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This paper deals with a new iterative algorithm {𝑥
𝑛
} with a strongly positive operator A for a k-strict pseudo-contraction T and a

non-self-Lipschitzian mapping S in Hilbert spaces. Under certain appropriate conditions, the sequence {𝑥
𝑛
} converges strongly to

a fixed point of T, which solves some variational inequality. The results here improve and extend some recent related results.

1. Introduction

Let𝐶 be a closed convex subset of Hilbert space𝐻with inner
product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, 𝑇 : 𝐶 → 𝐻 be a nonlinear
mapping. The fixed point set of 𝑇 is denoted by Fix(𝑇); that
is, Fix(𝑇) = {𝑥 ∈ 𝐶, 𝑇𝑥 = 𝑥}. Fixed point problem is
very general in the sense that it includes, as spacial cases,
optimization problems, variational inequalities, minimax
problems, the Nash equilibrium problem in noncooperative
games, and others.

Recall that a mapping 𝑇 : 𝐶 → 𝐶 is said to be
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶.
A mapping 𝑇 : 𝐻 → 𝐻 is said to be strongly positive,
if there exists a constant 𝛾 > 0 such that ⟨𝐴𝑥, 𝑥⟩ ≥

𝛾‖𝑥‖
2 for all 𝑥 ∈ 𝐻. In 2000, Moudafi [1] investigated the

fixed point problem of nonexpansive mapping with viscosity
approximation method. Let 𝑓 be a contraction on𝐻; that is,
there exists a constant 𝛼 ∈ (0, 1) such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤

𝛼‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶; define a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 0, (1)

where 𝑥
0
is an arbitrary starting point in 𝐻 and {𝛼

𝑛
} is a

sequence in (0, 1). In 2004 Xu [2] proved that if the parameter
{𝛼
𝑛
} satisfies some approximate conditions, the sequence {𝑥

𝑛
}

generated by (1) converges strongly to not only a fixed point of
𝑇 but also the unique solution 𝑥∗ of the variational inequality

⟨(𝐼 − 𝑓) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇) . (2)

In 2010, Tian [3] considered a general hybrid steepest-
descent method:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
, ∀𝑛 ≥ 0, (3)

where 𝐹 is a Lipschitzian and strongly monotone operator.
Under certain conditions, he proved that the sequence {𝑥

𝑛
}

generated by (3) converges strongly to the unique solution 𝑥∗
of the variational inequality

⟨(𝛾𝑓 − 𝜇𝐹) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (4)

On the other hand, Marino and Xu [4] introduced the
following iterative scheme:

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐴)𝑇𝑥

𝑛
, ∀𝑛 ≥ 0, (5)

where 𝐴 is a strongly positive bounded linear operator. It
was proven that under certain conditions on the parameters,
the sequence {𝑥

𝑛
} generated by (5) converges strongly to the

unique solution 𝑥
∗ of the variational inequality

⟨(𝛾𝑓 − 𝐴) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (6)
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It is well known that a typical convexminimization is that
of minimizing a quadratic function on the sets of the fixed
points of a nonexpansive mapping:

Min
𝑥∈Fix(𝑇)

1

2
⟨𝐴𝑥, 𝑥⟩ − ⟨𝑥, 𝑏⟩ , (7)

where 𝑏 is a given point of 𝐻. The solution 𝑥
∗ is also the

optimality condition for the minimization problem

Min
𝑥∈Fix(𝑇)

1

2
⟨𝐴𝑥, 𝑥⟩ − ℎ (𝑥) , (8)

where ℎ(𝑥) is a potential function for 𝛾𝑓; that is, ℎ(𝑥) =

𝛾𝑓(𝑥), ∀𝑥 ∈ 𝐻. Some authors investigated each iterative
method for nonexpansive mappings for solving convexmini-
mization problems and got some convergence results; see, for
example [5–7].

In 2011, Ceng et al. [8] introduced a general iterative
algorithm with strongly positive operators for nonexpansive
mappings:

𝑦
𝑛
= (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
+ 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) ,

𝑥
𝑛+1

= (𝐼 − 𝛽
𝑛
𝐴)𝑇𝑥

𝑛
+ 𝛽
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0

(9)

and proved that under certain conditions on the parameters
the sequence {𝑥

𝑛
} generated by (9) converges strongly to

a fixed point 𝑥
∗ of 𝑇, which also solves the variational

inequality

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≤ 0, ∀𝑥 ∈ Fix (𝑇) . (10)

Recently the problems of the approximation of the com-
monfixed points of nonexpansivemappingswere extended to
the case of a family of finite or infinite pseudo-contractions;
see, for example, [9–11].

Motivated and inspired by the above research works, we
consider some fixed point problems with non-self mappings
and introduce a new general iterative algorithmwith strongly
positive operators for 𝑘-strict pseudo-contractions which is a
wider map class then the nonexpansive map class

𝑦
𝑛
= 𝑃
𝐶
[𝛼
𝑛
𝜏𝑆𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
] ,

𝑥
𝑛+1

= (𝐼 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
+ 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑇𝑥
𝑛
,

∀𝑛 ≥ 0,

(11)

where 𝑃
𝐶
: 𝐻 → 𝐶 is the metric projection, 𝑆 : 𝐶 → 𝐻

is a non-self-Lipschitzian mapping, 𝑇 : 𝐶 → 𝐶 is a 𝑘-strict
pseudo-contraction, and 𝐴 : 𝐶 → 𝐶 is a strongly positive
bounded linear operator. Under certain conditions on the
parameters, we prove that the sequence {𝑥

𝑛
} generated by (11)

converges strongly to a fixed point 𝑥∗ of 𝑇, which solves the
variational inequality

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑧 − 𝑥
∗

⟩ ≤ 0, ∀𝑧 ∈ Fix (𝑇) . (12)

2. Preliminaries

In this section, we recall some useful definitions and lemmas
for the proof of the main results.

Definition 1. A mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝐿-
Lipschitzian, if there exists a constant 𝐿 > 0 such that

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 ∀𝑥, 𝑦 ∈ 𝐶. (13)

A mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝑘-strict pseudo-
contraction, if there exists a constant 𝑘 ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦

2

≤
𝑥 − 𝑦


2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐶.
(14)

It is clear that a Lipschitzian map is a contractive map
when 0 < 𝐿 < 1 and is a nonexpansivemapwhen 𝐿 = 1. If 𝑘 =

0; then a 𝑘-strict pseudo-contraction map is a nonexpansive
map.

Definition 2. A mapping 𝑃
𝐶
: 𝐻 → 𝐶 is said to be the metric

projection, if for any 𝑥 ∈ 𝐻, there exists a unique nearest
point in C denoted by 𝑃

𝐶
𝑥 such that

𝑥 − 𝑃
𝐶
𝑥
 ≤

𝑥 − 𝑦
 , ∀𝑦 ∈ 𝐶. (15)

And it is well known that if 𝐶 is a nonempty closed convex
subset of𝐻, then the 𝑃

𝐶
exists (e.g., see [12]).

Lemma 3 (see [13]). Let 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶 be any points.There
holds

⟨𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥

𝑃𝐶𝑥 − 𝑃
𝐶
𝑦

2

, ∀𝑥, 𝑦 ∈ 𝐻. (16)

And 𝑧 = 𝑃
𝐶
𝑥 if and only if there holds

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶, (17)

and if and only if there holds the relation

‖𝑥 − 𝑧‖
2

≤
𝑥 − 𝑦


2

−
𝑦 − 𝑧


2

, ∀𝑦 ∈ 𝐶. (18)

Lemma 4 (see [9], Demiclosedness princple). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space 𝐻 and
let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with 𝐹(𝑇) ̸= 0. If
{𝑥
𝑛
} is a sequence in𝐶weakly converging to 𝑥 and if {(𝐼−𝑇)𝑥

𝑛
}

converges strongly to𝑦, then (𝐼−𝑇)𝑥 = 𝑦; in particular if𝑦 = 0,
then 𝑥 ∈ 𝐹(𝑇).

Lemma 5 (see [14]). Let 𝜆 be a number in [0, 1] and 𝜇 ≥ 0.
Let 𝐹 : 𝐻 → 𝐻 be a t-Lipschitzian and 𝜂-strongly monotone
operator on a Hilbert space. Associate with a nonexpansive
mapping 𝑇 : 𝐻 → 𝐻 and define the mapping 𝑇𝜆 : 𝐻 → 𝐻 by

𝑇
𝜆

𝑥 := 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐻. (19)

Then 𝑇
𝜆 is a contraction provided 𝜇 ≤ 2𝜂/𝑡

2 ; that is,


𝑇
𝜆

𝑥 − 𝑇
𝜆

𝑦

≤ [1 − 𝜆𝜇(𝜂 −

𝜇𝑡
2

2
)]

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐻.

(20)

Lemma 6 (see [4]). Assume that 𝐴 is a strongly positive
bounded linear operator on a Hilbert space 𝐻 with coefficient
𝛾 > 0 and 0 < 𝜌 ≤ ‖𝐴‖

−1; then ‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾.
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Lemma 7 (see [15]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strict
pseudo-contractive mapping. Let 𝛾 and 𝛿 be two nonnegative
real numbers such that (𝛾 + 𝛿)𝑘 ≤ 𝛾; then
𝛾 (𝑥 − 𝑦) + 𝛿 (𝑇𝑥 − 𝑇𝑦)

 ≤ (𝛾 + 𝛿)
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶.

(21)

Lemma 8 (see [16]). Let 𝐻 be a Hilbert space and 𝐶 a
nonempty convex subset of 𝐻. Let 𝑇 : 𝐶 → 𝐻 be a 𝑘-strict
pseudo-contractive mapping. Define a mapping 𝐽𝑥 = 𝛿𝑥+ (1−

𝛿)𝑇𝑥 for all 𝑥 ∈ 𝐶. Then as 𝛿 ∈ [𝑘, 1), 𝐽 is a nonexpansive
mapping such that 𝐹(𝐽) = 𝐹(𝑇).

Lemma9 (see [17]). Let {𝛼
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:𝛼
𝑛+1

≤ (1−𝛾
𝑛
)𝛼
𝑛
+𝛿
𝑛
,

where (i) {𝛾
𝑛
} ⊂ (0, 1),∑∞

𝑛=1
𝛾
𝑛
= ∞; (ii) lim sup

𝑛→∞
(𝛿
𝑛
/𝛾
𝑛
) =

0 or ∑∞
𝑛=1

|𝛿
𝑛
| < ∞; then lim

𝑛→∞
𝛼
𝑛
= 0.

3. Main Results

In this section, we prove the strong convergence results on the
iterative algorithm for 𝑘-strict pseudo-contractions.

Theorem 10. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻, 𝑆 : 𝐶 → 𝐻 a non-self-L-Lipschitzian
mapping, and 𝑇 : 𝐶 → 𝐶 a 𝑘-strict pseudo-contractive
mapping such that Fix(𝑇) ̸= 0. Let 𝐹 : 𝐶 → 𝐻 be a t-
Lipschitzian and 𝜂-strongly monotone mapping and 𝐴 : 𝐶 →

𝐶 a 𝛾-strongly positive bounded linear operator. For a given
𝑥
0
∈ 𝐶, let the sequences {𝑥

𝑛
} and {𝑦

𝑛
} generated by (11), where

{𝛼
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ∈ [0, 1], satisfy the following conditions:

(i) [1−𝜇(𝜂−𝜇𝑡2/2)]((1+𝑘)/(1−𝑘)) ≤ 1,𝜇(𝜂−𝜇𝑡2/2)−𝜏𝐿 >

0, 𝛾 ∈ (1, 2);
(ii) lim

𝑛→∞
𝛾
𝑛
= 0, lim

𝑛→∞
𝛿
𝑛
= 0, ∑∞

𝑛=0
𝛾
𝑛
= ∞, ∑∞

𝑛=0

𝛿
𝑛
= ∞, (𝛾

𝑛
+ 𝛿
𝑛
)𝑘 ≤ 𝛾

𝑛
;

(iii) lim
𝑛→∞

(𝛼
𝑛
/(𝛾
𝑛
+ 𝛿
𝑛
)) = 0, ∑∞

𝑛=1
|𝛼
𝑛
− 𝛼
𝑛−1

| < ∞,
∑
∞

𝑛=1
|𝛾
𝑛
− 𝛾
𝑛−1

| < ∞, ∑∞
𝑛=1

|𝛿
𝑛
− 𝛿
𝑛−1

| < ∞.
Then the sequence {𝑥

𝑛
} converges strongly to a fixed point 𝑥∗ of

𝑇, which solves the variational inequality

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑧 − 𝑥
∗

⟩ ≤ 0, ∀𝑧 ∈ Fix (𝑇) . (22)

Proof. The proof is divided into five steps.

Step 1. We first show that the sequences {𝑥
𝑛
}, {𝑦
𝑛
} are

bounded. Take 𝑝 ∈ Fix(𝑇), own to 𝑇 : 𝐶 → 𝐶 be a 𝑘-strict
pseudo-contractive mapping, and define 𝐽𝑥 = 𝑘𝑥+(1−𝑘)𝑇𝑥.
By Lemma 8 𝐽 is nonexpansive and Fix(𝐽) = Fix(𝑇); therefore
𝑇𝑥 = (1/(1 − 𝑘))(𝐽𝑥 − 𝑘𝑥):

𝑇𝑥𝑛 − 𝑇𝑝


=


1

1 − 𝑘
(𝐽𝑥
𝑛
− 𝑘𝑥
𝑛
) −

1

1 − 𝑘
(𝐽𝑝 − 𝑘𝑝)



=
1

1 − 𝑘

(𝐽𝑥𝑛 − 𝐽𝑝) − 𝑘 (𝑥
𝑛
− 𝑝)



≤
1 + 𝑘

1 − 𝑘

𝑥𝑛 − 𝑝
 .

(23)

Thus we immediately get that 𝑇 is a (1 + 𝑘)/(1 − 𝑘)-
Lipschitzian mapping. Then we estimate ‖𝑦

𝑛
− 𝑝‖:

𝑦𝑛 − 𝑝


=
𝑃𝐶 [𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
] − 𝑃
𝐶
𝑝


≤
𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
− 𝑝



=
𝛼𝑛 (𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝) + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛

− (𝐼 − 𝜇𝛼
𝑛
𝐹)𝑇𝑝



≤ [1 − 𝜇(𝜂 −
𝜇𝑡
2

2
)]

1 + 𝑘

1 − 𝑘

𝑥𝑛 − 𝑝


+ 𝛼
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝


≤
𝑥𝑛 − 𝑝

 + 𝛼
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝
 .

(24)

On the other hand, notice that lim
𝑛→∞

𝛾
𝑛

= 0,
lim
𝑛→∞

𝛿
𝑛
= 0; without loss of generality, we may assume

that 𝛾
𝑛
+ 𝛿
𝑛
≤ ‖𝐴‖

−1; thus

𝑥𝑛+1 − 𝑝


=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
+ 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑇𝑥
𝑛
− 𝑝



≤
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
− (𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑝



+
𝛾𝑛 (𝑥𝑛 − 𝑝) + 𝛿

𝑛
(𝑇𝑥
𝑛
− 𝑇𝑝)



+
(𝛾𝑛 + 𝛿

𝑛
) (𝐼 − 𝐴) 𝑝



≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]

𝑦𝑛 − 𝑝


+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝑥𝑛 − 𝑝



+ (𝛾
𝑛
+ 𝛿
𝑛
) ‖(𝐼 − 𝐴)‖ ⋅

𝑝
 .

(25)

Together with (24), we have
𝑥𝑛+1 − 𝑝



≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)]

𝑥𝑛 − 𝑝


+ 𝛼
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝
 + (𝛾

𝑛
+ 𝛿
𝑛
) ‖(𝐼 − 𝐴)‖ ⋅

𝑝


= [1 − (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)]

𝑥𝑛 − 𝑝


+ (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1) [

1

(𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)

× (𝛼
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝


+ (𝛾
𝑛
+ 𝛿
𝑛
) ‖(𝐼 − 𝐴)‖ ⋅

𝑝
 ]

≤ max{ 𝑥𝑛 − 𝑝
 ,

1

𝛾 − 1
(

𝛼
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑝


+ ‖(𝐼 − 𝐴)‖ ⋅
𝑝
 )} .

(26)
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By conditions (ii) and (iii), we get that {𝑥
𝑛
} is bounded, and

so are {𝑦
𝑛
},{𝑆𝑥
𝑛
},{𝑇𝑥
𝑛
},{𝐹𝑇𝑥

𝑛
}.

Step 2. Now we prove that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Denote 𝜉 = 𝜇(𝜂 − (𝜇𝑡
2

/2)):
𝑦𝑛 − 𝑦

𝑛−1



=
𝑃𝐶 [𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
]

−𝑃
𝐶
[𝛼
𝑛−1

𝜏𝑆𝑥
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛−1

𝐹)𝑇𝑥
𝑛−1

]


≤
𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛

− [𝛼
𝑛−1

𝜏𝑆𝑥
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛−1

𝐹)𝑇𝑥
𝑛−1

]


=
𝛼𝑛𝜏 (𝑆𝑥𝑛 − 𝑆𝑥

𝑛−1
) + 𝜏 (𝛼

𝑛
− 𝛼
𝑛−1

) 𝑆𝑥
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛
𝐹)𝑇𝑥

𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛−1

−𝜇 (𝛼
𝑛
− 𝛼
𝑛−1

) 𝐹𝑇𝑥
𝑛−1



≤ 𝛼
𝑛
𝜏𝐿

𝑥𝑛 − 𝑥
𝑛−1

 + (1 − 𝛼
𝑛
𝜉)
𝑥𝑛 − 𝑥

𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (𝜏
𝑆𝑥𝑛−1

 + 𝜇
𝐹𝑇𝑥𝑛−1

)

= [1 − 𝛼
𝑛
(𝜉 − 𝜏𝐿)]

𝑥𝑛 − 𝑥
𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1

𝑀

≤
𝑥𝑛 − 𝑥

𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1

𝑀,

(27)

where𝑀 is a constant such that
Sup {𝜏 𝑆𝑥𝑛−1

 + 𝜇
𝐹𝑇 (𝑥

𝑛−1
)
 +

𝑥𝑛−1


+
𝑇𝑥𝑛−1

 + 2
𝐴𝑦𝑛−1

} ≤ 𝑀,
(28)

𝑥𝑛+1 − 𝑥
𝑛



=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
+ 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑇𝑥
𝑛

− [(𝐼 − (𝛾
𝑛−1

+ 𝛿
𝑛−1

) 𝐴) 𝑦
𝑛−1

+ 𝛾
𝑛−1

𝑥
𝑛−1

+ 𝛿
𝑛−1

𝑇𝑥
𝑛−1

]


=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
− (𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛−1

+ (𝛾
𝑛−1

− 𝛾
𝑛
+ 𝛿
𝑛−1

− 𝛿
𝑛
) 𝐴𝑦
𝑛−1

+ 𝛾
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1

)

+ 𝛿
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑥
𝑛−1

) + (𝛾
𝑛
− 𝛾
𝑛−1

) 𝑥
𝑛−1

+ (𝛿
𝑛
− 𝛿
𝑛−1

) 𝑇𝑥
𝑛−1



≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]

𝑦𝑛 − 𝑦
𝑛−1

 + (𝛾
𝑛
+ 𝛿
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+ (
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

)
𝐴𝑦𝑛−1



+
𝛾𝑛 − 𝛾

𝑛−1


𝑥𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1


𝑇𝑥𝑛−1



≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]

𝑥𝑛 − 𝑥
𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1

𝑀

+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1

 +
𝛾𝑛 − 𝛾

𝑛−1

 (
𝑥𝑛−1

 +
𝐴𝑦𝑛−1

)

+
𝛿𝑛 − 𝛿

𝑛−1

 (
𝑇𝑥𝑛−1

 +
𝐴𝑦𝑛−1

)

≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)]

𝑥𝑛 − 𝑥
𝑛−1



+ 𝑀(
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

) .

(29)

By the conditions (i), (ii), and (iii) and Lemma 9, we get
‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Step 3. Now we prove that ‖𝑥
𝑛+1

− 𝑇𝑥
𝑛
‖ → 0 as 𝑛 → ∞:

𝑥𝑛+1 − 𝑇𝑥
𝑛



=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
+ 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑇𝑥
𝑛
− 𝑇𝑥
𝑛



=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛
− (𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑇𝑥

𝑛

+ (𝐼 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝐴) 𝑇𝑥

𝑛
− (1 − (𝛾

𝑛
+ 𝛿
𝑛
)) 𝑇𝑥
𝑛

+𝛾
𝑛
(𝑥
𝑛
− 𝑇𝑥
𝑛
) + 𝛿
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑥
𝑛
)


≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]

𝑦𝑛 − 𝑇𝑥
𝑛



+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝑇𝑥𝑛 − 𝐴𝑇𝑥

𝑛

 + 𝛾
𝑛

𝑥𝑛 − 𝑇𝑥
𝑛

 .

(30)

On the other hand,

𝑦𝑛 − 𝑇𝑥
𝑛



=
𝑃𝐶 [𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
] − 𝑃
𝐶
𝑇𝑥
𝑛



≤
𝛼𝑛𝜏𝑆𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐹)𝑇𝑥

𝑛
− 𝑇𝑥
𝑛



= 𝛼
𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑇𝑥
𝑛

 .

(31)

Thus we have ‖𝑥
𝑛+1

− 𝑇𝑥
𝑛
‖ → 0 as 𝑛 → ∞. Observe that

𝑥𝑛 − 𝑇𝑥
𝑛

 ≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑇𝑥

𝑛

 ; (32)

we immediately get ‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Step 4. Now we show that lim sup
𝑛→∞

⟨(𝐼 −𝐴)𝑥
∗

, 𝑥
𝑛
−𝑥
∗

⟩ ≤

0, where 𝑥∗ ∈ Fix(𝑇) is the unique solution of the variational
inequality. Take a subsequence {𝑥

𝑛𝑘
} of {𝑥

𝑛
} such that

lim sup
𝑛→∞

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑘→∞

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥
𝑛𝑘
− 𝑥
∗

⟩ .

(33)

Observe that the sequence {𝑥
𝑛
} is bounded; without loss

of generality we may assume that 𝑥
𝑛𝑘
⇀ 𝑥
. By Lemma 4, we

get 𝑥 ∈ Fix(𝑇). Therefore by Lemma 3, we have

lim sup
𝑛→∞

⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= ⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥


− 𝑥
∗

⟩ ≤ 0.

(34)
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Step 5. Next we prove that ‖𝑥
𝑛+1

− 𝑥
∗

‖ → 0 as 𝑛 → ∞:

𝑥𝑛+1 − 𝑥
∗
2

=
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝐴) 𝑦

𝑛

− (𝐼 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝐴) 𝑥

∗

+ 𝛾
𝑛
(𝑥
𝑛
− 𝑥
∗

)

+𝛿
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑥
∗

) + (𝛾
𝑛
+ 𝛿
𝑛
) (𝐼 − 𝐴) 𝑥

∗
2

≤
(𝐼 − (𝛾

𝑛
+ 𝛿
𝑛
)𝐴)(𝑦

𝑛
− 𝑥
∗

)

2

+ 2 ⟨𝛾
𝑛
(𝑥
𝑛
− 𝑥
∗

) + 𝛿
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑥
∗

) , 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 2 ⟨(𝛾
𝑛
+ 𝛿
𝑛
) (𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]
2𝑦𝑛 − 𝑥

∗
2

+2
𝛾𝑛 (𝑥𝑛 − 𝑥

∗

) + 𝛿
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑥
∗

)
 ⋅

𝑥𝑛+1 − 𝑥
∗

+ 2 (𝛾
𝑛
+ 𝛿
𝑛
) ⟨(𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤
1 − (𝛾

𝑛
+ 𝛿
𝑛
) 𝛾


2𝑦𝑛 − 𝑥

∗
2

+ 2 (𝛾
𝑛
+ 𝛿
𝑛
)
𝑥𝑛 − 𝑥

∗ ⋅
𝑥𝑛+1 − 𝑥

∗

+ 2 (𝛾
𝑛
+ 𝛿
𝑛
) ⟨(𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

(35)

Notice that

𝑦𝑛 − 𝑥
∗
2

≤
𝑥𝑛 − 𝑥

∗
2

+ 2𝛼
𝑛

𝑥𝑛 − 𝑥
∗ ⋅

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗

+ 𝛼
2

𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗
2

;

(36)

thus

𝑥𝑛+1 − 𝑥
∗
2

≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]
2

× [
𝑥𝑛 − 𝑥

∗
2

+ 2𝛼
𝑛

𝑥𝑛 − 𝑥
∗

⋅
𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥

∗ + 𝛼
2

𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗
2

]

× (𝛾
𝑛
+ 𝛿
𝑛
) (
𝑥𝑛 − 𝑥

∗
2

+
𝑥𝑛+1 − 𝑥

∗
2

)

+ 2 (𝛾
𝑛
+ 𝛿
𝑛
) ⟨(𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

[1 − (𝛾
𝑛
+ 𝛿
𝑛
)]
𝑥𝑛+1 − 𝑥

∗
2

≤ [1 − (𝛾
𝑛
+ 𝛿
𝑛
) 𝛾]
2𝑥𝑛 − 𝑥

∗
2

+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝑥𝑛 − 𝑥

∗
2

+ [2𝛼
𝑛

𝑥𝑛 − 𝑥
∗ ⋅

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗

+ 𝛼
2

𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗
2

+2 (𝛾
𝑛
+ 𝛿
𝑛
) ⟨(𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩] ,

𝑥𝑛+1 − 𝑥
∗
2

= [1 −
2 (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)

1 − (𝛾
𝑛
+ 𝛿
𝑛
)

]
𝑥𝑛 − 𝑥

∗
2

+
1

1 − (𝛾
𝑛
+ 𝛿
𝑛
)

× [(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝛾
2𝑥𝑛 − 𝑥

∗
2

+ 2𝛼
𝑛

𝑥𝑛 − 𝑥
∗ ⋅

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗

+ 𝛼
2

𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗
2

+2 (𝛾
𝑛
+ 𝛿
𝑛
) ⟨(𝐼 − 𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩]

= [1 −
2 (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)

1 − (𝛾
𝑛
+ 𝛿
𝑛
)

]
𝑥𝑛 − 𝑥

∗
2

+
2 (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)

1 − (𝛾
𝑛
+ 𝛿
𝑛
)

× {
1

2 (𝛾
𝑛
+ 𝛿
𝑛
) (𝛾 − 1)

× [(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝛾
2𝑥𝑛 − 𝑥

∗
2

+ 2𝛼
𝑛

𝑥𝑛 − 𝑥
∗ ⋅

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗

+ 𝛼
2

𝑛

𝜏𝑆𝑥𝑛 − 𝜇𝐹𝑥
∗
2

+ 2 (𝛾
𝑛
+ 𝛿
𝑛
)

× ⟨(𝐼 − 𝐴) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ ] } .

(37)

By the conditions (ii), (iii) and Lemma 9, we conclude that
‖𝑥
𝑛
− 𝑥
∗

‖ → 0 as 𝑛 → ∞, which solves the variational
inequality ⟨(𝐼 − 𝐴)𝑥

∗

, 𝑧 − 𝑥
∗

⟩ ≤ 0, for all 𝑧 ∈ Fix(𝑇). This
completes the proof.

Remark 11. The iterative algorithm in Theorem 10 here is a
new approximating method, and Lemma 7 plays a key role in
the proof of the main results which makes the proof simple.

Remark 12. The results in this paper improve and extend
some recent related results. For example, Theorem 10 here
improves and extends Theorem 3.2 in [8] in the following
ways:

(i) the nonexpansive mapping 𝑇 : 𝐶 → 𝐶 in [8] is
extended to the case of 𝑘-strict pseudo-contractions
𝑇 : 𝐶 → 𝐶;
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(ii) the self-contraction 𝑓 : 𝐶 → 𝐶 in [8] is extended
to the case of a (possiblly non-self) Lipschitzian
mapping 𝑆 : 𝐶 → 𝐻.
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