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We study the 𝑞-extension of the 𝑝-adic gamma function Γ𝑝,𝑞. We give a new identity for the 𝑞-extension of the 𝑝-adic gamma Γ𝑝,𝑞 in
the case 𝑝 = 2. Also, we derive some properties and new representations of the 𝑞-extension of the 𝑝-adic gamma Γ𝑝,𝑞 in general case.

1. Introduction

Let 𝑝 be a prime number and let Z𝑝, Q𝑝, and C𝑝 denote
the ring of 𝑝-adic integers, the field of 𝑝-adic numbers, and
the completion of the algebraic closure of Q𝑝, respectively.
It is well known that the analogous of the classical gamma
function Γ in 𝑝-adic context depends on modifying the
factorial function 𝑛! [1]. The factorial function (𝑛!)𝑝 in Q𝑝 is
defined as

(𝑛!)𝑝 = ∏

𝑗<𝑛

(𝑝,𝑗)=1

𝑗.

(1)

The 𝑝-adic gamma function Γ𝑝 is defined byMorita [2] as the
continuous extension to Z𝑝 of the function 𝑛 → (−1)

𝑛
(𝑛!)𝑝.

That is, Γ𝑝(𝑥) is defined by the formula

Γ𝑝 (𝑥) = lim
𝑛→𝑥

(−1)
𝑛

∏

𝑗<𝑛

(𝑝,𝑗)=1

𝑗

(2)

for 𝑥 ∈ Z𝑝, where 𝑛 approaches 𝑥 through positive
integers. The 𝑝-adic gamma function Γ𝑝(𝑥) had been studied
by Diamond [3], Barsky [4], and others. The relationship
between some special functions and the 𝑝-adic gamma
function Γ𝑝(𝑥) were investigated by Gross and Koblitz [5],
Cohen and Friedman [6]. and Shapiro [7].

The 𝑞-extension of the 𝑝-adic gamma function Γ𝑝,𝑞(𝑥) is
defined by Koblitz as follows.

Definition 1 (see [8]). Let 𝑞 ∈ C𝑝, |𝑞 − 1|
𝑝

< 1, 𝑞 ̸= 1. The 𝑞-
extension of the 𝑝-adic gamma function Γ𝑝,𝑞(𝑥) is defined by
formula

Γ𝑝,𝑞 (𝑥) = lim
𝑛→𝑥

(−1)
𝑛

∏

𝑗<𝑛

(𝑝,𝑗)=1

1 − 𝑞
𝑗

1 − 𝑞 (3)

for 𝑥 ∈ Z𝑝, where 𝑛 approaches 𝑥 through positive integers.
We recall that lim𝑞→1Γ𝑝,𝑞 = Γ𝑝.

The 𝑞-extension of the 𝑝-adic gamma function Γ𝑝,𝑞(𝑥)

was studied by Koblitz [8, 9], Nakazato [10], Kim et al. [11],
and Kim [12].

2. Main Results

In the presentwork, we give a new identity for the 𝑞-extension
of the 𝑝-adic gamma function Γ𝑝,𝑞(𝑥) in special case 𝑝 = 2.
Also, we derive some properties and representations for the
𝑞-extension of the 𝑝-adic gamma function Γ𝑝,𝑞(𝑥).

Theorem 2. If 𝑝 = 2, then for all 𝑥 ∈ Z2

Γ2,𝑞 (𝑥) Γ2,𝑞 (1 − 𝑥) = (−1)
1+𝜎
1
(𝑥) lim
𝑛→𝑥

∏

𝑗<𝑛

(2,𝑗)=1

𝑞
𝑗
,

(4)
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where 𝜎1 is defined by the formula

𝜎1(

∞

∑

𝑗=0

𝑎𝑗2
𝑗
) = 𝑎1. (5)

Proof. Let 𝑝 = 2 and 𝑛 ∈ N. From Proposition 3 in [12] we
known that

Γ2,𝑞 (𝑛 + 1) Γ2,𝑞 (−𝑛) = (−1)
𝑛+1−[𝑛/2]

∏

𝑗<𝑛+1

(2,𝑗)=1

𝑞
𝑗
.

(6)

Here, [⋅] is the greatest integer function. Taking 𝑛 − 1 in place
of 𝑛, the relation becomes

Γ2,𝑞 (𝑛) Γ2,𝑞 (1 − 𝑛) = (−1)
𝑛−[(𝑛−1)/2]

∏

𝑗<𝑛

(2,𝑗)=1

𝑞
𝑗
.

(7)

Now, let 𝑛 = 𝑎0+𝑎12+𝑎22
2
+⋅ ⋅ ⋅ in base 2. If 𝑎0 ̸= 0, then 𝑎1 = 1

in base 2 and

[
𝑛 − 1

2
] = [

(𝑎0 − 1 + 𝑎12 + 𝑎22
2
+ ⋅ ⋅ ⋅)

2
]

= [𝑎1 + 𝑎22 + ⋅ ⋅ ⋅] ≡ 𝑎1 (mod 2) .

(8)

Thus, we get

(−1)
𝑛−[(𝑛−1)/2]

= (−1)
𝑛
(−1)
−[(𝑛−1)/2]

= (−1)
1
(−1)
−𝑎
1

= (−1)
1−𝑎
1 = (−1)

1+𝑎
1 = (−1)

1+𝜎
1 .

(9)

If 𝑎0 = 0, then

[
𝑛 − 1

2
] = [

(−1 + 𝑎12 + 𝑎22
2
+ ⋅ ⋅ ⋅)

2
]

= [
(1 + (𝑎1 − 1) 2 + 𝑎22

2
+ ⋅ ⋅ ⋅)

2
]

≡ 𝑎1 − 1 (mod 2) .

(10)

Hence,

(−1)
𝑛−[(𝑛−1)/2]

= (−1)
𝑛
(−1)
−[(𝑛−1)/2]

= (−1)
2
(−1)
−(𝑎
1
−1)

= (−1)
2+𝑎
1
−1

= (−1)
1+𝑎
1

= (−1)
1+𝜎
1
(𝑛)

.

(11)

Thus, we have

Γ2,𝑞 (𝑛) Γ2,𝑞 (1 − 𝑛) = (−1)
1+𝜎
1
(𝑛)

∏

𝑗<𝑛

(2,𝑗)=1

𝑞
𝑗

(12)

and thus, we obtain

Γ2,𝑞 (𝑥) Γ2,𝑞 (1 − 𝑥) = (−1)
1+𝜎
1
(𝑥) lim
𝑛→𝑥

∏

𝑗<𝑛

(2,𝑗)=1

𝑞
𝑗
.

(13)

We recall that the 𝑞-factorial [𝑛; 𝑞]! is defined in [13] by
the formula

[𝑛; 𝑞]! = [𝑛; 𝑞] [𝑛 − 1; 𝑞] ⋅ ⋅ ⋅ [2; 𝑞] [1; 𝑞] (14)

for 𝑛 ≥ 1, where

[𝑥; 𝑞] =
1 − 𝑞
𝑥

1 − 𝑞
. (15)

Note that for 𝑛 = 0, we can define [0; 𝑞]! = 1.
We use the following theorem to prove our results.

Theorem 3 (see [12]). Let 𝑛 ∈ N. Then,

Γ𝑝,𝑞 (𝑛 + 1) = (−1)
𝑛+1 [𝑛; 𝑞]!

[𝑝; 𝑞]
[𝑛/𝑝]

[[𝑛/𝑝] ; 𝑞𝑝]!

, (16)

where [⋅] is the greatest integer function. In particular,

[𝑝
𝑛
− 1; 𝑞]! = (−1)

𝑝
[𝑝; 𝑞]
𝑝
𝑛−1
−1

[𝑝
𝑛−1

− 1; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑝

𝑛
) .

(17)

Theorem 4. Let 𝑛 ∈ N and let 𝑠𝑛 be the sum of the digits of
𝑛 = ∑

𝑠

𝑗=0
𝑎𝑗𝑝
𝑗
(𝑎𝑠 ̸= 0) in base 𝑝. Then

(a) [[𝑛/𝑝
𝑠
]; 𝑞]! = (−1)

𝑛+1−𝑠
(−[𝑝; 𝑞])

(𝑛−𝑠
𝑛
)/(𝑝−1)

∏
𝑠−1

𝑗=0
[[𝑛/𝑝
𝑗+1

]; 𝑞
𝑝
]!/[[𝑛/𝑝

𝑗
]; 𝑞]!∏

𝑠

𝑗=0
Γ𝑝,𝑞([𝑛/𝑝

𝑗
] + 1)

(b) [𝑛; 𝑞]! = (−1)
𝑛+1−𝑠

(−[𝑝; 𝑞])
(𝑛−𝑠
𝑛
)/(𝑝−1)

[[𝑛/𝑝]; 𝑞
𝑝
]!

∏
𝑠

𝑗=1
[[𝑛/𝑝
𝑗+1

]; 𝑞
𝑝
]!/[[𝑛/𝑝

𝑗
]; 𝑞]!∏

𝑠

𝑗=0
Γ𝑝,𝑞([𝑛/𝑝

𝑗
] + 1).

Proof. From theTheorem 3 we know that

[𝑛; 𝑞]! = (−1)
𝑛+1

[𝑝; 𝑞]
[𝑛/𝑝]

[[
𝑛

𝑝
] ; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑛 + 1) . (18)

By taking [𝑛/𝑝
0
], [𝑛/𝑝

1
], . . . , [𝑛/𝑝

𝑠
] instead of 𝑛, respectively,

we get the relations

[[
𝑛

𝑝0
] ; 𝑞]! = (−1)

[𝑛/𝑝
0
]+1

[𝑝; 𝑞]
[𝑛/𝑝
1
]

× [[
𝑛

𝑝1
] ; 𝑞
𝑝
]!Γ𝑝,𝑞 ([

𝑛

𝑝0
] + 1) ,

[[
𝑛

𝑝1
] ; 𝑞]! = (−1)

[𝑛/𝑝
1
]+1

[𝑝; 𝑞]
[𝑛/𝑝
2
]

× [[
𝑛

𝑝2
] ; 𝑞
𝑝
]!Γ𝑝,𝑞 ([

𝑛

𝑝1
] + 1) ,

...

[[
𝑛

𝑝𝑠
] ; 𝑞]! = (−1)

[𝑛/𝑝
𝑠
]+1

[𝑝; 𝑞]
[𝑛/𝑝
𝑠+1
]

× [[
𝑛

𝑝𝑠+1
] ; 𝑞
𝑝
]!Γ𝑝,𝑞 ([

𝑛

𝑝𝑠
] + 1) .

(19)
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By multiplying of the equalities above, we can easily obtain

[[
𝑛

𝑝𝑠
] ; 𝑞]! = (−1)

[𝑛/𝑝
0
]+⋅⋅⋅+[𝑛/𝑝

𝑠
]+𝑠+1

[𝑝; 𝑞]
[𝑛/𝑝
1
]+⋅⋅⋅+[𝑛/𝑝

𝑠+1
]

× [[
𝑛

𝑝𝑠+1
] ; 𝑞
𝑝
]!

𝑠−1

∏

𝑗=0

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

×

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1)

= (−1)
(𝑛−𝑠
𝑛
)/(𝑝−1)

(−1)
𝑛+1−𝑠

[𝑝; 𝑞]
(𝑛−𝑠
𝑛
)/(𝑝−1)

× [[
𝑛

𝑝𝑠+1
] ; 𝑞
𝑝
]!

𝑠−1

∏

𝑗=0

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

×

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1) .

(20)

Therefore, we get the relation (a)

[[
𝑛

𝑝𝑠
] ; 𝑞]! = (−1)

𝑛+1−𝑠
(−[𝑝; 𝑞]

(𝑛−𝑠
𝑛
)/(𝑝−1)

)

×

𝑠−1

∏

𝑗=0

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
]+1) ,

[𝑛; 𝑞]! = (−1)
[𝑛/𝑝
0
]+⋅⋅⋅+[𝑛/𝑝

𝑠
]+𝑠+1

[𝑝; 𝑞]
[𝑛/𝑝
1
]+⋅⋅⋅+[𝑛/𝑝

𝑠+1
]

× [[
𝑛

𝑝
] ; 𝑞
𝑝
]!

𝑠

∏

𝑗=1

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

×

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1)

= (−1)
(𝑛−𝑠
𝑛
)/(𝑝−1)

(−1)
𝑛+1−𝑠

[𝑝; 𝑞]
(𝑛−𝑠
𝑛
)/(𝑝−1)

× [[
𝑛

𝑝
] ; 𝑞
𝑝
]!

𝑠

∏

𝑗=1

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

×

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1) .

(21)

Therefore, we get the relation (b)

[𝑛; 𝑞]! = (−1)
𝑛+1−𝑠

(− [𝑝; 𝑞])
(𝑛−𝑠
𝑛
)/(𝑝−1)

[[
𝑛

𝑝
] ; 𝑞
𝑝
]!

×

𝑠

∏

𝑗=1

[[𝑛/𝑝
𝑗+1

] ; 𝑞
𝑝
]!

[[𝑛/𝑝𝑗] ; 𝑞]!

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1) .

(22)

Theorem 5. Let 𝑛 ∈ N and let 𝑛 = ∑
𝑠

𝑗=0
𝑎𝑗𝑝
𝑗
(𝑎𝑠 ̸= 0). Then

[𝑝
𝑛
− 1; 𝑞]! = (−1)

𝑝
(− [𝑝; 𝑞])

(𝑝
𝑛
−1)/(𝑝−1)

× [𝑝; 𝑞]
−𝑛

[𝑝
𝑛−1

− 1; 𝑞
𝑝
]!

×

𝑛−2

∏

𝑗=0

[𝑝
𝑗
− 1; 𝑞
𝑝
]!

[𝑝𝑗+1 − 1; 𝑞]!

𝑛

∏

𝑗=0

Γ𝑝,𝑞 (𝑝
𝑗
) .

(23)

Proof. FromTheorem 3 it follows that

[𝑝
𝑗
− 1; 𝑞]! = (−1)

𝑝
[𝑝; 𝑞]
𝑝
𝑗−1
−1

[𝑝
𝑗−1

− 1; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑝

𝑗
) .

(24)

Taking of 0, 1, . . . , 𝑛 instead of 𝑗, respectively, we have the
equalities

[𝑝
0
− 1; 𝑞]! = 1 = (−1) Γ𝑝,𝑞 (𝑝

0
) ,

[𝑝
1
− 1; 𝑞]! = (−1)

𝑝
[𝑝; 𝑞]
𝑝
0
−1

[𝑝
0
− 1; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑝

1
) ,

[𝑝
2
− 1; 𝑞]! = (−1)

𝑝
[𝑝; 𝑞]
𝑝
1
−1

[𝑝
1
− 1; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑝

2
) ,

...

[𝑝
𝑛
− 1; 𝑞]! = (−1)

𝑝
[𝑝; 𝑞]
𝑝
𝑛−1
−1

[𝑝
𝑛−1

− 1; 𝑞
𝑝
]!Γ𝑝,𝑞 (𝑝

𝑛
) .

(25)

By multiplying of the equalities above, we can easily obtain

[𝑝
𝑛
− 1; 𝑞]! = (−1)

𝑛𝑝+1
[𝑝; 𝑞]
𝑝
0
+𝑝
1
+⋅⋅⋅+𝑝

𝑛−1
−𝑛

[𝑝
𝑛−1

− 1; 𝑞
𝑝
]!

×

𝑛−2

∏

𝑗=0

[𝑝
𝑗
− 1; 𝑞
𝑝
]!

[𝑝𝑗+1 − 1; 𝑞]!

𝑛

∏

𝑗=0

Γ𝑝,𝑞 (𝑝
𝑗
) .

(26)

Thus,

[𝑝
𝑛
− 1; 𝑞]! = (−1)

𝑝
(− [𝑝; 𝑞])

(𝑝
𝑛
−1)/(𝑝−1)

× [𝑝; 𝑞]
−𝑛

[𝑝
𝑛−1

− 1; 𝑞
𝑝
]!

×

𝑛−2

∏

𝑗=0

[𝑝
𝑗
− 1; 𝑞
𝑝
]!

[𝑝𝑗+1 − 1; 𝑞]!

𝑛

∏

𝑗=0

Γ𝑝,𝑞 (𝑝
𝑗
) .

(27)

Lemma 6. Let 𝑛 ∈ Z+, 𝑛 = ∑
𝑠

𝑗=0
𝑎𝑗𝑝
𝑗
(𝑎𝑠 ̸= 0), and let 𝑝 be a

prime number. Then, for 𝑗 = 0, 1, . . . , 𝑠

[[𝑛/𝑝
𝑗
] ; 𝑞]!

[𝑝; 𝑞]
[𝑛/𝑝𝑗]

[[𝑛/𝑝𝑗] ; 𝑞𝑝]!

=

[𝑛/𝑝
𝑗
]

∏

𝑘=1

1 − 𝑞
𝑘

1 − 𝑞𝑘𝑝
(0 ≤ 𝑘 ≤ 𝑠) .

(28)
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Proof. For 𝑗 = 0

[𝑛; 𝑞]!

[𝑝; 𝑞]
𝑛
[𝑛; 𝑞𝑝]!

=
[1; 𝑞] [2; 𝑞] ⋅ ⋅ ⋅ [𝑛, 𝑞]

[𝑝; 𝑞]
𝑛
[1; 𝑞𝑝] [2; 𝑞𝑝] ⋅ ⋅ ⋅ [𝑛; 𝑞𝑝]

= (
1 − 𝑞

1 − 𝑞

1 − 𝑞
2

1 − 𝑞
⋅ ⋅ ⋅

1 − 𝑞
𝑛

1 − 𝑞
)

× ((
1 − 𝑞
𝑝

1 − 𝑞
)

𝑛
1 − 𝑞
𝑝

1 − 𝑞𝑝
⋅ ⋅ ⋅

1 − 𝑞
𝑛𝑝

1 − 𝑞𝑝
)

−1

= (
1 − 𝑞

1 − 𝑞

1 − 𝑞
2

1 − 𝑞
⋅ ⋅ ⋅

1 − 𝑞
𝑛

1 − 𝑞
)

× (
1 − 𝑞
𝑝

1 − 𝑞

1 − 𝑞
2𝑝

1 − 𝑞
⋅ ⋅ ⋅

1 − 𝑞
𝑛𝑝

1 − 𝑞
)

−1

=
(1 − 𝑞) (1 − 𝑞

2
) ⋅ ⋅ ⋅ (1 − 𝑞

𝑛
)

(1 − 𝑞𝑝) (1 − 𝑞2𝑝) ⋅ ⋅ ⋅ (1 − 𝑞𝑛𝑝)
.

(29)

For 1 ≤ 𝑗 ≤ 𝑠 it follows that

[[𝑛/𝑝
𝑗
] ; 𝑞]!

[𝑝; 𝑞]
[𝑛/𝑝𝑗]

[[𝑛/𝑝𝑗] ; 𝑞𝑝]!

=
[1; 𝑞] [2; 𝑞] ⋅ ⋅ ⋅ [[𝑛/𝑝

𝑗
] , 𝑞]

[𝑝; 𝑞]
[𝑛/𝑝𝑗]

[1; 𝑞𝑝] [2; 𝑞𝑝] ⋅ ⋅ ⋅ [[𝑛/𝑝𝑗] ; 𝑞𝑝]

= (
1 − 𝑞

1 − 𝑞

1 − 𝑞
2

1 − 𝑞
⋅ ⋅ ⋅

1 − 𝑞
[𝑛/𝑝
𝑗
]

1 − 𝑞
)

×((
1 − 𝑞
𝑝

1 − 𝑞
)

[𝑛/𝑝
𝑗
]
1 − 𝑞
𝑝

1 − 𝑞𝑝
⋅ ⋅ ⋅

1 − 𝑞
[𝑛/𝑝
𝑗
]𝑝

1 − 𝑞𝑝
)

−1

=

(1 − 𝑞) (1 − 𝑞
2
) ⋅ ⋅ ⋅ (1 − 𝑞

[𝑛/𝑝
𝑗
]
)

(1 − 𝑞𝑝) (1 − 𝑞2𝑝) ⋅ ⋅ ⋅ (1 − 𝑞[𝑛/𝑝
𝑗]𝑝)

.

(30)

Then, we obtain

[[𝑛/𝑝
𝑗
] ; 𝑞]!

[𝑝; 𝑞]
[𝑛/𝑝𝑗]

[[𝑛/𝑝𝑗] ; 𝑞𝑝]!

=

[𝑛/𝑝
𝑗
]

∏

𝑘=1

1 − 𝑞
𝑘

1 − 𝑞𝑘𝑝
. (31)

Theorem 7. Let 𝑛 ∈ N and let 𝑠𝑛 be the sum of the digits of
𝑛 = ∑

𝑠

𝑗=0
𝑎𝑗𝑝
𝑗
(𝑎𝑠 ̸= 0) in base 𝑝. Then

[𝑛; 𝑞]! = (−1)
((𝑛−𝑠
𝑛
)/(𝑝−1))+𝑛+1−𝑠

[𝑛/𝑝
1
]

∏

𝑘=1

(1 − 𝑞
𝑘𝑝

)

(1 − 𝑞𝑘)
⋅ ⋅ ⋅

[𝑛/𝑝
𝑠
]

∏

𝑘=1

(1 − 𝑞
𝑘𝑝

)

(1 − 𝑞𝑘)

𝑠

∏

𝑗=0

Γ𝑝,𝑞 ([
𝑛

𝑝𝑗
] + 1) .

(32)

Proof. This theorem can be proved by using Theorem 4 and
Lemma 6.

Acknowledgments

This work is supported by Mersin University and the
Scientific and Technological Research Council of Turkey
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