 −

𝑐
𝑗

𝛼

)

...

(44)

we can write 𝑥
𝑛
= (𝜆
𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛−1

(1 − 𝛼
−1)𝑥
0
∏
𝑛−1

𝑗=1
[1+(1 −

𝛼
−1)(𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

]. Let |𝛼 − 1/(2 − 𝛿)| < (1 − 𝛿)/(2 − 𝛿) or
𝛼 ∈ 𝑆 and 𝑢

𝑛
= ∏
𝑛−1

𝑗=1
[1 + (1 − 𝛼

−1)(𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

]. One can
see that |1 + (1 − 𝛼

−1
)(𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

| < 1 for all sufficiently
large 𝑗 if and only if

[1 + (1 + 𝛾)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

]

2

+ (𝛽

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

)

2

< 1,

where −

1

𝛼

= 𝛾 + 𝑖𝛽.

(45)

Then, we have, from the discussion in Theorem 7 and the
hypothesis on 𝛼,










𝑢
𝑛+1

𝑢
𝑛










=










1 + (1 −

1

𝛼

)

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑛−1










< 1 (46)

for all sufficiently large 𝑛, so ∑
∞

𝑛=0
|𝑢
𝑛
| is convergent. Since

|(1 − 𝛼
−1
)(𝜆
𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛−1

𝑥
0
| is bounded, it follows that

∑
∞

𝑛=0
|𝑥
𝑛
| is convergent, so that Λ∗𝑥 = 𝛼𝑥 has nonzero

solutions. Therefore, the proof is completed.

Theorem 11. Let 𝛿 be defined as in Corollary 9. Then

𝜎
𝑝
(Λ, 𝑐
0
) = {𝛼 = c

𝑛
∈ C : 0 ≤ 𝛼 ≤

𝛿

2 − 𝛿

} ∪ {1} . (47)

Proof. Let 𝑐
𝑘
be any diagonal entry satisfying 0 < 𝑐

𝑘
≤ 𝛿/(2 −

𝛿). Let 𝑗 be the smallest integer such that 𝑐
𝑗
= 𝑐
𝑘
. By setting

𝑥
𝑛
= 0 for 𝑛 > 𝑗 + 1, 𝑥

0
= 0, the system (Λ

∗
− 𝑐
𝑗
𝐼)𝑥 =

𝜃 reduces to a homogeneous linear system of 𝑗 equations in
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𝑗 + 1 unknowns, so that nontrivial solutions exist. Therefore
Λ − 𝑐
𝑗
𝐼 ∈ 3.

Λ − 𝛼𝐼 is not one to one for 𝛼 = 0, 1 and so Λ − 𝛼𝐼 ∈ 3.
This step concludes the proof.

Lemma 12 (see [3, page 59]). 𝑇 has a dense range if and only
if 𝑇∗ is one to one.

Theorem 13. 𝜎
𝑟
(Λ, 𝑐
0
) = 𝜎

𝑝
(Λ
∗
, 𝑐
∗

0
) \ 𝜎
𝑝
(Λ, 𝑐
0
).

Proof. For 𝛼 ∈ 𝜎
𝑝
(Λ
∗
, 𝑐
∗

0
) \ 𝜎
𝑝
(Λ, 𝑐
0
), the operator Λ − 𝛼𝐼 is

triangle, so has an inverse. But Λ∗−𝛼𝐼 is not one to one by
Theorem 10.Therefore by Lemma 12, 𝑅(Λ − 𝛼𝐼) ̸= 𝑐

0
, and this

step concludes the proof.

Theorem 14. Let 𝛿 be defined as in Corollary 9 and 𝑐
𝑛
≥ 𝛿 for

all sufficiently large 𝑛. Then,

𝜎
𝑐
(Λ, 𝑐
0
) = {𝛼 ∈ C :









𝛼 −

1

2 − 𝛿









=

1 − 𝛿

2 − 𝛿

, 𝛼 ̸= 1,

𝛿

2 − 𝛿

} .

(48)

Proof. Fix 𝛼 ̸= 1, 𝛿/(2 − 𝛿), and satisfying |𝛼 − 1/(2 − 𝛿)| =

(1 − 𝛿)/(2 − 𝛿). Since the operator Λ − 𝛼𝐼 is triangle, it has
an inverse. Consider the adjoint operator Λ

∗
− 𝛼𝐼. As in

Theorem 11, 𝑥
0
is arbitrary and

𝑥
𝑛
=

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑛−1

(1 −

1

𝛼

) 𝑥
0

𝑛

∏

𝑗=𝑘

[1 + (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1

]

(49)

for all positive 𝑛. From the hypothesis, there exists a positive
integer𝑁 such that 𝑛 ≥ 𝑁 implies 𝑐

𝑛
≥ 𝛿. This fact, together

with the condition on 𝛼, implies that |1 + (1 − 𝛼
−1
)(𝜆
𝑛
−

𝜆
𝑛−1

)/𝜆
𝑛−1

| ≥ 1 for 𝑛 ≥ 𝑁. Thus, |𝑥
𝑛
| = 𝐶(𝜆

𝑛
− 𝜆
𝑛−1

)/𝜆
𝑛−1

for 𝑛 ≥ 𝑁, where 𝐶 is a positive constant independent of 𝑛.
We can write

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑛−1

= 𝑐
𝑛
(1 +

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑛−1

)

≥ 𝑐
𝑛
.

(50)

Therefore (𝑥
𝑛
) ∈ ℓ

1
⇔ 𝑥
0
= 0; that is, Λ∗ − 𝛼𝐼 is one to

one. From Lemma 12, the range of Λ − 𝛼𝐼 is dense in 𝑐
0
. This

completes the proof.

Lemma 15 (see [3, page 60]). 𝑇 has a bounded inverse if and
only if 𝑇∗ is onto.

Theorem 16. Let 𝛿 be defined as in Corollary 9 and less than
1. If 𝛼 satisfies |𝛼 − 1/(2 − 𝛿)| < (1 − 𝛿)/(2 − 𝛿) and 𝛼 ∉ 𝑆, then
𝛼 ∈ 𝐶

1
𝜎(Λ, 𝑐

0
).

Proof . First of all Λ − 𝛼𝐼 is a triangle; hence 1 − 1. Therefore
Λ−𝛼𝐼 ∈ 1∪2. To verify thatΛ−𝛼𝐼 ∈ 𝐶

1
𝜎(Λ, 𝑐

0
) it is sufficient

to show that Λ∗ − 𝛼𝐼 is onto by Lemma 15.
Suppose 𝑦 = (Λ

∗
− 𝛼𝐼)𝑥, where 𝑥, 𝑦 ∈ ℓ

1
. Then, 𝑥

0
=

1/(1 − 𝛼)𝑦
0
− 𝜆
0
/[(𝜆
1
− 𝜆
0
)(1 − 𝛼)]𝑦

1
and

(𝑐
𝑛
− 𝛼) 𝑥

𝑛
+ (𝜆
𝑛
− 𝜆
𝑛−1

)

∞

∑

𝑘=𝑛+1

𝑥
𝑘

𝜆
𝑘

= 𝑦
𝑛
, 𝑛 > 0. (51)

Choose 𝑥
1
= 0 and solve (51) for 𝑥 in terms of 𝑦 to get

(𝜆
1
− 𝜆
0
)

∞

∑

𝑘=2

𝑥
𝑘

𝜆
𝑘

= 𝑦
1
, (52)

(𝑐
𝑛
− 𝛼) 𝑥

𝑛
= 𝑦
𝑛
− (𝜆
𝑛
− 𝜆
𝑛−1

)

∞

∑

𝑘=𝑛+1

𝑥
𝑘

𝜆
𝑘

. (53)

For example, substituting (52) into (53), with 𝑛 = 2, yields

(𝑐
2
− 𝛼) 𝑥

2
= 𝑦
2
− (𝜆
2
− 𝜆
1
)

∞

∑

𝑘=3

𝑥
𝑘

𝜆
𝑘

, (54)

so that 𝑥
2
= (𝜆
2
− 𝜆
1
)/[𝛼(𝜆

1
− 𝜆
0
)]𝑦
1
− (1/𝛼)𝑦

2
. For 𝑛 = 3,

𝑥
3
= −(

𝜆
3
− 𝜆
2

𝜆
1
− 𝜆
0

) (𝑐
2
− 𝛼)

1

𝛼
2
𝑦
1
+ (

𝜆
3
− 𝜆
2

𝜆
2

)

1

𝛼
2
𝑦
2
−

1

𝛼

𝑦
3
.

(55)

Continuing this process, the entries of the matrix 𝐵 =

(𝑏
𝑛𝑘
) such that 𝐵𝑦 = 𝑥 are calculated as

𝑏
00

=

1

1 − 𝛼

, 𝑏
01

= −

𝜆
0

(𝜆
1
− 𝜆
0
) (1 − 𝛼)

𝑏
21

=

𝜆
2
− 𝜆
1

(𝜆
1
− 𝜆
0
) 𝛼

, 𝑏
𝑛𝑛

= −

1

𝛼

, 𝑛 > 1,

𝑏
𝑛,𝑛−1

=

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑛−1

𝛼
2

, 𝑛 > 2

𝑏
𝑛1

=

𝜆
𝑛
− 𝜆
𝑛−1

(𝜆
1
− 𝜆
0
) 𝛼

𝑛−1

∏

𝑗=2

(1 −

𝑐
𝑗

𝛼

) , 𝑛 > 2,

𝑏
𝑛𝑘

=

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑘
𝛼
2

𝑛−1

∏

𝑗=𝑘+1

(1 −

𝑐
𝑗

𝛼

) , 1 < 𝑘 < 𝑛 − 1,

(56)

and 𝑏
𝑛𝑘

= 0 otherwise.
To show that 𝐵 ∈ 𝐵(ℓ

1
), it is sufficient to establish that

∑
∞

𝑛=0
|𝑏
𝑛𝑘
| is finite independent of 𝑘.∑∞

𝑛=0
|𝑏
𝑛0
| = 1/|1−𝛼|. We

maywrite 1−(𝑐
𝑗
/𝛼) = (𝜆

𝑗−1
/𝜆
𝑗
)[1+(1−𝛼

−1
)(𝜆
𝑗
−𝜆
𝑗−1

)/𝜆
𝑗−1

].
Also, sup

𝑛∈N|(𝜆𝑛 − 𝜆
𝑛−1

)/𝜆
𝑛−1

| ≤ 𝑀 < ∞. Therefore,

∞

∑

𝑛=0





𝑏
𝑛1





≤

1

|𝛼|

[

[

𝑀 +𝑀

∞

∑

𝑛=3

𝑛−1

∏

𝑗=2












1 + (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1












]

]

(57)

and, for 𝑘 > 1,
∞

∑

𝑛=0





𝑏
𝑛𝑘





≤

1

|𝛼|

+

𝑀

|𝛼|
2

+

𝑀

|𝛼|
2

∞

∑

𝑛=𝑘+2

𝑛−1

∏

𝑗=𝑘+1












1 + (1 −

1

𝛼

)

𝜆
𝑗
− 𝜆
𝑗−1

𝜆
𝑗−1












.

(58)

Since 𝑘 > 1, the series in inequality (24) is absolutely
convergent fromTheorem 7. Therefore, ‖𝐵‖

(ℓ1 :ℓ1)
is finite.

Because of (Λ − 𝛼𝐼)
−1 is bounded, it is continuous, and

𝛼 ∈ 𝐶
1
𝜎(Λ, 𝑐

0
). This completes the proof.
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Theorem 17. Let 𝛿 be defined as in Corollary 9 and 𝛿 < 1. If
𝛼 = 𝛿 or 𝛼 = 𝑐

𝑛
for all 𝑛 ∈ N and 𝛿/(2 − 𝛿) < 𝛼 < 1, then

𝛼 ∈ 𝐶
1
𝜎(Λ, 𝑐

0
).

Proof. First assume that Λ has distinct diagonal entries and
fix 𝑗 ≥ 1. Then the system (Λ − 𝑐

𝑗
𝐼)𝑥 = 𝜃 implies that 𝑥

𝑛
= 0

for 𝑛 = 0, 1, . . . , 𝑗 − 1, and for 𝑛 ≥ 𝑗

(𝑐
𝑗
− 𝑐
𝑛
) 𝑥
𝑛
−

𝑛−1

∑

𝑘=0

𝜆
𝑛𝑘
𝑥
𝑘
= 0. (59)

The system (59) yields the following recursion relation:

𝑥
𝑛+1

=

𝜆
𝑛
𝑐
𝑗
𝑥
𝑛

𝜆
𝑛+1

(𝑐
𝑗
− 𝑐
𝑛+1

)

(60)

which can be solved for 𝑥
𝑛
to yield

𝑥
𝑗+𝑚

=

𝜆
𝑗
𝑥
𝑗
𝑐
𝑚

𝑗

𝜆
𝑗+𝑚

∏
𝑚

𝑖=1
(𝑐
𝑗
− 𝑐
𝑗+𝑖
)

= 𝑥
𝑗

𝑚

∏

𝑖=1

𝜆
𝑗+𝑖−1

𝜆
𝑗+𝑖

(1 − 𝑐
𝑗+𝑖
/𝑐
𝑗
)

= 𝑥
𝑗
{

𝑚

∏

𝑖=1

𝜆
𝑗+𝑖

𝜆
𝑗+𝑖−1

[1 −

𝜆
𝑗
(𝜆
𝑗+𝑖

− 𝜆
𝑗+𝑖−1

)

𝜆
𝑗+𝑖

(𝜆
𝑗
− 𝜆
𝑗−1

)

]}

−1

= 𝑥
𝑗
{

𝑚

∏

𝑖=1

[

𝜆
𝑗+𝑖

𝜆
𝑗+𝑖−1

−

𝜆
𝑗
(𝜆
𝑗+𝑖

− 𝜆
𝑗+𝑖−1

)

𝜆
𝑗+𝑖−1

(𝜆
𝑗
− 𝜆
𝑗−1

)

]}

−1

= 𝑥
𝑗
{

𝑚

∏

𝑖=1

[

𝜆
𝑗+𝑖

𝜆
𝑗+𝑖−1

−

𝜆
𝑗+𝑖

− 𝜆
𝑗+𝑖−1

𝜆
𝑗+𝑖−1

+ (1 −

1

𝑐
𝑗

)

𝜆
𝑗+𝑖

− 𝜆
𝑗+𝑖−1

𝜆
𝑗+𝑖−1

]}

−1

= 𝑥
𝑗
{

𝑚

∏

𝑖=1

[1 + (1 −

1

𝑐
𝑗

)

𝜆
𝑗+𝑖

− 𝜆
𝑗+𝑖−1

𝜆
𝑗+𝑖−1

]}

−1

.

(61)

Since 0 < 𝑐
𝑗
< 1, the argument of Theorem 7 applies and

(24) is true.Therefore 𝑥 ∈ 𝑐
0
implies 𝑥 = 𝜃 andΛ−𝑐

𝑗
𝐼 is 1−1,

so that Λ − 𝑐
𝑗
𝐼 ∈ 1 ∪ 2.

Clearly Λ − 𝑐
𝑗
𝐼 ∈ 𝐶. It remains to show that Λ∗ − 𝑐

𝑗
𝐼 is

onto.
Suppose that (Λ∗ − 𝑐

𝑗
𝐼)𝑥 = 𝑦, where 𝑥, 𝑦 ∈ ℓ

1
. By

choosing 𝑥
𝑗+1

= 0 we can solve for 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑗
in terms of

𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑗+1
. As in Theorem 16, the remaining equations

can be written in the form 𝑥 = 𝐵𝑦, where the nonzero entries
of 𝐵 = (𝑏

𝑛𝑘
) are as follows

𝑏
𝑗+𝑚,𝑗+𝑚

= −

1

𝑐
𝑗

;

𝑏
𝑗+2,𝑗+1

=

𝜆
𝑗+2

− 𝜆
𝑗+1

𝑐
𝑗
(𝜆
𝑗+1

− 𝜆
𝑗
)

;

𝑏
𝑗+𝑚,𝑗+𝑚−1

=

𝜆
𝑗+𝑚

− 𝜆
𝑗+𝑚−1

𝑐
2

𝑗
𝜆
𝑗+𝑚−1

, 𝑚 > 2;

𝑏
𝑗+𝑚,𝑗+𝑘

=

𝜆
𝑗+𝑚

− 𝜆
𝑗+𝑚−1

𝑐
2

𝑗
𝜆
𝑗+𝑘

𝑗+𝑚−1

∏

𝑖=𝑗+𝑘+1

(1 −

𝑐
𝑖

𝑐
𝑗

) ,

1 < 𝑘 < 𝑚 − 1, 𝑚 > 3;

𝑏
𝑗+𝑚,𝑗+1

=

𝜆
𝑗+𝑚

− 𝜆
𝑗+𝑚−1

𝑐
𝑗
(𝜆
𝑗+1

− 𝜆
𝑗
)

𝑗+𝑚−1

∏

𝑖=𝑗+2

(1 −

𝑐
𝑖

𝑐
𝑗

) , 𝑚 > 2.

(62)

From (62), we have

∞

∑

𝑛=𝑗+1






𝑏
𝑛,𝑗+1






=

𝜆
𝑗+2

− 𝜆
𝑗+1

𝑐
𝑗
(𝜆
𝑗+1

− 𝜆
𝑗
)

+

1

𝑐
𝑗
(𝜆
𝑗+1

− 𝜆
𝑗
)

×

∞

∑

𝑛=𝑗+3

(𝜆
𝑛
− 𝜆
𝑛−1

)

𝑛−1

∏

𝑖=𝑗+2












1 −

𝑐
𝑖

𝑐
𝑗












.

(63)

For𝑚 > 1,
∞

∑

𝑛=𝑚+𝑗






𝑏
𝑛,𝑚+𝑗






=

1

𝑐
𝑗

+

𝜆
𝑗+𝑚+1

− 𝜆
𝑗+𝑚

𝑐
2

𝑗
𝜆
𝑗+𝑚

+

1

𝑐
2

𝑗

∞

∑

𝑛=𝑗+𝑚+2

𝜆
𝑛
− 𝜆
𝑛−1

𝜆
𝑗+𝑚

𝑛−1

∏

𝑖=𝑗+𝑚+1












1 −

𝑐
𝑖

𝑐
𝑗












.

(64)

Using 1 − (𝑐
𝑗
/𝛼) = (𝜆

𝑗−1
/𝜆
𝑗
)[1 + (1 − 𝛼

−1
)(𝜆
𝑗
− 𝜆
𝑗−1

)/𝜆
𝑗−1

],
one can convert (63) and (64) the similar expressions to (57)
and (58), and therefore ‖𝐵‖

(ℓ1 :ℓ1)
is finite.

Suppose that Λ does not have distinct diagonal entries.
The restriction on 𝛼 guarantees that no zero diagonal entries
are being considered. Let 𝑐

𝑗
̸= 0 be any diagonal entry which

occurs more than once, and let 𝑘, 𝑟 denote, respectively, the
smallest and largest integers for which 𝑐

𝑗
= 𝑐
𝑘
= 𝑐
𝑟
. From (61)

it follows that 𝑥
𝑛
= 0 for 𝑛 ≥ 𝑟. Also, 𝑥

𝑛
= 0 for 0 ≤ 𝑛 < 𝑘.

Therefore the system (Λ − 𝑐
𝑗
𝐼)𝑥 = 𝜃 becomes

(𝑐
𝑗
− 𝑐
𝑛
) 𝑥
𝑛
−

𝑛−1

∑

𝑖=𝑗

𝜆
𝑛𝑖
𝑥
𝑖
= 0, 𝑘 < 𝑛 ≤ 𝑟. (65)

Case 1. Let 𝑟 = 𝑘+ 1. Then (65) reduces to the single equation

(𝑐
𝑗
− 𝑐
𝑘+1

) 𝑥
𝑗+1

− (

𝜆
𝑘
− 𝜆
𝑘−1

𝜆
𝑘+1

)𝑥
𝑘
= 0 (66)

which implies that 𝑥
𝑘
= 0, since 𝑐

𝑗
= 𝑐
𝑟
= 𝑐
𝑘+1

and 𝑐
𝑗

̸= 0.
Therefore 𝑥 = 𝜃.

Case 2. Let 𝑟 > 𝑘 + 1. From (65) one can obtain the recursion
formula 𝑥

𝑛
= 𝜆
𝑛+1

(𝑐
𝑗
− 𝑐
𝑛+1

)𝑥
𝑛+1

/(𝜆
𝑛
𝑐
𝑗
) with 𝑘 < 𝑛 < 𝑟. Since

𝑥
𝑟
= 0 it then follows that 𝑥

𝑛
= 0 for 𝑘 < 𝑛 < 𝑟. Using (65)

with 𝑛 = 𝑘 + 1 yields 𝑥
𝑘
= 0 and so again 𝑥 = 𝜃.

To show that Λ∗ − 𝑐
𝑗
𝐼 is onto, suppose (Λ∗ − 𝑐

𝑗
𝐼)𝑥 = 𝑦,

where 𝑥, 𝑦 ∈ ℓ
1
. By choosing 𝑥

𝑗+1
= 0 one can solve for

𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑗
in terms of 𝑦

0
, 𝑦
1
, . . . , 𝑦

𝑗+1
. As in Theorem 16,

the remaining equations can be written in the form 𝑥 = 𝐵𝑦,



10 Abstract and Applied Analysis

where the nonzero entries of 𝐵 are as in (62) with the other
entries of 𝐵 clearly zero.

Since 𝑘 ≤ 𝑗 ≤ 𝑟, there are two cases to consider.

Case 1. If 𝑗 = 𝑟, then the proof proceeds exactly as in the
argument following (62).

Case 2. If 𝑗 < 𝑟, then from (62), 𝑏
𝑗+𝑚,𝑗+𝑘

= 𝑏
𝑗+𝑚,𝑗+1

= 0 at least
for𝑚 ≥ 𝑟 − 𝑗 + 2. If there are other values of 𝑛 with 𝑗 < 𝑛 < 𝑟

for which 𝑐
𝑛
− 𝑐
𝑗
, then additional entries of 𝐵 will be zero.

These zero entries do not affect the validity of the argument
showing that (63) converges.

If 𝛿 = 0, then 0 does not lie inside the disc, and so it is not
considered in this theorem.

Let 𝛼 = 𝛿 > 0. If 𝜆
𝑛𝑛

≤ 𝛿 for each 𝑛 ≥ 1, all 𝑖 sufficiently
large, then the argument of Theorem 16 applies and Λ − 𝛿𝐼 ∈

𝐶
1
. If𝜆
𝑛𝑛

= 𝛿 for some 𝑛, then the proof ofTheorem 17 applies
with 𝑐

𝑗
replaced by 𝛿 and again, Λ − 𝛿𝐼 ∈ 𝐶

1
.

Therefore, in all cases, Λ − 𝑐
𝑗
𝐼 ∈ 1 ∪ 2.

Theorem 18. If 𝛼 ∈ 𝜎
𝑝
(Λ, 𝑐
0
), 𝛼 ∈ 𝐶

3
𝜎(Λ, 𝑐

0
).

Proof . For 𝛼 ∈ 𝜎
𝑝
(Λ, 𝑐
0
), Λ − 𝛼𝐼 ∈ 3 and Λ

∗
− 𝛼𝐼 is not one

to one.Therefore𝑅(Λ − 𝛼𝐼) ̸= 𝑐
0
by Lemma 12.This concludes

the proof.

Theorem 19. The statement 𝐴
3
𝜎(Λ, 𝑐

0
) = 𝐶

2
𝜎(Λ, 𝑐

0
) = 0

holds.

Proof. Let 𝛿 be defined as in Corollary 9 and 𝑐
𝑛
≥ 𝛿 for all

sufficiently large 𝑛, then 𝐴
3
𝜎(Λ, 𝑐

0
) = 0 and 𝐶

2
𝜎(Λ, 𝑐

0
) = 0

follow from Corollary 9, Theorems 14, and 16–18.

Define the set 𝐸 by

𝐸 = {𝑐
𝑗
: 𝑐
𝑗
≤

𝜂

2 − 𝜂

}, (67)

where 𝜂 is as in Theorem 7.
We will consider 𝛿 = 𝜂, that is, for which the main

diagonal entries converge, where 𝛿 as in Corollary 9.

Theorem 20. The following results hold:

(a) 𝜎
𝑎𝑝
(Λ, 𝑐
0
) = {𝛼 : |𝛼 − (2 − 𝛿)

−1
| = (1 − 𝛿)/(2 − 𝛿)} ∪ 𝐸,

(b) 𝜎
𝛿
(Λ, 𝑐
0
) = 𝜎(Λ, 𝑐

0
),

(c) 𝜎
𝑐𝑜
(Λ, 𝑐
0
)= {𝛼 ∈ C : |𝛼−(2−𝛿)

−1
| < (1−𝛿)/(2−𝛿)}∪𝑆.

Proof . (a) Since the relation

𝐶
1
𝜎 (Λ, 𝑐

0
) = {{𝛼 :









𝛼 −

1

2 − 𝛿









<

1 − 𝛿

2 − 𝛿

} \ 𝑆}

⋃{𝛼 = 𝜆
𝑛𝑛

:

𝛿

2 − 𝛿

< 𝛼 < 1}

(68)

holds by Theorems 16 and 17 and from Table 1, 𝜎ap(Λ, 𝑐0) =

𝜎(Λ, 𝑐
0
) \𝐶
1
𝜎(Λ, 𝑐

0
). Therefore, we have 𝜎ap(Λ, 𝑐0) = {𝛼 : |𝛼 −

(2 − 𝛿)
−1
| = (1 − 𝛿)/(2 − 𝛿)} ∪ 𝐸.

(b) Since𝜎
𝛿
(Λ, 𝑐
0
) = 𝜎(Λ, 𝑐

0
)\𝐴
3
𝜎(Λ, 𝑐

0
) fromTable 1 and

𝐴
3
𝜎(Λ, 𝑐

0
) = 0 byTheorem 19, we have 𝜎

𝛿
(Λ, 𝑐
0
) = 𝜎(Λ, 𝑐

0
).

(c) Since the equality𝜎co(Λ, 𝑐0) = 𝐶
1
𝜎(Λ, 𝑐

0
)∪𝐶
2
𝜎(Λ, 𝑐

0
)∪

𝐶
3
𝜎(Λ, 𝑐

0
) holds from Table 1, we have 𝜎co(Λ, 𝑐0) = {𝛼 ∈ C :

|𝛼 − (2 − 𝛿)
−1
| < (1 − 𝛿)/(2 − 𝛿)} ∪ 𝑆 byTheorems 16–19.

The next corollary can be obtained from Proposition 1.

Corollary 21. The following results hold:

(a) 𝜎ap(Λ
∗
, ℓ
1
) = 𝜎(Λ, 𝑐

0
),

(b) 𝜎
𝛿
(Λ
∗
, ℓ
1
) = {𝛼 : |𝛼 − (2 − 𝛿)

−1
| = (1 − 𝛿)(2 − 𝛿)} ∪ 𝐸,

(c) 𝜎
𝑝
(Λ
∗
, ℓ
1
) = {𝛼 ∈ C : |𝛼 − (2 − 𝛿)

−1
| < (1 − 𝛿)/(2 −

𝛿)} ∪ 𝑆.

4. The Fine Spectrum of the Operator Λ on the
Sequence Space 𝑐

In this section, we investigate the fine spectrum of the
operator Λ over the sequence space 𝑐.

Theorem 22. 𝜎(Λ, 𝑐) ⊆ {𝛼 ∈ C : |2𝛼 − 1| ≤ 1}.

Proof. This is obtained in a similar way to that used in the
proof of Theorem 6.

Theorem 23. Suppose that 𝜇, 𝜂 and 𝑆 be defined as in
Theorem 7. Then,

{𝛼 ∈ C :










𝛼 −

1

2 − 𝜇










≤

1 − 𝜇

2 − 𝜇

} ∪ 𝑆

⊆ 𝜎 (Λ, 𝑐)

⊆ {𝛼 ∈ C :










𝛼 −

1

2 − 𝜂










≤

1 − 𝜂

2 − 𝜂

} ∪ 𝑆.

(69)

Proof. This is similar to the proof of Theorems 7 and 8. To
avoid the repetition of the similar statements, we omit the
detail.

Corollary 24. Let 𝛿 be defined as in Corollary 9. Then,

𝜎 (Λ, 𝑐) = {𝛼 ∈ C :









𝛼 −

1

2 − 𝛿









≤

1 − 𝛿

2 − 𝛿

} ∪ 𝑆. (70)

If 𝑇 : 𝑐 → 𝑐 is a bounded linear operator with the
matrix 𝐴, then 𝑇

∗
: 𝑐
∗
→ 𝑐
∗ acting on C ⊕ ℓ

1
has a matrix

representation of the form

[

𝜒 0

𝑏 𝐴
𝑡] , (71)

where 𝜒 is the limit of the sequence of row sums of 𝐴minus
the sum of the limit of the columns of 𝐴 and 𝑏 is the column
vector whose 𝑘th entry is the limit of the 𝑘th column of𝐴 for
each 𝑘 ∈ N. For Λ : 𝑐 → 𝑐, the matrix Λ∗ ∈ 𝐵(ℓ

1
) is of the

form

Λ
∗
= [

1 0

0 Λ
𝑡] . (72)
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Theorem 25. Let 𝛿 be defined as in Corollary 9. Then,

𝜎
𝑝
(Λ
∗
, 𝑐
∗
) = {𝛼 ∈ C :









𝛼 −

1

2 − 𝛿









<

1 − 𝛿

2 − 𝛿

} ∪ 𝑆. (73)

Proof. Suppose that Λ∗𝑥 = 𝛼𝑥 for 𝑥 ̸= 𝜃 in 𝑐
∗
≅ ℓ
1
. Then, by

solving the system of linear equations

(1 − 𝛼) 𝑥0
= 0,

𝑥
2
=

𝜆
1
− 𝜆
0

𝜆
0

(1 −

1

𝛼

) 𝑥
1
,

𝑥
3
=

𝜆
2
− 𝜆
1

𝜆
0

(1 −

𝑐
1

𝛼

)(1 −

1

𝛼

)𝑥
1

...

𝑥
𝑛
=

𝜆
𝑛−1

− 𝜆
𝑛−2

𝜆
0

(1 −

1

𝛼

)𝑥
1

𝑛−1

∏

𝑗=1

(1 −

𝑐
𝑗

𝛼

)

...

(74)

we get by assumption (1 − 𝛼)𝑥
0
= 0 with 𝛼 = 1 that 𝑥 =

(𝑥
0
, 𝑥
1
, 0, 0, . . .) ∈ 𝑐. If 𝛼 ̸= 1, we have 𝑥

0
= 0 and (𝑥

𝑛
) ∈ ℓ
1
if

and only if |1 + (1−𝛼−1)(𝜆
𝑗
−𝜆
𝑗−1

)/𝜆
𝑗−1

| < 1, byTheorem 11.
This completes the proof.

Theorem 26. Let 𝛿 be defined as in Corollary 9. Then,

𝜎
𝑝
(Λ, 𝑐) = {𝛼 = 𝑐

𝑛
∈ C : 0 ≤ 𝛼 ≤

𝛿

2 − 𝛿

} ∪ {1} . (75)

Proof. The proof is identical to the proof of Theorem 11.

Theorem 27. 𝜎
𝑟
(Λ, 𝑐) = 𝜎

𝑝
(Λ
∗
, 𝑐
∗
) \ 𝜎
𝑝
(Λ, 𝑐).

Proof. For 𝛼 ∈ 𝜎
𝑝
(Λ
∗
, 𝑐
∗
) \ 𝜎
𝑝
(Λ, 𝑐), the operator Λ − 𝛼𝐼 is

triangle, so has an inverse. But Λ∗ − 𝛼𝐼 is not one to one by
Theorem 26. Therefore by Lemma 12, 𝑅(Λ − 𝛼𝐼) ̸= 𝑐 and this
concludes the proof.

Since Theorems 28–31 can be proved in a similar way to
that used in the proof ofTheorems 14 and 16–18; respectively,
to avoid the repetition of the similar statements we omit the
detailed proof and give them without proof.

Theorem 28. Let 𝛿 be defined as in Corollary 9 and 𝑐
𝑛
≥ 𝛿 for

all sufficiently large 𝑛. Then,

𝜎
𝑐 (
Λ, 𝑐) = {𝛼 ∈ C :









𝛼 −

1

2 − 𝛿









=

1 − 𝛿

2 − 𝛿

, 𝛼 ̸= 1,

𝛿

2 − 𝛿

} .

(76)

Theorem 29. Let 𝛿 be defined as in Corollary 9 and less than
1. If 𝛼 satisfies |𝛼 − 1/(2 − 𝛿)| < (1 − 𝛿)/(2 − 𝛿) and 𝛼 ∉ 𝑆, then
𝛼 ∈ 𝐶

1
𝜎(Λ, 𝑐).

Theorem 30. Let 𝛿 be defined as in Corollary 9 and 𝛿 < 1. If
𝛼 = 𝛿 or 𝛼 = 𝑐

𝑛
for all 𝑛 ∈ N and 𝛿/(2 − 𝛿) < 𝛼 < 1, then

𝛼 ∈ 𝐶
1
𝜎(Λ, 𝑐).

Theorem 31. If 𝛼 ∈ 𝜎
𝑝
(Λ, 𝑐), 𝛼 ∈ 𝐶

3
𝜎(Λ, 𝑐).

Theorem 32. The following statement holds: 𝐴
3
𝜎(Λ, 𝑐) =

𝐶
2
𝜎(Λ, 𝑐) = 0.

Proof. Let 𝛿 be defined as in Corollary 9 and 𝑐
𝑛
≥ 𝛿 for all

sufficiently large 𝑛, then 𝐴
3
𝜎(Λ, 𝑐) = 0 and 𝐶

2
𝜎(Λ, 𝑐) = 0

follow from Corollary 24 andTheorems 28–31.

Theorem 33. The following results hold:

(a) 𝜎
𝑎𝑝
(Λ, 𝑐) = {𝛼 : |𝛼 − (2 − 𝛿)

−1
| = (1 − 𝛿)/(2 − 𝛿)} ∪ 𝐸,

(b) 𝜎
𝛿
(Λ, 𝑐) = 𝜎(Λ, 𝑐),

(c) 𝜎
𝑐𝑜
(Λ, 𝑐) = {𝛼 ∈ C : |𝛼−(2−𝛿)

−1
| < (1−𝛿)/(2−𝛿)}∪𝑆.

Proof. (a) Since the relation𝐶
1
𝜎(Λ, 𝑐) = {{𝛼 : |𝛼−(2−𝛿)

−1
| <

(1 − 𝛿)/(2 − 𝛿)} \ 𝑆}⋃{𝛼 = 𝜆
𝑛𝑛

: 𝛿/(2 − 𝛿) < 𝛼 < 1} holds
byTheorems 29 and 30 and fromTable 1, 𝜎ap(Λ, 𝑐) = 𝜎(Λ, 𝑐)\

𝐶
1
𝜎(Λ, 𝑐).Therefore, we have 𝜎ap(Λ, 𝑐) = {𝛼 : |𝛼−(2−𝛿)

−1
| =

(1 − 𝛿)/(2 − 𝛿)} ∪ 𝐸.
(b) Since 𝜎

𝛿
(Λ, 𝑐) = 𝜎(Λ, 𝑐) \ 𝐴

3
𝜎(Λ, 𝑐) from Table 1 and

𝐴
3
𝜎(Λ, 𝑐) = 0 byTheorem 32, we have 𝜎

𝛿
(Λ, 𝑐) = 𝜎(Λ, 𝑐).

(c) Since the equality 𝜎co(Λ, 𝑐) = 𝐶
1
𝜎(Λ, 𝑐) ∪ 𝐶

2
𝜎(Λ, 𝑐) ∪

𝐶
3
𝜎(Λ, 𝑐) holds from Table 1, we have 𝜎co(Λ, 𝑐) = {𝛼 ∈ C :

|𝛼 − (2 − 𝛿)
−1
| < (1 − 𝛿)/(2 − 𝛿)} ∪ 𝑆 byTheorems 29–32.

The next corollary can be obtained from Proposition 1.

Corollary 34. The following results hold:

(a) 𝜎
𝑎𝑝
(Λ
∗
, ℓ
1
) = 𝜎(Λ, 𝑐),

(b) 𝜎
𝛿
(Λ
∗
, ℓ
1
) = {𝛼 : |𝛼 − (2 − 𝛿)

−1
| = (1 − 𝛿)/(2 − 𝛿)} ∪𝐸,

(c) 𝜎
𝑝
(Λ
∗
, ℓ
1
) = {𝛼 ∈ C : |𝛼 − (2 − 𝛿)

−1
| < (1 − 𝛿)/(2 −

𝛿)} ∪ 𝑆.

Let 𝐴 be an infinite matrix and let the set 𝑐
𝐴
denote

the convergence domain of that matrix 𝐴, a theorem which
proves that 𝑐

𝐴
= 𝑐 is called aMercerian theorem, after Mercer,

who proved a significant theorem of this type [28, page 186].
Now, we may give our final theorem.

Theorem 35. Suppose that |𝛼 + 1| > |𝛼 − 1|. Then the
convergence field of 𝐴 = 𝛼𝐼 + (1 − 𝛼)Λ is 𝑐.

Proof. ByTheorem 22,Λ−[𝛼/(𝛼−1)]𝐼 has an inverse in 𝐵(𝑐).
That is to say that

𝐴
−1

=

1

1 − 𝛼

(Λ −

𝛼

𝛼 − 1

𝐼)

−1

∈ 𝐵 (𝑐) . (77)

Since 𝐴 is a triangle and is in 𝐵(𝑐), 𝐴−1 is also conservative
which implies that 𝑐

𝐴
= 𝑐 [22, page 12].

5. Conclusion

Although the matrix Λ is used for obtaining some new
sequence spaces by its domain from the classical sequence
spaces, it is not considered for determining the spectrum
or fine spectrum acting as a linear operator on any of the
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classical sequence spaces 𝑐
0
, 𝑐, or ℓ

𝑝
. Following Altay and

Başar [12] and Karakaya and Altun [26], we determine the
fine spectrum with respect to Goldberg’s classification of the
operator defined by the triangle matrix Λ over the sequence
spaces 𝑐

0
and 𝑐which reduces to a new regular trianglematrix

depending on choosing the strictly increasing sequence 𝜆 =

(𝜆
𝑘
) of positive real numbers tending to infinity. Additionally,

we give the approximate point spectrum, the defect spectrum,
and the compression spectrum of the matrix operator Λ over
the spaces 𝑐

0
and 𝑐. Since the present paper is devoted to the

fine spectrum of the operator defined by the lambda matrix
over the sequence spaces 𝑐

0
and 𝑐 with new subdivision of

spectrum, this makes it significant. We should note that the
main results of the present paper are given as an extended
abstract without proof by Yeşilkayagil and Başar [29].

The generalized weightedmeans𝐺(𝑢, V)= (𝑔
𝑛𝑘
) is defined

by

𝑔
𝑛𝑘

= {

𝑢
𝑛
V
𝑘
, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(78)

for all 𝑘, 𝑛 ∈ N, where 𝑢
𝑛
depends only on 𝑛 and V

𝑘
only on 𝑘

such that 𝑢
𝑛
, V
𝑘

̸= 0. It is immediate that in the case 𝑢
𝑛
= 1/𝜆

𝑛

and V
𝑘
= 𝜆
𝑘
− 𝜆
𝑘−1

, the generalized weighted means 𝐺(𝑢, V)
corresponds to the matrix Λ. Although the Riesz means 𝑅𝑞,
the generalized weighted means 𝐺(𝑢, V), and the matrix Λ

were used for different purposes, their fine spectrum over the
classical sequence spaces was not studied. As a beginning, the
present work has an advantage.

Finally, we record fromnowon that our next paper will be
devoted to the investigation of the fine spectrumof thematrix
operator Λ on the spaces ℓ

𝑝
and 𝑏V

𝑝
in the cases 0 < 𝑝 < 1

and 1 ≤ 𝑝 < ∞, where 𝑏V
𝑝
denotes the space of all sequences

whose Δ-transforms are in the space ℓ
𝑝
and was studied in

the case 0 < 𝑝 < 1 by Altay and Başar [30] and in the case
1 ≤ 𝑝 ≤ ∞ by Başar and Altay [31].
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operator 𝐵(𝑟, 𝑠, 𝑡) over the sequence spaces ℓ
𝑝
and 𝑏V

𝑝
, (1 < 𝑝 <

∞),” Computers &Mathematics with Applications, vol. 60, no. 7,
pp. 2141–2152, 2010.

[15] A. M. Akhmedov and S. R. El-Shabrawy, “On the fine spectrum
of the operator Δ

𝑎,𝑏
over the sequence space 𝑐,” Computers &

Mathematics with Applications, vol. 61, no. 10, pp. 2994–3002,
2011.

[16] P. D. Srivastava and S. Kumar, “Fine spectrumof the generalized
difference operator Δ V on sequence space 𝑙

1
,” Thai Journal of

Mathematics, vol. 8, no. 2, pp. 221–233, 2010.
[17] B. L. Panigrahi and P. D. Srivastava, “Spectrum and fine

spectrum of generalized second order difference operator Δ2
𝑢V

on sequence space 𝑐
0
,”Thai Journal of Mathematics, vol. 9, no. 1,

pp. 57–74, 2011.
[18] P. D. Srivastava and S. Kumar, “Fine spectrumof the generalized

difference operator Δ
𝑢V on sequence space 𝑙

1
,” Applied Mathe-

matics and Computation, vol. 218, no. 11, pp. 6407–6414, 2012.
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