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We propose a new variable-coefficient Riccati subequation method to establish new exact solutions for nonlinear differential-
difference equations. For illustrating the validity of thismethod, we apply it to the discrete (2 + 1)-dimensional Toda lattice equation.
As a result, some new and generalized traveling wave solutions including hyperbolic function solutions, trigonometric function
solutions, and rational function solutions are obtained.

1. Introduction

Nonlinear differential-difference equations (NDDEs) play an
important role in many branches of applied physical sciences
such as condensed matter physics, biophysics, atomic chains,
molecular crystals, and quantum physics. Unlike difference
equations which are fully discretized, NDDEs are semidis-
cretized; that is, their time variable is usually kept continuous.
Since the work of Fermi in the 1960s [1], research for NDDEs
has been paid a lot of attention recently (e.g., see [2–10]
and the references therein). Among these research works,
the investigation of exact solutions of NDDEs has attracted
a wide interest, and many effective methods have been
presented and applied for solving NDDEs successfully in the
literature. For example, these methods include the known
(𝐺/𝐺)-expansion method [11–14], the exp-function method
[15], the exponential function rational expansion method
[16, 17], the Jacobi elliptic function method [18, 19], Hirota’s
bilinearmethod [20], the extended simplest equationmethod
[21], and the tanh-function method [22]. The difference
among these methods lies in that different ansatzes are
used. However, we notice most of the existing methods
are dealing with ansatzes with constant coefficients, while
very few methods are concerned with variable coefficients.
Recent results on solving NDDEs by variable-coefficient

methods only include the presentation of Tang et al. [14], in
which a variable-coefficient (𝐺/𝐺)-expansion method was
developed.

It is well known that the Riccati equation method is very
effective in finding exact solutions for nonlinear differential-
difference equations [23, 24]. But so far little attention is paid
to the application of the Riccati equation method to solve
NDDEs. In this paper, by introducing a new ansatz, we pro-
pose a new discrete variable-coefficient Riccati subequation
method for solving NDDEs. Then we apply this method to
establish new exact solutions of NDDEs.

We organize this paper as follows. In Section 2, we
give the description of the discrete variable-coefficient
Riccati subequation method. Then in Section 3 we apply the
method to solve the discrete (2 + 1)-dimensional Toda lattice
equation. Comparisons between the proposed method and
the known (𝐺/𝐺)-expansion method are also made. Some
conclusions are presented at the end of the paper.

2. Description of the Variable-Coefficient
Riccati Subequation Method

The main steps of the variable-coefficient Riccati sub-ODE
method for solving NDDEs are summarized as follows.
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Step 1. Consider a system of 𝑀 polynomial NDDEs in the
form

𝑃(𝑢
𝑛+𝑝
1

(𝑋) , . . . , 𝑢
𝑛+𝑝
𝑘
(𝑋) , . . . ,

𝑢


𝑛+𝑝
1

(𝑋) , . . . , 𝑢


𝑛+𝑝
𝑘

(𝑋) , . . . ,

𝑢
(𝑟)

𝑛+𝑝
1

(𝑋) , . . . , 𝑢
(𝑟)

𝑛+𝑝
𝑘

(𝑋)) = 0,

(1)

where the dependent variable 𝑢 has 𝑀 components 𝑢
𝑖
, the

continuous variable 𝑋 has 𝑁 components 𝑥
𝑗
, the discrete

variable 𝑛 has 𝑄 components 𝑛
𝑖
, the 𝑘 shift vectors 𝑝

𝑠
∈ 𝑍
𝑄

have 𝑄 components 𝑝
𝑠𝑗
, and 𝑢(𝑟)

𝑛+𝑝
𝑠

(𝑋), 𝑠 = 1, 2, . . . , 𝑘, denote
the collection of mixed derivative terms of order 𝑟.

Step 2. Using a wave transformation

𝑢
𝑛+𝑝
𝑠
(𝑋) = 𝑈

𝑛+𝑝
𝑠

(𝜉
𝑛+𝑝
𝑠

) ,

𝜉
𝑛
=

𝑄

∑

𝑖=1

𝑑
𝑖
𝑛
𝑖
+ 𝜁 (𝑋) ,

𝜉
𝑛+𝑝
𝑠

=

𝑄

∑

𝑖=1

𝑑
𝑖
(𝑛
𝑖
+ 𝑝
𝑠𝑖
) + 𝜁 (𝑋) ,

(2)

where 𝑑
𝑖
,𝑝
𝑠𝑖
, 𝑖 = 1, . . . , 𝑄, are constants and 𝜁(𝑋) are under-

determined differentiable functions of 𝑋, we can rewrite (1)
in the following nonlinear ODE:

�̃� (𝑈
𝑛+𝑝
1

(𝜉
𝑛+𝑝
1

) , . . . ,

𝑈
𝑛+𝑝
𝑘

(𝜉
𝑛+𝑝
𝑘

) , . . . , 𝑈


𝑛+𝑝
1

(𝜉
𝑛+𝑝
1

) , . . . ,

𝑈


𝑛+𝑝
𝑘

(𝜉
𝑛+𝑝
𝑘

) , . . . ,

𝑈
(𝑟)

𝑛+𝑝
1

(𝜉
𝑛+𝑝
1

) , . . . , 𝑈
(𝑟)

𝑛+𝑝
𝑘

(𝜉
𝑛+𝑝
𝑘

)) = 0.

(3)

Step 3. Suppose the solutions of (3) can be denoted by

𝑈
𝑛
(𝜉
𝑛
) =

𝑙

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝜙
𝑖
(𝜉
𝑛
) , (4)

where 𝑎
𝑖
(𝑋) are functions of 𝑋 to be determined later, 𝑙 is

a positive integer that can be determined by balancing the
highest order linear termwith the nonlinear terms in (3), and
𝜙(𝜉
𝑛
) satisfies the known Riccati equation:

𝜙

(𝜉
𝑛
) = 𝜎 + 𝜙

2
(𝜉
𝑛
) . (5)

Step 4. We present some special solutions 𝜙
1
, . . . 𝜙
6
for (5).

When 𝜎 < 0,

𝜙
1
(𝜉
𝑛
) = −√−𝜎 tanh (√−𝜎𝜉

𝑛
+ 𝑐
0
) ,

𝜙
2
(𝜉
𝑛
) = −√−𝜎 coth (√−𝜎𝜉

𝑛
+ 𝑐
0
) ,

𝜙
1,2
(𝜉
𝑛+𝑝
𝑠

) =

𝜙
1,2
(𝜉
𝑛
) − √−𝜎 tanh (√−𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

1 − (𝜙
1,2
(𝜉
𝑛
) /√−𝜎) tanh (√−𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

,

(6)

where 𝑐
0
is an arbitrary constant.

When 𝜎 > 0,

𝜙
3
(𝜉
𝑛
) = √𝜎 tan (√𝜎𝜉

𝑛
+ 𝑐
0
) ,

𝜙
4
(𝜉
𝑛
) = −√𝜎cot (√𝜎𝜉

𝑛
+ 𝑐
0
) ,

𝜙
3,4
(𝜉
𝑛+𝑝
𝑠

)

=

𝜙
3,4
(𝜉
𝑛
) + √𝜎 tan (√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

1 − (𝜙
3,4
(𝜉
𝑛
) /√𝜎) tan (√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

,

(7)

𝜙
5
(𝜉
𝑛
) = √𝜎 [tan (2√𝜎𝜉

𝑛
+ 𝑐
0
)

+
sec (2√𝜎𝜉𝑛 + 𝑐0)

] ,

𝜙
5
(𝜉
𝑛+𝑝
𝑠

)

=

𝜙
(1)

5
(𝜉
𝑛
) + √𝜎 tan (2√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

1 − (𝜙
(1)

5
(𝜉
𝑛
) /√𝜎) tan (2√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

+

𝜙
(2)

5
(𝜉
𝑛
) sec (2√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

1 − (𝜙
(1)

5
(𝜉
𝑛
) /√𝜎) tan (2√𝜎∑𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖
)

,

(8)

where 𝜙
(1)

5
(𝜉
𝑛
) = √𝜎 tan(2√𝜎𝜉

𝑛
+ 𝑐
0
), 𝜙
(2)

5
(𝜉
𝑛
) =

√𝜎|sec(2√𝜎𝜉
𝑛
+ 𝑐
0
) and 𝑐

0
is an arbitrary constant.

When 𝜎 = 0,

𝜙
6
(𝜉
𝑛
) = −

1

𝜉
𝑛
+ 𝑐
0

,

𝜙
6
(𝜉
𝑛+𝑝
𝑠

) =
𝜙
6
(𝜉
𝑛
)

1 − 𝜙
6
(𝜉
𝑛
)∑
𝑄

𝑖=1
𝑑
𝑖
𝑝
𝑠𝑖

,

(9)

where 𝑐
0
is an arbitrary constant.

Step 5. Substituting (4) into (3), by use of (5)–(9), the left
hand side of (3) can be converted into a polynomial in 𝜙(𝜉

𝑛
).

Equating each coefficient of 𝜙𝑖(𝜉
𝑛
) to zero, yields a set of

algebraic equations. Solving these equations, we can obtain
a set of under-determined partial equations, from which
𝑎
𝑖
(𝑋), 𝜁(𝑋) can be determined using the aid of mathematical

software.

Step 6. Substituting the values of 𝑎
𝑖
(𝑋) into (4) and combin-

ing with the various solutions of (5), we can obtain a variety
of exact solutions for (1).

Remark 1. In [25, equations (40)–(42)], Ma and Fuchssteiner
presented a general class of solutions to the following Riccati
equation:

V
𝜉
= 𝑎
0
+ 𝑎
1
V + 𝑎
2
V
2
. (10)

We note that despite the difference in forms and param-
eters, our solutions 𝜙

1
(𝜉
𝑛
), 𝜙
2
(𝜉
𝑛
), 𝜙
3
(𝜉
𝑛
), 𝜙
4
(𝜉
𝑛
), and 𝜙

6
(𝜉
𝑛
)

to (5) are in accordance with the presented solutions in [25].
In fact, 𝜙

1
(𝜉
𝑛
) is essentially equivalent to the tanh-function

solution in [25, (41)] with 𝑎
1
= 0, 𝑎

2
= 1, Δ = −4𝜎, and

−𝜀 ln 𝜀
0
/2 = 𝑐

0
, while 𝜙

2
(𝜉
𝑛
) is essentially equivalent to the
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coth-function solution in [25, (41)] with 𝑎
1
= 0, 𝑎

2
= 1, Δ =

−4𝜎, and −𝜀 ln(−𝜀
0
)/2 = 𝑐

0
. 𝜙
3
(𝜉
𝑛
) is essentially equivalent to

the tan-function solution in [25, (42)] with 𝑎
1
= 0, 𝑎

2
= 1,

Δ = −4𝜎, and 𝜉
0
= 𝑐
0
, while 𝜙

4
(𝜉
𝑛
) is essentially equivalent

to the cot-function solution in [25, (42)] with 𝑎
1
= 0, 𝑎

2
= 1,

Δ = −4𝜎, and 𝜉
0
= 𝑐
0
. 𝜙
7
(𝜉
𝑛
) is essentially equivalent to the

rational function solution in [25, (40)] with 𝑎
1
= 0, 𝑎

2
= 1,

and 𝜉
0
= 𝑐
0
. Besides, our solution 𝜙

5
(𝜉
𝑛
) is not shown in [25].

3. Application of the Variable-Coefficient
Riccati Subequation Method to
the Discrete (2 + 1)-Dimensional Toda
Lattice Equation

In this section, we will apply the described method in
Section 2 to the discrete (2 + 1)-dimensional Toda lattice
equation [13, 14]:

𝜕
2
𝑦
𝑛

𝜕𝑥𝜕𝑡
= 𝑒
𝑦
𝑛−1
−𝑦
𝑛 − 𝑒
𝑦
𝑛
−𝑦
𝑛+1 , (11)

where 𝑦
𝑛
= 𝑦
𝑛
(𝑥, 𝑡), 𝑛 ∈ 𝑍, is the displacement from equi-

librium of the 𝑛th unit mass under an exponentially decaying
interaction force between nearest neighbors.

In [26], Ma presented a general Casoratian formulation
for the 2D Toda lattice equation and obtained various
Casoratian-type solutions by a Bäcklund transformation
under some linear conditions. In [27], Ma derived molecule
solutions in Wronskian form for the finite, semi-infinite, and
infinite bilinear 2D Toda molecule equations by combining
two pieces of molecule bidirectional Wronskian solutions,
and in the cases of finite and semi-infinite lattices, separated-
variable boundary conditions are imposed.

As in [13, 14], using the transformation

𝜕𝑢
𝑛

𝜕𝑡
= 𝑒
𝑦
𝑛−1
−𝑦
𝑛 − 1, (12)

(11) can be rewritten as

𝜕
2
𝑢
𝑛

𝜕𝑥𝜕𝑡
= (

𝜕𝑢
𝑛

𝜕𝑡
+ 1) (𝑢

𝑛−1
− 2𝑢
𝑛
+ 𝑢
𝑛+1

) . (13)

Using a wave transformation

𝑢
𝑛
(𝑥, 𝑡) = 𝑈

𝑛
(𝜉
𝑛
) , 𝜉

𝑛
= 𝑑
1
𝑛 + 𝜁 (𝑥, 𝑡) , (14)

where 𝑑
1
is a constant, (13) can be turned into

𝜕𝜁 (𝑥, 𝑡)

𝜕𝑥

𝜕𝜁 (𝑥, 𝑡)

𝜕𝑡
+ 𝑈


𝑛

𝜕
2
𝜁 (𝑥, 𝑡)

𝜕𝑥𝜕𝑡
𝑈


𝑛

= (
𝜕𝜁 (𝑥, 𝑡)

𝜕𝑡
𝑈


𝑛
+ 1) (𝑈

𝑛−1
− 2𝑈
𝑛
+ 𝑈
𝑛+1

) ,

(15)

where 𝑈
𝑛
= 𝑈
𝑛
(𝜉
𝑛
), 𝑈
𝑛
= 𝑈


𝑛
(𝜉
𝑛
). Suppose 𝑈

𝑛
(𝜉
𝑛
) can be

denoted by

𝑈
𝑛
(𝜉
𝑛
) =

𝑙

∑

𝑖=0

𝑎
𝑖
(𝑥, 𝑡) 𝜙

𝑖
(𝜉
𝑛
) , (16)

where 𝜙(𝜉
𝑛
) satisfies (5). Balancing the order of𝑈

𝑛
and𝑈

𝑛
𝑈
𝑛

in (15), we obtain 𝑙 + 2 = (𝑙 + 1) + 𝑙, and then 𝑙 = 1. So we have

𝑈
𝑛
(𝜉
𝑛
) = 𝑎
0
(𝑥, 𝑡) + 𝑎

1
(𝑥, 𝑡) 𝜙 (𝜉

𝑛
) . (17)

Next wewill proceed to solve (15) and (13) in several cases.

Case 1. If𝜎 < 0 and assume (5) and (6) hold, then substituting
(17), (5), and (6) into (15), collecting the coefficients of
𝜙
𝑖

1,2
(𝜉
𝑛
), and equating them to zero, we obtain a series of

underdetermined partial equations for 𝑎
0
(𝑥, 𝑡), 𝑎

1
(𝑥, 𝑡), and

𝜁(𝑥, 𝑡). Solving these equations yields

𝑎
1
(𝑥, 𝑡) = 𝐹

1
(𝑥) , 𝑎

0
= −𝑡 + 𝐹

2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝐹
3
(𝑥) ,

(18)

where 𝐹
𝑖
(𝑥), 𝑖 = 1, 2, 3, are arbitrary functions with respect

to the variable 𝑥, or

𝑎
1
(𝑥, 𝑡) = −𝑘,

𝑎
0
= −𝑡 −

2𝑘𝜎𝑔
1
(𝑡)

−1 + cosh (2√−𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝑘𝑥 + 𝑔
1
(𝑡) ,

(19)

where 𝑘 is an arbitrary nonzero constant and 𝑔
1
(𝑡) and 𝑔

2
(𝑥)

are two arbitrary functions with respect to the variables 𝑥
and 𝑡, respectively. Then we obtain the following hyperbolic
function solitary wave solutions for (13):

𝑢
𝑛
(𝑥, 𝑡) = − 𝐹

1
(𝑥)√−𝜎 tanh (√−𝜎 (𝑑

1
𝑛 + 𝐹
3
(𝑥)) + 𝑐

0
)

− 𝑡 + 𝐹
2
(𝑥) ,

(20)

𝑢
𝑛
(𝑥, 𝑡) = − 𝐹

1
(𝑥)√−𝜎 coth (√−𝜎 (𝑑

1
𝑛 + 𝐹
3
(𝑥)) + 𝑐

0
)

− 𝑡 + 𝐹
2
(𝑥) ,

(21)

𝑢
𝑛
(𝑥, 𝑡) = 𝑘√−𝜎 tanh (√−𝜎 (𝑑

1
𝑛 + 𝑘𝑥 + 𝑔

1
(𝑡)) + 𝑐

0
)

− 𝑡 −
2𝑘𝜎𝑔
1
(𝑡)

−1 + cosh (2√−𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

(22)

𝑢
𝑛
(𝑥, 𝑡) = 𝑘√−𝜎 coth (√−𝜎 (𝑑

1
𝑛 + 𝑘𝑥 + 𝑔

1
(𝑡)) + 𝑐

0
)

− 𝑡 −
2𝑘𝜎𝑔
1
(𝑡)

−1 + cosh (2√−𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

(23)

where 𝑑
1
, 𝑐
0
are arbitrary constants.

Case 2. If 𝜎 > 0 and assume (5) and (7) hold, then substi-
tuting (17), (5), and (7) into (15), collecting the coefficients
of 𝜙𝑖
3,4
(𝜉
𝑛
), and equating them to zero, we obtain a series of
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underdetermined partial equations for 𝑎
0
(𝑥, 𝑡), 𝑎

1
(𝑥, 𝑡), and

𝜁(𝑥, 𝑡). Solving these equations yields

𝑎
1
(𝑥, 𝑡) = 𝐹

1
(𝑥) , 𝑎

0
= −𝑡 + 𝐹

2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝐹
3
(𝑥)

(24)

or

𝑎
1
(𝑥, 𝑡) = −𝑘,

𝑎
0
= −𝑡 −

2𝑘𝜎𝑔
1
(𝑡)

−1 + cos (2√𝜎𝑑
1
)
+𝑔
2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝑘𝑥 + 𝑔
1
(𝑡) .

(25)

Then we obtain the following trigonometric function
solutions for (13):

𝑢
𝑛
(𝑥, 𝑡) = 𝐹

1
(𝑥)√𝜎 tan (√𝜎 (𝑑

1
𝑛 + 𝐹
3
(𝑥)) + 𝑐

0
)

− 𝑡 + 𝐹
2
(𝑥) ,

(26)

𝑢
𝑛
(𝑥, 𝑡) = − 𝐹

1
(𝑥)√𝜎cot (√𝜎 (𝑑

1
𝑛 + 𝐹
3
(𝑥)) + 𝑐

0
)

− 𝑡 + 𝐹
2
(𝑥) ,

(27)

𝑢
𝑛
(𝑥, 𝑡) = − 𝑘√𝜎 tan (√𝜎 (𝑑

1
𝑛 + 𝑘𝑥 + 𝑔

1
(𝑡)) + 𝑐

0
)

− 𝑡 −
2𝑘𝜎𝑔
1
(𝑡)

−1 + cos (2√𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

(28)

𝑢
𝑛
(𝑥, 𝑡) = 𝑘√𝜎cot (√𝜎 (𝑑

1
𝑛 + 𝑘𝑥 + 𝑔

1
(𝑡)) + 𝑐

0
)

− 𝑡 −
2𝑘𝜎𝑔
1
(𝑡)

−1 + cos (2√𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

(29)

where 𝑑
1
, 𝑐
0
are arbitrary constants.

Case 3. If 𝜎 > 0 and assume (5) and (8) hold, then substi-
tuting (17), (5), and (8) into (15), using [𝜙

(2)

5
(𝜉
𝑛
)]
2
= 𝜎 +

[𝜙
(1)

5
(𝜉
𝑛
)]
2, collecting the coefficients of [𝜙(1)

5
(𝜉
𝑛
)]
𝑖
[𝜙
(2)

5
(𝜉
𝑛
)]
𝑗,

and equating them to zero, we obtain a series of partial
equations. Solving these equations, we also obtain, as in Case
2,

𝑎
1
(𝑥, 𝑡) = 𝐹

1
(𝑥) , 𝑎

0
= −𝑡 + 𝐹

2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝐹
3
(𝑥)

(30)

or

𝑎
1
(𝑥, 𝑡) = −𝑘,

𝑎
0
= −𝑡 −

2𝑘𝜎𝑔
1
(𝑡)

−1 + cos (2√𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝑘𝑥 + 𝑔
1
(𝑡) .

(31)

Sowe have the following trigonometric function solutions for
(13):

𝑢
𝑛
(𝑥, 𝑡) = 𝐹

1
(𝑥)√𝜎 [tan (2√𝜎 (𝑑

1
𝑛 + 𝐹
3
(𝑥)) + 𝑐

0
)

+
sec (2√𝜎 (𝑑1𝑛 + 𝐹3 (𝑥)) + 𝑐0)

]

− 𝑡 + 𝐹
2
(𝑥) ,

(32)

𝑢
𝑛
(𝑥, 𝑡) = − 𝑘√𝜎 [tan (2√𝜎 (𝑑

1
𝑛 + 𝑘𝑥 + 𝑔

1
(𝑡)) + 𝑐

0
)

+
sec (2√𝜎 (𝑑1𝑛 + 𝑘𝑥 + 𝑔1 (𝑡)) + 𝑐0)

]

− 𝑡 −
2𝑘𝜎𝑔
1
(𝑡)

−1 + cos (2√𝜎𝑑
1
)
+ 𝑔
2
(𝑥) ,

(33)

where 𝑑
1
, 𝑐
0
are arbitrary constants.

Case 4. If 𝜎 = 0 and assume (5) and (9) hold, then substi-
tuting (17), (5), and (9) into (15), collecting the coefficients of
𝜙
𝑖

6
(𝜉
𝑛
), and equating them to zero, we obtain a series of partial

equations. Solving these equations yields

𝑎
1
(𝑥, 𝑡) = 𝐹

1
(𝑥) , 𝑎

0
= −𝑡 + 𝐹

2
(𝑥) ,

𝜁 (𝑥, 𝑡) = 𝐹
3
(𝑥)

(34)

or
𝑎
1
(𝑥, 𝑡) = −𝑘, 𝑎

0
= 𝑔
2
(𝑥) + 𝑔

1
(𝑡) ,

𝜁 (𝑥, 𝑡) = 𝑘𝑥 +
𝑑
2

1
(𝑡 + 𝑔

1
(𝑡))

𝑘
+ 𝑚,

(35)

where𝑚 is an arbitrary constant, and then we can obtain the
following rational function solutions for (13):

𝑢
𝑛
(𝑥, 𝑡) = −

𝐹
1
(𝑥)

𝑑
1
𝑛 + 𝐹
3
(𝑥) + 𝑐

0

− 𝑡 + 𝐹
2
(𝑥) , (36)

𝑢
𝑛
(𝑥, 𝑡)

=
𝑘

𝑑
1
𝑛 + 𝑘𝑥 + 𝑑

2

1
(𝑡 + 𝑔

1
(𝑡)) /𝑘 + 𝑚 + 𝑐

0

+ 𝑔
2
(𝑥) + 𝑔

1
(𝑡) .

(37)

Remark 2. In [14], Tang et al. presented some exact solutions
for (11) using the variable-coefficient (𝐺/𝐺)-expansion
method. We note that our results (22), (28), and (37)
are generalizations of [14, equations (17), (23), (29)]. In
fact, if we let in (22) 𝑐

0
= arth(𝐶

2
/𝐶
1
) or arcoth(𝐶

2
/𝐶
1
),

𝜎 = (4 𝜇 − 𝜆
2
)/4, 𝑔
1
(𝑡) = 𝑔(𝑡), and 𝑔

2
(𝑥) = ℎ(𝑥) − 𝑘𝜆/2, then

the solution denoted by (22) becomes [14, equation (17)].
If we let in (28) 𝑐

0
= arctan(−𝐶

2
/𝐶
1
) or arccot (−𝐶

2
/𝐶
1
),

𝜎 = (4𝜇 − 𝜆
2
)/4, 𝑔

1
(𝑡) = 𝑔(𝑡), and 𝑔

2
(𝑥) = ℎ(𝑥) − 𝑘𝜆/2, then

the solution denoted by (28) becomes [14, equation (23)].
If we let in (37) 𝑐

0
= 𝐶
2
/𝐶
1
, 𝑔
1
(𝑡) = 𝑘𝑔(𝑡)/𝑑

2

1
− 𝑡, 𝑚 = 𝑘,

and 𝑔
2
(𝑥) = ℎ(𝑥) − 𝑘𝜆/2, then the solution denoted by (37)

becomes [14, equation (29)].
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Remark 3. It is worthy to note that the solutions in [14,
equations (18), (24), (30)] are obtained under the hypothesis

𝑈
𝑛
(𝜉
𝑛
) =

𝑚

∑

𝑙=−𝑚

𝑎
𝑖
(𝑋)

𝐺

(𝜉
𝑛
)

𝐺 (𝜉
𝑛
)
. (38)

If we modify (4) by

𝑈
𝑛
(𝜉
𝑛
) =

𝑙

∑

𝑖=−𝑙

𝑎
𝑖
(𝑋) 𝜙
𝑖
(𝜉
𝑛
) , (39)

then following a similar manner as above we can obtain
some exact solutions for (13), which are generalizations of [14,
equations (18), (24), (30)]. As the process is almost the same,
we omit it here.

Remark 4. Our results (32) and (33) are new exact solutions
for (13) and have not been reported by other authors so far to
our best knowledge.

Remark 5. From the analysis above, we notice that more
general exact solutions for the discrete (2 + 1)-dimensional
Toda lattice equation are obtained by the proposed variable-
coefficient Riccati subequation method than by the (𝐺/𝐺)-
expansion method. In fact, in the (𝐺/𝐺)-expansion method,
the solutions 𝑈

𝑛
(𝜉
𝑛
) are denoted by a polynomial in (𝐺(𝜉

𝑛
)/

𝐺(𝜉
𝑛
)), and 𝐺 satisfies

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0, (40)

where 𝜆, 𝜇 are constants. If we let in (40) (𝐺(𝜉
𝑛
)/𝐺(𝜉
𝑛
)) =

−𝜙(𝜉
𝑛
) − 𝜆/2, (4𝜇 − 𝜆

2
)/4 = 𝜎, then (40) reduces to 𝜙(𝜉

𝑛
) =

𝜎+𝜙
2
(𝜉
𝑛
), which is the Riccati equation (5). So (𝐺(𝜉

𝑛
)/𝐺(𝜉
𝑛
))

can be generalized and explained by 𝜙(𝜉
𝑛
).

Remark 6. All of the solutions presented in this paper have
been checked with Maple 11 by putting them back into the
original equations.

Conclusions

We have proposed a variable-coefficient Riccati sub-equation
method for solving nonlinear differential-difference equa-
tions and applied it to find exact solutions of the discrete
(2 + 1)-dimensional Toda lattice equation. As a result, some
generalized and new exact solutions for it have been success-
fully found. We have also compared this method with the
known (𝐺/𝐺)-expansion method. Comparison results show
that solutions obtained by the (𝐺/𝐺)-expansion method are
only special cases of the solutions by the proposed method,
which is to some extent in accordance with the analysis in
[28]. Finally, as the present method is concise and powerful,
we note that it can be applied to other nonlinear differential-
difference equations.
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