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We consider a degenerate equation with amemory condition at the boundary. For a wider class of relaxation functions, we establish
a more general decay result, from which the usual exponential and polynomial decay rates are only special cases.

1. Introduction

The main purpose of this paper is to investigate the asymp-
totic behavior of the solutions of the degenerate equationwith
a memory condition at the boundary
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and the constant 𝜇, 0 < 𝜇 < 1/2, represents Poisson’s ratio.
From the physical point of view, we know that the mem-

ory effect described in integral equations (3) and (4) can be
caused by the interaction with another viscoelastic element.
In fact, the boundary conditions (3) and (4) mean that Ω is
composed of a material which is clamped in a rigid body in
Γ
0
and is clamped in a body with viscoelastic properties in

the complementary part of its boundary named Γ
1
. Problems

related to (1)–(5) are interesting not only from the point of
view of PDE general theory, but also due to its applications in
mechanics.

The existence of global solutions and exponential decay to
the degenerate equation with 𝜕Ω = Γ

0
has been investigated

by several authors. See Cavalcanti et al. [1] and Menezes
et al. [2]. For instance, when 𝐾(𝑥) is equal to 1, (1) describes
the transverse deflection 𝑢(𝑥, 𝑡) of beams. There exists a
large body of literature regarding viscoelastic problems with
the memory term acting in the domain or at the boundary
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(see [3–17]). Santos et al. [18] studied the asymptotic behavior
of the solutions of a nonlinear wave equation of Kirchhoff
type with boundary condition of memory type. Cavalcanti
et al. [19] proved the uniform decay rates of solutions to a
degenerate systemwith amemory condition at the boundary.
Santos and Junior [20] investigated the stability of solutions
for Kirchhoff plate equations with a boundary memory
condition. Rivera et al. [21] showed the asymptotic behavior
to a von Karman plate with boundary memory conditions.
Park and Kang [22] studied the exponential decay for the
Kirchhoff plate equations with nonlinear dissipation and
boundary memory condition. They proved that the energy
decays uniformly exponentially or algebraicallywith the same
rate of decay as the relaxation functions. In the present work,
we generalize the earlier decay results of the solution of
(1)–(5). More precisely, we show that the energy decays at
the rate similar to the relaxation functions, which are not
necessarily decaying like polynomial or exponential func-
tions. In fact, our result allows a larger class of relaxation
functions. Recently, Messaoudi and Soufyane [23], Mustafa
and Messaoudi [24], and Santos and Soufyane [25] proved
the general decay for the wave equation, Timoshenko system,
and von Karman plate system with viscoelastic boundary
conditions, respectively.

The organization of this paper is as follows. In Section 2,
we present some notations and material needed for our work
and state the existence result to system (1)–(5). In Section 3,
we prove the general decay of the solutions to the degenerate
equation with a memory condition at the boundary.

2. Preliminaries

In this section, we introduce some notations and establish the
existence of solutions of the problem (1)–(5).

Note that, because of condition (2), the solution of system
(1)–(5) must belong to the following space:
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0
, condi-
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0
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Applying the Volterra inverse operator, we get
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where the resolvent kernels satisfy
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Therefore, we use (17) instead of the boundary conditions (3)
and (4).

Let us denote that

(𝑔 ⬦ V) (𝑡) := ∫
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2
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The following lemma states an important property of the
convolution operator.
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The proof of this lemma follows by differentiating the
term 𝑔 ⬦ V.

Lemma 2 (see [26]). Suppose that 𝑓 ∈ 𝐿
2
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)
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We formulate the following assumptions.

(A1) Let 𝑓 ∈ 𝐶
1
(R) satisfy

𝑓 (𝑠) 𝑠 ≥ 0, ∀𝑠 ∈ R. (22)

Additionally, we suppose that 𝑓 is superlinear; that is,

𝑓 (𝑠) 𝑠 ≥ (2 + 𝜂) 𝐹 (𝑠) , 𝐹 (𝑧) = ∫
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for some 𝜂 > 0 with the following growth condition:
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for some 𝑐 > 0 and 𝜌 ≥ 1 such that (𝑛 − 2)𝜌 ≤ 𝑛.
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∞
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The well-posedness of system (1)–(5) is given by the
following theorem.
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𝑘
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then there is only one solution 𝑢 of the system (1)–(5) satisfying

𝑢 ∈ 𝐿
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2

(Ω)) .
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3. General Decay

In this section, we show that the solution of system (1)–
(5) may have a general decay not necessarily of exponential
or polynomial type. For this we consider that the resolvent
kernels satisfy the following hypothesis.

(H) 𝑘
𝑖
: R
+
→ R

+
is twice differentiable function such

that

𝑘
𝑖
(0) > 0, lim

𝑡→∞

𝑘
𝑖
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𝑖
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and there exists a nonincreasing continuous function 𝜉
𝑖
:

R
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𝑖
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The following identity will be used later.

Lemma 4 (see [26]). For every V ∈ 𝐻4(Ω) and for every 𝜇 ∈

R, one has
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𝜕
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(31)

Let us introduce the energy function
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2
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+ ∫
Ω

𝐹 (𝑢) 𝑑𝑥 +
𝜏
1

2
∫
Γ
1

(𝑘
1
(𝑡) |𝑢|

2
− 𝑘


1
⬦ 𝑢) 𝑑Γ

+
𝜏
2

2
∫
Γ
1

(𝑘
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Now, we establish some inequalities for the strong solution of
system (1)–(5).

Lemma 5. The energy functional 𝐸 satisfies, along the solution
of (1)–(5), the estimate
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Proof. Multiplying (1) by 𝑢, integrating over Ω, and using
(10), we get

1

2

𝑑

𝑑𝑡
{∫
Ω

𝐾

𝑢


2

𝑑𝑥 + 𝑎 (𝑢, 𝑢) + 2∫
Ω

𝐹 (𝑢) 𝑑𝑥}

= −∫
Γ
1

(B
2
𝑢) 𝑢

𝑑Γ + ∫

Γ
1

(B
1
𝑢)

𝜕𝑢


𝜕]
𝑑Γ.

(34)

Substituting the boundary terms by (17) and using Lemma 1
and the Young inequality, our conclusion follows.

Let us consider the following binary operator:

(𝑘 ∘ 𝑢) (𝑡) := ∫

𝑡

0

𝑘 (𝑡 − 𝑠) (𝑢 (𝑡) − 𝑢 (𝑠)) 𝑑𝑠. (35)

Then applying the Holder inequality for 0 ≤ 𝛼 ≤ 1 we have

|(𝑘 ∘ 𝑢) (𝑡)|
2
≤ [∫

𝑡

0

|𝑘 (𝑠)|
2(1−𝛼)

𝑑𝑠] (|𝑘|
2𝛼
⬦ 𝑢) (𝑡) . (36)

Let us define the functional

𝜓 (𝑡) = ∫
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𝑛

2
− 𝜃) 𝑢]𝐾𝑢


𝑑𝑥. (37)

The following lemma plays an important role in the construc-
tion of the desired functional.

Lemma 6. Suppose that the initial data (𝑢
0
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1
) ∈ (𝐻

4
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𝑊) ×𝑊, satisfying the compatibility condition (27). Then, the
solution of system (1)–(5) satisfies
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× ∫
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+ 𝑘
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𝜖
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Γ
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+ 𝑘
2

2
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1

2
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𝜖𝜆
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𝛿
0

)∫
Γ
1

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+ 𝑢
2

𝑦𝑦
+ 2𝜇𝑢

𝑥𝑥
𝑢
𝑦𝑦
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2

𝑥𝑦
] 𝑑Γ.

(38)

Proof. Differentiating 𝜓 using (1) and Lemma 4, we get

𝜓


(𝑡) = ∫
Ω

[𝑚 ⋅ ∇𝑢
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𝑛

2
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]𝐾𝑢
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𝑛
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=
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Γ
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2
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𝐾
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−
1

2
∫
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2

𝑑𝑥 − (1 +
𝑛

2
− 𝜃) 𝑎 (𝑢, 𝑢)

+ 𝑛∫
Ω

𝐹 (𝑢) 𝑑𝑥 − (
𝑛

2
− 𝜃)∫

Ω

𝑓 (𝑢) 𝑢𝑑𝑥

−
1

2
∫
Γ

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+𝑢
2

𝑦𝑦
+2𝜇𝑢
𝑥𝑥
𝑢
𝑦𝑦
+2 (1−𝜇) 𝑢

2

𝑥𝑦
] 𝑑Γ

− ∫
Γ

(B
2
𝑢) [(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃) 𝑢] 𝑑Γ

+ ∫
Γ

(B
1
𝑢) [

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃)

𝜕𝑢

𝜕]
] 𝑑Γ.

(39)

Let us next examine the integrals over Γ
0
in (39). Since 𝑢 =

𝜕𝑢/𝜕] = 0 on Γ
0
, we have 𝐵

1
𝑢 = 𝐵

2
𝑢 = 0 on Γ

0
and

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) = (𝑚 ⋅ ]) Δ𝑢,

𝑢
2

𝑥𝑥
+ 𝑢
2

𝑦𝑦
+ 2𝜇𝑢

𝑥𝑥
𝑢
𝑦𝑦
+ 2 (1 − 𝜇) 𝑢

2

𝑥𝑦
= (Δ𝑢)

2 on Γ
0
,

(40)

since

𝑢
𝑥𝑥
𝑢
𝑦𝑦
− 𝑢
2

𝑥𝑦
= 0 on Γ

0
. (41)

Therefore, from (39) and (40), we have

𝜓


(𝑡) ≤
1

2
∫
Γ
1

𝑚 ⋅ ]𝐾

𝑢


2

𝑑Γ − 𝜃∫
Ω

𝐾

𝑢


2

𝑑𝑥

−
1

2
∫
Ω

∇𝐾 ⋅ 𝑚

𝑢


2

𝑑𝑥 − (1 +
𝑛

2
− 𝜃) 𝑎 (𝑢, 𝑢)

+ 𝑛∫
Ω

𝐹 (𝑢) 𝑑𝑥 − (
𝑛

2
− 𝜃)∫

Ω

𝑓 (𝑢) 𝑢𝑑𝑥

+
1

2
∫
Γ
0

𝑚 ⋅ ](Δ𝑢)
2
𝑑Γ

−
1

2
∫
Γ
1

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+𝑢
2

𝑦𝑦
+2𝜇𝑢
𝑥𝑥
𝑢
𝑦𝑦
+2 (1−𝜇) 𝑢

2

𝑥𝑦
] 𝑑Γ

− ∫
Γ
1

(B
2
𝑢) [(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃) 𝑢] 𝑑Γ

+ ∫
Γ
1

(B
1
𝑢) [

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃)

𝜕𝑢

𝜕]
] 𝑑Γ.

(42)
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Using the Young inequality, we get



∫
Γ
1

(B
2
𝑢) [(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃) 𝑢] 𝑑Γ



≤
1

2𝜖
∫
Γ
1

B2𝑢


2

𝑑Γ + 𝜖∫
Γ
1

(|𝑚 ⋅ ∇𝑢|
2
+ (

𝑛

2
− 𝜃)

2

|𝑢|
2
)𝑑Γ,

(43)


∫
Γ
1

(B
1
𝑢) [

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) + (

𝑛

2
− 𝜃)

𝜕𝑢

𝜕]
] 𝑑Γ



≤
1

2𝜖
∫
Γ
1

B1𝑢


2

𝑑Γ

+ 𝜖∫
Γ
1

(



𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)



2

+ (
𝑛

2
− 𝜃)

2

𝜕𝑢

𝜕]



2

)𝑑Γ,

(44)

where 𝜖 is a positive constant. Since the bilinear form 𝑎(𝑢, 𝑢)

is strictly coercive on𝑊, using the trace theory, we obtain

∫
Γ
1

(|𝑚 ⋅ ∇𝑢|
2
+ (

𝑛

2
− 𝜃)

2

|𝑢|
2
)𝑑Γ

+ ∫
Γ
1

(



𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)



2

+ (
𝑛

2
− 𝜃)

2

𝜕𝑢

𝜕]



2

)𝑑Γ

≤ 𝜆
0
𝑎 (𝑢, 𝑢) +

𝜆
0

𝛿
0

× ∫
Γ
1

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+ 𝑢
2

𝑦𝑦
+ 2𝜇𝑢

𝑥𝑥
𝑢
𝑦𝑦
+ 2 (1 − 𝜇) 𝑢

2

𝑥𝑦
] 𝑑Γ,

(45)

where 𝜆
0
is a constant depending onΩ, 𝜇, 𝜃 and 𝑛. Substitut-

ing inequalities (43)–(45) into (42) and taking into account
that𝑚 ⋅ ] ≤ 0 on Γ

0
, as well as (23) and (25), we have

𝜓


(𝑡) ≤
1

2
∫
Γ
1

𝑚 ⋅ ]𝐾

𝑢


2

𝑑Γ − 𝜃∫
Ω

𝐾

𝑢


2

𝑑𝑥

− (1 +
𝑛

2
− 𝜃 − 𝜖𝜆

0
) 𝑎 (𝑢, 𝑢)

− (
𝑛𝜂

2
− 2𝜃 − 𝜂𝜃)∫

Ω

𝐹 (𝑢) 𝑑𝑥

+
1

2𝜖
∫
Γ
1

(
B1𝑢



2

+
B2𝑢



2

) 𝑑Γ

− (
1

2
−
𝜖𝜆
0

𝛿
0

)∫
Γ
1

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+ 𝑢
2

𝑦𝑦
+ 2𝜇𝑢

𝑥𝑥
𝑢
𝑦𝑦

+ 2 (1 − 𝜇) 𝑢
2

𝑥𝑦
] 𝑑Γ.

(46)

Since the boundary conditions (17) can be written as

B
2
𝑢 = 𝜏
1
{𝑢

+ 𝑘
1
(𝑡) 𝑢 − 𝑘

1
(𝑡) 𝑢
0
− 𝑘


1
∘ 𝑢} ,

B
1
𝑢 = −𝜏

2
{
𝜕𝑢


𝜕]
+ 𝑘
2
(𝑡)

𝜕𝑢

𝜕]
− 𝑘
2
(𝑡)

𝜕𝑢
0

𝜕]
− 𝑘


2
∘
𝜕𝑢

𝜕]
} ,

(47)

our conclusion follows.

Let us introduce the Lyapunov functional

L (𝑡) = 𝑁𝐸 (𝑡) + 𝜓 (𝑡) , (48)

with𝑁 > 0. Now, we are in a position to show themain result
of this paper.

Theorem 7. Let (𝑢
0
, 𝑢
1
) ∈ 𝑊 × 𝐿

2
(Ω). Suppose that the

resolvent kernels 𝑘
1
, 𝑘
2
satisfy the condition (H). Then, there

exist constants 𝜔, 𝐶 > 0 such that, for some 𝑡
0
large enough,

the solution of (1)–(5) satisfies

𝐸 (𝑡)≤𝐶𝐸 (0) 𝑒
−𝜔∫
𝑡

0
𝜉(𝑠)𝑑𝑠

, ∀𝑡 ≥ 𝑡
0
, if 𝑢
0
=
𝜕𝑢
0

𝜕]
= 0 𝑜𝑛 Γ

1
.

(49)

Otherwise,

𝐸 (𝑡) ≤ 𝐶(𝐸 (0) + ∫

𝑡

0

𝑘
0
(𝑠) 𝑒
𝜔∫
𝑠

𝑡0

𝜉(𝜏)𝑑𝜏

𝑑𝑠) 𝑒
−𝜔∫
𝑡

0
𝜉(𝑠)𝑑𝑠

, (50)

for all 𝑡 ≥ 𝑡
0
, where

𝜉 (𝑡) = min {𝜉
1
(𝑡) , 𝜉
2
(𝑡)} ,

𝑘
0
(𝑡) = ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ + ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ.

(51)

Proof. Applying inequality (36)with𝛼 = 1/2 in Lemma 6 and
from Lemma 5, we obtain

L


(𝑡) ≤ −∫
Ω

𝜃𝐾

𝑢


2

𝑑𝑥

−
𝜏
1
𝑁

2
∫
Γ
1

{

𝑢


2

−𝑘
2

1
(𝑡)
𝑢0


2

−𝑘


1
(𝑡) |𝑢|

2
+𝑘


1
⬦𝑢} 𝑑Γ

−
𝜏
2
𝑁

2
∫
Γ
1

{



𝜕𝑢


𝜕]



2

− 𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

− 𝑘


2
(𝑡)



𝜕𝑢

𝜕]



2

+ 𝑘


2
⬦
𝜕𝑢

𝜕]
}𝑑Γ

− (1 +
𝑛

2
− 𝜃 − 𝜖𝜆

0
) 𝑎 (𝑢, 𝑢) − (

𝑛𝜂

2
− 2𝜃 − 𝜂𝜃)

× ∫
Ω

𝐹 (𝑢) 𝑑𝑥+
2𝜏
1

2

𝜖
∫
Γ
1

{

𝑢


2

+𝑘
2

1
(𝑡) |𝑢|

2
+𝑘
2

1
(𝑡)
𝑢0


2

− 𝑘
1
(0) 𝑘


1
⬦ 𝑢} 𝑑Γ



6 Abstract and Applied Analysis

+
2𝜏
2

2

𝜖
∫
Γ
1

{



𝜕𝑢


𝜕]



2

+ 𝑘
2

2
(𝑡)



𝜕𝑢

𝜕]



2

+ 𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

− 𝑘
2
(0) 𝑘


2
⬦
𝜕𝑢

𝜕]
}𝑑Γ

+
1

2
∫
Γ
1

𝑚 ⋅ ]𝐾

𝑢


2

𝑑Γ − (
1

2
−
𝜖𝜆
0

𝛿
0

)

× ∫
Γ
1

𝑚 ⋅ ] [𝑢
2

𝑥𝑥
+𝑢
2

𝑦𝑦
+2𝜇𝑢
𝑥𝑥
𝑢
𝑦𝑦
+2 (1 − 𝜇) 𝑢

2

𝑥𝑦
] 𝑑Γ.

(52)

We take 𝜃 and 𝜖 so small such that

𝑛𝜂

2
− 2𝜃 − 𝜂𝜃 > 0, 1 +

𝑛

2
− 𝜃 − 𝜖𝜆

0
> 0,

1

2
−
𝜖𝜆
0

𝛿
0

> 0.

(53)

Since 𝐾 ∈ 𝐿
∞
(Ω) and then choosing 𝑁 large enough, we

obtain

L


(𝑡) ≤ −𝑐
0
𝐸 (𝑡) + 𝑐∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ + 𝑐∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ

− 𝑐∫
Γ
1

𝑘


1
⬦ 𝑢𝑑Γ − 𝑐∫

Γ
1

𝑘


2
⬦
𝜕𝑢

𝜕]
𝑑Γ, ∀𝑡 ≥ 𝑡

0
.

(54)

On the other hand, we can choose𝑁 even larger so that

L (𝑡) ∼ 𝐸 (𝑡) . (55)

If 𝜉(𝑡) = min{𝜉
1
(𝑡), 𝜉
2
(𝑡)}, 𝑡 ≥ 𝑡

0
, then, using (30) and (33),

we have

𝜉 (𝑡)L


(𝑡) ≤ −𝑐
0
𝜉 (𝑡) 𝐸 (𝑡) + 𝑐𝜉 (𝑡) ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐𝜉 (𝑡) ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ

− 𝑐𝜉
1
(𝑡) ∫
Γ
1

𝑘


1
⬦ 𝑢𝑑Γ − 𝑐𝜉

2
(𝑡) ∫
Γ
1

𝑘


2
⬦
𝜕𝑢

𝜕]
𝑑Γ

≤ −𝑐
0
𝜉 (𝑡) 𝐸 (𝑡) + 𝑐𝜉 (𝑡) ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐𝜉 (𝑡) ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ

+ 𝑐∫
Γ
1

𝑘


1
⬦ 𝑢𝑑Γ + 𝑐∫

Γ
1

𝑘


2
⬦
𝜕𝑢

𝜕]
𝑑Γ

≤ −𝑐
0
𝜉 (𝑡) 𝐸 (𝑡) + 𝑐𝜉 (𝑡) ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐𝜉 (𝑡) ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ − 𝑐𝐸


(𝑡) , ∀𝑡 ≥ 𝑡
0
,

(56)

which gives

𝜉 (𝑡)L


(𝑡) + 𝑐𝐸


(𝑡) ≤ −𝑐
0
𝜉 (𝑡) 𝐸 (𝑡) + 𝑐𝜉 (𝑡) ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐𝜉 (𝑡) ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ, ∀𝑡 ≥ 𝑡
0
.

(57)

Using the fact that 𝜉 is a nonincreasing continuous function
as 𝜉
1
and 𝜉
2
are nonincreasing, and so 𝜉 is differentiable, with

𝜉

(𝑡) ≤ 0, for a.e. 𝑡, then we infer that

(𝜉L + 𝑐𝐸)


(𝑡) ≤ 𝜉 (𝑡)L


(𝑡) + 𝑐𝐸


(𝑡)

≤ −𝑐
0
𝜉 (𝑡) 𝐸 (𝑡) + 𝑐𝜉 (𝑡) ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐𝜉 (𝑡) ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ, ∀𝑡 ≥ 𝑡
0
.

(58)

Since using (55),

𝐹 = 𝜉L + 𝑐𝐸 ∼ 𝐸, (59)

we obtain, for some positive constant 𝜔,

𝐹


(𝑡) ≤ −𝜔𝜉 (𝑡) 𝐹 (𝑡) + 𝑐 ∫
Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ

+ 𝑐∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ, ∀𝑡 ≥ 𝑡
0
.

(60)

Case 1. If 𝑢
0
= 𝜕𝑢
0
/𝜕] = 0 on Γ

1
, then (60) reduces to

𝐹


(𝑡) ≤ −𝜔𝜉 (𝑡) 𝐹 (𝑡) , ∀𝑡 ≥ 𝑡
0
. (61)

A simple integration over (𝑡
0
, 𝑡) yields

𝐹 (𝑡) ≤ 𝐹 (𝑡
0
) 𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

, ∀𝑡 ≥ 𝑡
0
. (62)

By using (33) and (59), we then obtain for some positive
constant 𝐶

𝐸 (𝑡) ≤ 𝐶𝐸 (0) 𝑒
−𝜔∫
𝑡

0
𝜉(𝑠)𝑑𝑠

, ∀𝑡 ≥ 𝑡
0
. (63)

Thus, estimate (49) is proved.
Case 2. If (𝑢

0
, (𝜕𝑢
0
/𝜕])) ̸= (0, 0) on Γ

1
, then (60) gives

𝐹


(𝑡) ≤ −𝜔𝜉 (𝑡) 𝐹 (𝑡) + 𝑐𝑘
0
(𝑡) , ∀𝑡 ≥ 𝑡

0
, (64)
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where

𝑘
0
(𝑡) = ∫

Γ
1

𝑘
2

1
(𝑡)
𝑢0


2

𝑑Γ + ∫
Γ
1

𝑘
2

2
(𝑡)



𝜕𝑢
0

𝜕]



2

𝑑Γ. (65)

In this case, we introduce

𝐺 (𝑡) := 𝐹 (𝑡) − 𝑐𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

∫

𝑡

𝑡
0

𝑘
0
(𝑠) 𝑒
𝜔∫
𝑠

𝑡0

𝜉(𝜏)𝑑𝜏

𝑑𝑠. (66)

A simple differentiation of 𝐺, using (64), leads to

𝐺


(𝑡) = 𝐹


(𝑡) + 𝜔𝜉 (𝑡) 𝑐𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

× ∫

𝑡

𝑡
0

𝑘
0
(𝑠) 𝑒
𝜔∫
𝑠

𝑡0

𝜉(𝜏)𝑑𝜏

𝑑𝑠 − 𝑐𝑘
0
(𝑡)

≤ −𝜔𝜉 (𝑡) 𝐺 (𝑡) , ∀𝑡 ≥ 𝑡
0
.

(67)

Again, a simple integration over (𝑡
0
, 𝑡) yields

𝐺 (𝑡) ≤ 𝐺 (𝑡
0
) 𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

, ∀𝑡 ≥ 𝑡
0
, (68)

which implies, for all 𝑡 ≥ 𝑡
0
,

𝐹 (𝑡) ≤ (𝐹 (𝑡
0
) + 𝑐∫

𝑡

𝑡
0

𝑘
0
(𝑠) 𝑒
𝜔∫
𝑠

𝑡0

𝜉(𝜏)𝑑𝜏

𝑑𝑠) 𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

. (69)

By using (59), we deduce that

𝐸 (𝑡) ≤ 𝐶(𝐸 (0) + ∫

𝑡

0

𝑘
0
(𝑠) 𝑒
𝜔∫
𝑠

𝑡0

𝜉(𝜏)𝑑𝜏

𝑑𝑠) 𝑒
−𝜔∫
𝑡

𝑡0

𝜉(𝑠)𝑑𝑠

,

∀𝑡 ≥ 𝑡
0
.

(70)

Consequently, by the boundedness of 𝜉, (50) is established.

Remark 8. Note that the exponential and polynomial decay
estimates are only particular cases of (49) and (50). More
precisely, we have exponential decay for 𝜉

1
(𝑡) ≡ 𝑐

1
and 𝜉
2
(𝑡) ≡

𝑐
2
and polynomial decay for 𝜉

1
(𝑡) = 𝑐

1
(1 + 𝑡)

−1 and 𝜉
2
(𝑡) ≡ 𝑐

2
,

where 𝑐
1
and 𝑐
2
are positive constants.

Example 9. As in [24], we give some examples to illustrate the
energy decay rates given by (49).

(1) If 𝑘
1
(𝑡) = 𝑘

2
(𝑡) = 𝑎𝑒

−𝑏(1+𝑡)
𝑝

, 0 < 𝑝 ≤ 1, then, for 𝑖 =
1, 2, 𝑘



𝑖
(𝑡) ≥ −𝜉(𝑡)𝑘



𝑖
(𝑡), where 𝜉(𝑡) = 𝑏𝑝(1 + 𝑡)𝑝−1. For

suitably chosen positive constants 𝑎 and 𝑏, 𝑘
𝑖
satisfies

(H) and (49) gives

𝐸 (𝑡) ≤ 𝑐𝑒
−𝜔𝑏(1+𝑡)

𝑝

. (71)

(2) If 𝑘
1
(𝑡) = 𝑎

1
/(1 + 𝑡)

𝑞, 𝑞 > 0, and 𝑘
2
(𝑡) =

𝑎
2
𝑒
−𝑏(1+𝑡)

𝑝

, 0 < 𝑝 ≤ 1, then, for 𝑖 = 1, 2, 𝑘


𝑖
(𝑡) ≥

−𝜉(𝑡)𝑘


𝑖
(𝑡), where 𝜉(𝑡) = 𝑞(1 + 𝑡)−1. Then

𝐸 (𝑡) ≤
𝑐

(1 + 𝑡)
𝜔𝑞
. (72)

The aforementioned two examples are included in the
following more general one.

(3) For any nonincreasing functions 𝑘
𝑖
(𝑡), 𝑖 = 1, 2,

which satisfy (H), 𝜉
𝑖
= −𝑘

/𝑘 are also nonincreasing

differentiable functions, and 𝑐𝜉
1
(𝑡) ≤ 𝜉

2
(𝑡), for some

0 < 𝑐 ≤ 1, and (49) gives

𝐸 (𝑡) ≤ 𝑐[𝑘
1
(𝑡)]
𝜔

. (73)
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