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Solutions andweakly compact uniform attractor for the nonautonomous long-short wave equationswith translation compact forces
were studied in a bounded domain. We first established the existence and the uniqueness of the solution to the system by using
Galerkinmethod and then obtained the uniformabsorbing set and theweakly compact uniformattractor of the problemby applying
techniques of constructing skew product flow in the extended phase space.

1. Introduction

The long wave-short wave (LS) resonance equations arise in
the study of the interaction of the surface waves with both
gravity and capillary modes presence and also in the analysis
of internal waves, as well as Rossby wave [1]. In the plasma
physics they describe the resonance of the high-frequency
electron plasma oscillation and the associated low-frequency
ion density perturbation [2]. Benney [3] presents a general
theory for the interaction between the short wave and the
long wave.

Due to their rich physical and mathematical properties
the long wave-short wave resonance equations have drawn
much attention of many physicists and mathematicians.
For one-dimensional propagation of waves, there are many
studies on this interaction. Guo [4, 5] obtains the existence of
global solution for long-short wave equations and generalized
long-short wave equations, respectively. The existence of
global attractor was studied in [6–8]. The orbital stability of
solitary waves for this system has been studied in [9]. In [10],
Guo investigated the asymptotic behavior of solutions for
the long-short wave equations with zero order dissipation in
𝐻

2

per ×𝐻
1

per.The approximation inertial manifolds for LS type
equations have been studied in [11]. The well posedness of
the Cauchy problem for the long wave-short wave resonance
equations was studied in [8, 12–17].

In this paper, nonautonomous LS equations with trans-
lation compact forces were studied. The essential difference
between nonautonomous systems and autonomous ones is
that the former get much influenced by the time-depended
external forces, which breaks semigroup property of the flow
or semiflow created by autonomous systems. Also, attractors
of nonautonomous systems are no longer invariable; they
change with the changing of the initial time. This makes
it impossible for us to consider nonautonomous systems
completely in the same way of autonomous ones. Fortunately,
Chepyzhov and Vishik [18, 19] developed techniques by
which skills in the study of autonomous systems can be used
in dealing with nonautonomous problems.Their central idea
is that constructing skew product flow in extended phase
space is obtained by

𝑆 (𝑡) (𝑢, 𝜎) = (𝑈
𝜎

(𝑡, 0) 𝑢, 𝑇 (𝑡) 𝜎) , 𝑡 ≥ 0, (𝑢, 𝜎) ∈ 𝐸 × ∑,

(1)

where {𝑈
𝜎∈∑

(𝑡, 𝜏)} is a family of processes, {𝑇(𝑡)} is a trans-
lation semigroup, and the flow {𝑆(𝑡)} can be proved to be a
semigroup under some preconditions, such as the translation
identity and (𝐸 × ∑, 𝐸)-continuity of {𝑈

𝜎
(𝑡, 𝜏)}, and more

importantly, the compactness of the symbol space ∑. By
this means, we can get the uniform attractor by projecting
the global attractor of {𝑆(𝑡)} to the phase space if the latter
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exists. We consider the following nonautonomous dissipative
generalized long-short wave equations:

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|

2
) 𝑢 = 𝑎 (𝑥, 𝑡) , (2)

𝑛
𝑡
+ 𝛽𝑛 + |𝑢|

2

𝑥
+ 𝑓 (|𝑢|

2
) = 𝑏 (𝑥, 𝑡) , (3)

with the initial conditions

𝑢 (𝑥, 𝜏) = 𝑢
𝜏

(𝑥) , 𝑛 (𝑥, 𝜏) = 𝑛
𝜏

(𝑥) , (4)

and the boundary value conditions

𝑢 (𝑥, 𝑡) |
𝜕Ω

= 0, 𝑛 (𝑥, 𝑡) |
𝜕Ω

= 0, (5)

where 𝑥 ∈ Ω = (−𝐷, 𝐷) ⊂ R. 𝑡 ≥ 𝜏 ∈ R
+
. Nonautonomous

terms 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) are time-depended external forces,
which are supposed to be translation compact (cf. [18] or
Assumption 1). Nonlinear terms 𝑓(𝑠) and 𝑔(𝑠) are given
smooth and real, satisfying

𝑓 (𝑠)
 ⩽ 𝑐

1
(𝑠

𝑝/2
+ 1) ,

𝑔 (𝑠)
 ⩽ 𝑐

2
(𝑠

1/2
+ 1) , (6)


𝑓

(𝑘)
(𝑠)


≤ 𝑐

3
,


𝑔

(𝑘)
(𝑠)


≤ 𝑐

4
, (7)

where 0 ≤ 𝑠 < ∞, 𝑝 < 2, 𝑘 = 1, 2, and constants 𝛼, 𝛽, and 𝑐
𝑗

are given in R
+
for 𝑗 = 1, 2, 3, 4.

Our aim here is, firstly, to get the unique existence
of solutions for problem (2)∼(5) and then to derive the
existence of weakly compact uniform attractor for it with the
above-mentioned method. Here, and throughout this paper,
uniform means uniform about symbols (𝜎) in symbol space
(∑) unless there is special explanation. In fact, it is the same
if we say uniform about the initial time, since the translation
identity and the (𝐸 × ∑, 𝐸)-continuity of {𝑈

𝜎
(𝑡, 𝜏)} hold in

our case (cf. [20]).
Throughout this paper, we denote by ‖ ⋅‖ the norm of𝐻 =

𝐿
2
(Ω) with usual inner product (⋅, ⋅), denote by ‖ ⋅ ‖ the norm

of 𝐿
𝑝
(Ω) for all 1 ≤ 𝑝 ≤ ∞ (‖ ⋅ ‖

2
= ‖ ⋅ ‖), and denote

by ‖ ⋅ ‖
𝐻
𝑘 the norm of a usual Sobolev space 𝐻

𝑘
(Ω) for all

1 ≤ 𝑘 ≤ ∞. And we denote different constants by a same
letter 𝐶, and 𝐶(⋅, ⋅) represents that the constant relies only on
the parameters appearing in the brackets.

This paper is organized as follows. In Section 2, we recall
some facts about the nonautonomous system. In Section 3, we
provide the uniform a priori estimates in time. In Section 4,
we obtain the unique existence of the solutions for problem
(2)∼(5) by Galerkin method. Section 5 contains the weakly
compact uniform attractor for the nonautonomous system
(2)∼(5), and in the proof of Theorem 13, the (𝐸

0
× ∑, 𝐸

0
)-

continuity of {𝑈
𝜎∈∑

(𝑡, 𝜏)} is proved.

2. Preliminary Results

Let I be a topological space, and let 𝜑(𝑠) ∈ I be a function.
The set

H (𝜑) = {𝜑(ℎ + 𝑠) | ℎ ∈ R} (8)

is called the hull of 𝜑 in I, denoted byH(𝜑). 𝜑 is translation
compact ifH(𝜑) is compact inI.

We denote all the translation compact functions in
𝐿

2

loc(R; 𝑋) by 𝐿
2

𝑐
(R; 𝑋), where 𝑋 is a Banach space. Appar-

ently, 𝜑 ∈ 𝐿
2

𝑐
(R; 𝑋) implies that 𝜑 is translation bounded;

that is,

𝜑


2

𝐿
2

𝑏
(R;𝑋)

= sup
𝑡∈R

∫

𝑡+1

𝑡

𝜑


2

𝑋
𝑑𝑠 < ∞. (9)

Let𝐸 be a Banach space, and let a family of two-parameter
mappings {𝑈(𝑡, 𝜏)} = {𝑈(𝑡, 𝜏) | 𝑡 ≥ 𝜏, 𝜏 ∈ R} act in 𝐸. We also
need the following definitions and lemma (cf. [19, 20]).

Definition 1. Let ∑ be a parameter set. {𝑈
𝜎
(𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝜏 ∈

R}, 𝜎 ∈ ∑ is said to be a family of processes in Banach space
𝐸, if for each 𝜎 ∈ ∑, {𝑈

𝜎
(𝑡, 𝜏)} from 𝐸 to 𝐸 satisfies

𝑈
𝜎

(𝑡, 𝑠) ∘ 𝑈
𝜎

(𝑠, 𝜏) = 𝑈
𝜎

(𝑡, 𝜏) , ∀𝑡 ≥ 𝑠 ≥ 𝜏, 𝜏 ∈ R,

𝑈
𝜎

(𝜏, 𝜏) = 𝐼, 𝐼 is the identity operator, 𝜏 ∈ R.

(10)

Definition 2. {𝑈
𝜎∈∑

(𝑡, 𝜏)}, a family of processes in Banach
space 𝐸, is called (𝐸 × ∑, 𝐸)-continuous, if for all fixed 𝑇 and
𝜏, 𝑇 ≥ 𝜏, projection (𝑢

𝜏
, 𝜎) → 𝑈

𝜎
(𝑇, 𝜏)𝑢

𝜏
is continuous

from 𝐸 × ∑ to 𝐸.

A set 𝐵
0

⊂ 𝐸 is said to be uniformly absorbing set for
the family of processes {𝑈

𝜎∈∑
(𝑡, 𝜏)}, if for any 𝜏 ∈ R and 𝐵 ∈

B(𝐸)which denotes the set of all bounded subsets of𝐸, there
exists 𝑡

0
= 𝑡

0
(𝜏, 𝐵) ≥ 𝜏, such that ⋃

𝜎∈∑
𝑈

𝜎
(𝑡, 𝜏)𝐵 ⊆ 𝐵

0
for all

𝑡 ≥ 𝑡
0
. A set 𝑌 ⊂ 𝐸 is said to be uniformly attracting for the

family of process {𝑈
𝜎
(𝑡, 𝜏)}, 𝜎 ∈ ∑ if for any fixed 𝜏 ∈ R and

every 𝐵 ∈ B(𝐸),

lim
𝑡 → +∞

(sup
𝜎∈∑

dist
𝐸

(𝑈
𝜎

(𝑡, 𝜏) 𝐵, 𝑌)) = 0. (11)

Definition 3. A closed set A
∑

⊂ 𝐸 is called the uniform
attractor of the family of process {𝑈

𝜎
(𝑡, 𝜏)}, 𝜎 ∈ ∑ if it is

uniformly attracting (attracting property), and it is contained
in any closed uniformly attracting set A of the family of
process {𝑢

𝜎
(𝑡, 𝜏)}, 𝜎 ∈ ∑ : A

𝐸
⊆ A (minimality property).

Lemma 4. Let ∑ be a compact metric space, and suppose
{𝑇(ℎ) | ℎ ≥ 0} is a family of operators acting on ∑, satisfying
the following:

(i)

𝑇 (ℎ) ∑ = ∑, ∀ℎ ∈ R
+
; (12)

(ii) translation identity:

𝑈
𝜎

(𝑡 + ℎ, 𝜏 + ℎ) = 𝑈
𝑇(ℎ)𝜎

(𝑡, 𝜏) ,

∀𝜎 ∈ ∑, 𝑡 ≥ 𝜏, 𝜏 ∈ R, ℎ ≥ 0,

(13)

where 𝑈
𝜎
(𝑇, 𝜏) is arbitrarily a process in compact metric space

𝐸. Moreover, if the family of processes {𝑈
𝜎∈∑

(𝑇, 𝜏)} is (𝐸×∑, 𝐸)

continuous, and it has a uniform compact attracting set, then
the skew product flow corresponding to it has a global attractor
A on 𝐸 × ∑, and the projection ofA on ∑,A

∑
is the compact

uniform attractor of {𝑈
𝜎∈∑

(𝑇, 𝜏)}.
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Remark 5. Assumption (13) holds if the system has a unique
solution.

For brevity, we rewrite system (2)∼(5) in the vector form
by introducing 𝑊(𝑥, 𝑡) = (𝑢(𝑥, 𝑡), 𝑛(𝑥, 𝑡)) and 𝑌(𝑥, 𝑡) =

(𝑎(𝑥, 𝑡), 𝑏(𝑥, 𝑡)). We denote by 𝐸
0

= 𝐻
2

⋂ 𝐻
1

0
(Ω) × 𝐻

1

0
(Ω)

the space of vector functions 𝑊(𝑥, 𝑡) = (𝑢(𝑥, 𝑡), 𝑛(𝑥, 𝑡)) with
norm

‖𝑊‖𝐸0
= {‖𝑢‖

2

𝐻
2 + ‖𝑛‖

2

𝐻
1}

1/2

. (14)

Similarly, we denote by ∑
0
the space of 𝑌(𝑥, 𝑡) with norm

‖𝑌‖∑
0

= {‖𝑎‖
2

𝐻
1 + ‖𝑏‖

2

𝐻
1}

1/2

. (15)

Then system (2)∼(5) can be considered as

𝜕
𝑡
𝑊 = 𝐴𝑊 + 𝜎 (𝑡) ,

𝑊|
𝑡=𝜏

= (𝑢
𝜏
, 𝑛

𝜏
) = 𝑊

𝜏
,

𝑊|
𝜕Ω

= 0,

(16)

where 𝜎(𝑡) = 𝑌(𝑥, 𝑡) is the symbol of (16).

Assumption 1. Assume that the symbol 𝜎(𝑡) comes from the
symbol space ∑ defined by

∑ = {𝑌
0

(𝑥, 𝑠 + 𝑟) | 𝑟 ∈ R
+
}, (17)

where 𝑌
0

= (𝑎
0
(𝑥, 𝑡), 𝑏

0
(𝑥, 𝑡)) ∈ 𝐿

2

𝑐
(R; 𝐸

0
) and the closure

is taken in the sense of local quadratic mean convergence
topology in the topological space 𝐿

2

loc(R; ∑
0
). Moreover, we

suppose that 𝑎
0𝑡

(𝑥, 𝑡) ∈ 𝐿
2

𝑏
(R; 𝐻

1
).

Remark 6. By the conception of translation compact/bound-
edness we remark that

(i) ∀𝑌
1

∈ ∑, ‖𝑌
1
‖

2

𝐿
2

𝑏
(R;∑
0
)

≤ ‖𝑌
0
‖

2

𝐿
2

𝑏
(R;∑
0
)
;

(ii) 𝑇(𝑡) ∑ = ∑, ∀𝑡 ∈ R, where 𝑇(𝑡)𝜑(𝑠) = 𝜑(𝑠 + 𝑡) is an
translation operator.

3. Uniform a Priori Estimates in Time

In this section, we derive uniform a priori estimates in time
which enable us to show the existence of solutions and the
uniform attractor. First we recall the following interpolation
inequality (cf. [21]).

Lemma 7. Let 𝑗, 𝑚 ∈ N∪{0}, 𝑞, 𝑟 ∈ R+, such that 0 ≤ 𝑗 < 𝑚,
1 ≤ 𝑞, 𝑟 ≤ ∞. Then one has


𝐷

𝑗
𝑢

𝑝
≤ 𝐶

𝐷
𝑚

𝑢


𝑎

𝑟
‖𝑢‖

1−𝑎

𝑞
, (18)

for 𝑢 ∈ 𝑊
𝑚,𝑟

(Ω) ∩ 𝐿
𝑞
(Ω), where Ω ⊂ R1, 𝑗/𝑚 ≤ 𝑎 ≤ 1, and

1/𝑝 = 𝑗 + 𝑎(1/𝑟 − 𝑚) + 1 − 𝑎/𝑞.

Lemma 8. If 𝑢
𝜏
(𝑥) ∈ 𝐿

2
(Ω) and 𝑌(𝑥, 𝑡) ∈ Σ, then for the

solutions of problem (2)∼(5), one has

‖𝑢 (𝑡)‖ ≤ 𝐶
1
, ∀𝑡 ≥ 𝑡

1
, (19)

where 𝐶
1

= 𝐶(𝛼, 𝑎
0
), 𝑡

1
= 𝐶(𝛼, 𝑎

0
, ‖𝑢

𝜏
‖).

Proof. Taking the inner product of (2) with 𝑢 in𝐻we get that

(𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|

2
) 𝑢, 𝑢) = (𝑎 (𝑥, 𝑡) , 𝑢) .

(20)

Taking the imaginary part of (20), we obtain that

1

2

𝑑

𝑑𝑡
‖𝑢‖

2
+ 𝛼‖𝑢‖

2
= Im (𝑎 (𝑥, 𝑡) , 𝑢) . (21)

By Young inequality and Remark 6 we have

𝑑

𝑑𝑡
‖𝑢‖

2
+ 𝛼‖𝑢‖

2
≤

1

𝛼
‖𝑎(𝑥, 𝑡)‖

2

𝐿
2

𝑏
(R;𝐻
1
)

≤
1

𝛼

𝑎
0
(𝑥, 𝑡)



2

𝐿
2

𝑏
(R;𝐻
1
)
.

(22)

And then byGronwall lemmawe can complete the proof.

In the following, we denote that ∫ ⋅ 𝑑𝑥 = ∫
Ω

⋅ 𝑑𝑥, which
will not cause confusions.

Lemma 9. Under assumptions of (6), (7) and Assumption 1, if
𝑊(𝜏) ∈ 𝐻

1
× 𝐻, solutions of problem (2)∼(5) satisfy

‖𝑊(𝑡)‖
2

𝐻
1
×𝐻

≤ 𝐶
2
, ∀𝑡 ≥ 𝑡

2
, (23)

where 𝐶
2

= 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌
0
, 𝑎

0𝑡
) and 𝑡

2
= 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌

0
, 𝑎

0𝑡
,

‖𝑊
𝜏
‖

𝐻
1
×𝐻

).

Proof. Taking the inner product of (2)with𝑢
𝑡
in𝐻 and taking

the real part, we get that

−
1

2

𝑑

𝑑𝑡

𝑢
𝑥



2

−
1

2
∫ 𝑛

𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥 + Re (𝑖𝛼𝑢, 𝑢

𝑡
)

+
1

2
∫ 𝑔 (|𝑢|

2
)

𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥 = Re (𝑎 (𝑥, 𝑡) , 𝑢

𝑡
) .

(24)

By (3) we know that

𝑑

𝑑𝑡
∫ 𝑛

𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 − ∫ |𝑢|

2
𝑛

𝑡
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + ∫ |𝑢|

2
|𝑢|

2

𝑥
𝑑𝑥 + 𝛽 ∫ 𝑛|𝑢|

2
𝑑𝑥

+ ∫ 𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + 𝛽 ∫ 𝑛|𝑢|

2
𝑑𝑥

+ ∫ 𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥,

(25)
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which shows that

−
1

2

𝑑

𝑑𝑡

𝑢
𝑥



2

−
1

2
(

𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + 𝛽 ∫ 𝑛|𝑢|

2
𝑑𝑥

+ ∫ 𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥)

+
1

2

𝑑

𝑑𝑡
∫ 𝐺 (|𝑢|

2
) 𝑑𝑥 + Re (𝑖𝛼𝑢, 𝑢

𝑡
)

−
𝑑

𝑑𝑡
Re (𝑎 (𝑥, 𝑡) , 𝑢) + Re∫ 𝑎

𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥 = 0,

(26)

where 𝐺(𝑠) is introduced by

𝐺 (𝑠) = ∫

𝑠

0

𝑔 (𝜉) 𝑑𝜉. (27)

Taking the inner product of (2) with 𝑢 in 𝐻 and taking the
real part, we get that

Re (𝑖𝑢
𝑡
, 𝑢) −

𝑢
𝑥



2

− ∫ 𝑛|𝑢|
2
𝑑𝑥

+ ∫ 𝑔 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − Re (𝑎 (𝑥, 𝑡) , 𝑢) = 0.

(28)

Multiply (28) by 𝛼, and add the resulting identity to (26) to
get

−
1

2

𝑑

𝑑𝑡

𝑢
𝑥



2

−
1

2

𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥

−
1

2
(𝛽 + 2𝛼) ∫ 𝑛|𝑢|

2
𝑑𝑥 −

1

2
∫ 𝑓 (|𝑢|

2
) |𝑢|

2
𝑑𝑥

+
1

2
∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥 +

1

2

𝑑

𝑑𝑡
∫ 𝐺 (|𝑢|

2
) 𝑑𝑥 − 𝛼

𝑢
𝑥



2

+ 𝛼 ∫ 𝑔 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − 𝛼Re (𝑎 (𝑥, 𝑡) , 𝑢)

−
𝑑

𝑑𝑡
Re (𝑎 (𝑥, 𝑡) , 𝑢) + Re∫ 𝑎

𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥 = 0.

(29)

That is,
𝑑

𝑑𝑡
(

𝑢
𝑥



2

+∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥)

+ 𝛼 (
𝑢

𝑥



2

+ ∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥

+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥) + 𝛼
𝑢

𝑥



2

= − ∫ 𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 + ∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥

− 𝛼 ∫ 𝐺 (|𝑢|
2
) 𝑑𝑥 − (𝛼 + 𝛽) ∫ 𝑛|𝑢|

2
𝑑𝑥

+ 2Re∫ 𝑎
𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥.

(30)

In the following, we denote by 𝐶 any constants depending
only on the data (𝛼, 𝛽, 𝑓, 𝑔), and 𝐶(⋅, ⋅) means it depends not
only on (𝛼, 𝛽, 𝑓, 𝑔) but also on parameters in the brackets.
∀𝜌 > 0, when 𝑡 is sufficiently large, by (6) and Lemmas 7 and
8, we have


− ∫ 𝑓 (|𝑢|

2
) |𝑢|

2
𝑑𝑥



≤ 𝐶 ∫ |𝑢|
𝑝+2

𝑑𝑥 + 𝐶 ∫ |𝑢|
2
𝑑𝑥

≤ 𝐶 ∫ (|𝑢|
2𝑝

+ |𝑢|
4
) 𝑑𝑥 + 𝐶‖𝑢‖

2

≤ 𝐶‖𝑢‖
4

4
+ 𝐶 ≤ 𝐶

𝑢
𝑥

 ‖𝑢‖
3

+ 𝐶

≤ 𝜌
𝑢x



2

+ 𝐶 (𝜌) ,


∫ 𝑏 (𝑥, 𝑡) |𝑢|

2
𝑑𝑥



≤ ‖𝑏(𝑥, 𝑡)‖
2

𝐿
2

𝑏
(R;∑
0
)
+ ‖𝑢‖

4

4

≤
𝑌

0



2

𝐿
2

𝑏
(R;∑
0
)
+ 𝐶

𝑢
𝑥



≤ 𝜌
𝑢

𝑥



2

+ 𝐶
2

(𝜌) .

(31)

By (6) we deduce that

|𝐺 (𝑠)| ≤
2

3
𝑐
2
𝑠
3/2

+ 𝑐
2
𝑠, ∀𝑠 ≥ 0. (32)

And then


−𝛼 ∫

Ω

𝐺 (|𝑢|
2
) 𝑑𝑥



≤ 𝐶 ∫ (|𝑢|
3

+ |𝑢|
2
) 𝑑𝑥 ≤ 𝐶‖𝑢‖

3

3
+ 𝐶‖𝑢‖

2

≤ 𝐶
𝑢

𝑥



1/2

‖𝑢‖
5/2

+ 𝐶 ≤ 𝜌
𝑢

𝑥



2

+ 𝐶
3

(𝜌) ,

(33)


− (𝛼 + 𝛽) ∫

Ω

𝑛|𝑢|
2
𝑑𝑥



≤ 𝜌‖𝑛‖
2

+ 𝐶 (𝜌) ‖𝑢‖
4

4

≤ 𝜌‖𝑛‖
2

+ 𝜌
𝑢

𝑥



2

+ 𝐶
4

(𝜌) ,

(34)


2Re∫

Ω

𝑎
𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥



≤
𝑎

𝑡
(𝑥, 𝑡)



2

𝐿
2
𝑐
(R;Σ0)

+ ‖𝑢‖
2

≤ 𝐶 (
𝑎

0𝑡



2

𝐿
2
𝑐
(R;Σ0)

, ‖𝑢‖
2
) .

(35)



Abstract and Applied Analysis 5

By (30)∼(35) we get that

𝑑

𝑑𝑡
(

𝑢
𝑥



2

+∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥)

+ 𝛼 (
𝑢

𝑥



2

+ ∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥

+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥) + 𝛼
𝑢

𝑥



2

≤ 𝜌‖𝑛‖
2

+ 4𝜌
𝑢

𝑥



2

+ 𝐶 (𝜌) + 𝐶 (
𝑎

0𝑡



2

𝐿
2

𝑏
(R;Σ0)

, ‖𝑢‖
2
) .

(36)

Similarly we can also deduce that

𝑑

𝑑𝑡
(

𝑢
𝑥



2

+∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥)

+ 𝛽 (
𝑢

𝑥



2

+ ∫ 𝑛|𝑢|
2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥

+2Re∫ 𝑎 (𝑥, 𝑡) 𝑢 𝑑𝑥) + (2𝛼 − 𝛽)
𝑢

𝑥



2

≤ 𝜌‖𝑛‖
2

+ 4𝜌
𝑢

𝑥



2

+ 𝐶 (𝜌) + 𝐶 (
𝑎

0𝑡



2

𝐿
2

𝑏
(R;Σ0)

, ‖𝑢‖
2
) .

(37)

Taking the inner product of (3) with 𝑛 in 𝐻, we see that

1

2

𝑑

𝑑𝑡
‖𝑛‖

2
+ ∫ 𝑛|𝑢|

2

𝑥
𝑑𝑥 + 𝛽‖𝑛‖

2

+ ∫ 𝑓 (|𝑢|
2
) 𝑛 𝑑𝑥 − ∫ 𝑏 (𝑥, 𝑡) 𝑛 𝑑𝑥 = 0.

(38)

By (2) we get that

∫ 𝑛|𝑢|
2

𝑥
𝑑𝑥 = ∫ 𝑛𝑢

𝑥
𝑢 𝑑𝑥 + ∫ 𝑛𝑢𝑢

𝑥
𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢

𝑥
− 𝑢

𝑡
𝑢

𝑥
) 𝑑𝑥 + 2Re∫ 𝑖𝛼𝑢𝑢

𝑥
𝑑𝑥

− 2Re∫ 𝑏 (𝑥, 𝑡) 𝑢
𝑥
𝑑𝑥,

(39)

𝑑

𝑑𝑡
∫ (𝑖𝑢𝑢

𝑥
− 𝑖𝑢

𝑥
𝑢) 𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢

𝑥
+ 𝑢𝑢

𝑥𝑡
− 𝑢

𝑥𝑡
𝑢 − 𝑢

𝑥
𝑢

𝑡
) 𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢

𝑥
− 𝑢

𝑥
𝑢

𝑡
+ 𝑢

𝑡
𝑢

𝑥
− 𝑢

𝑥
𝑢

𝑡
) 𝑑𝑥

= 2𝑖 ∫ (𝑢
𝑡
𝑢

𝑥
− 𝑢

𝑡
𝑢

𝑥
) 𝑑𝑥.

(40)

It comes from (38)∼(40) that

𝑑

𝑑𝑡
‖𝑛‖

2
+

𝑑

𝑑𝑡
∫ 𝑖 (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

+ 2𝛽‖𝑛‖
2

+ 𝑖𝛼 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥

≤ 𝑖𝛼 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥 − 4Re∫ 𝑖𝛼𝑢𝑢

𝑥
𝑑𝑥

+ 4Re∫ 𝑎 (𝑥, 𝑡) 𝑢
𝑥
𝑑𝑥

− 2 ∫ 𝑓 (|𝑢|
2
) 𝑛 𝑑𝑥 + 2 ∫ 𝑏 (𝑥, 𝑡) 𝑛 𝑑𝑥.

(41)

Deal with the right hand side of inequality (41), by Lemmas 7
and 8,


𝑖𝛼 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥


≤ 2𝛼 ‖𝑢‖

𝑢
𝑥

 ≤ 𝜌
𝑢

𝑥

 + 𝐶
1

(𝜌) ,

(42)

−4Re∫ 𝑖𝛼𝑢𝑢

𝑥
𝑑𝑥


≤ 4𝛼 ‖𝑢‖

𝑢
𝑥

 ≤ 𝜌
𝑢

𝑥

 + 𝐶
2

(𝜌) ,

(43)

−2 ∫ 𝑓 (|𝑢|

2
) 𝑛 𝑑𝑥



≤ 𝐶 ∫ |𝑢|
𝑝

|𝑛| 𝑑𝑥 + 𝐶 ∫ |𝑛| 𝑑𝑥

≤
1

2
𝜌‖𝑛‖

2
+ 𝐶 (𝜌) ∫ |𝑢|

2𝑝
𝑑𝑥 +

1

2
𝜌‖𝑛‖

2
+ 𝐶 (𝜌)

≤ 𝜌‖𝑛‖
2

+ 𝐶 (𝜌)
𝑢

𝑥



𝑝−1

‖𝑢‖
𝑝+1

+ 𝐶 (𝜌)

≤ 𝜌‖𝑛‖
2

+ 𝜌
𝑢

𝑥



2

+ 𝐶
3

(𝜌) ,

(44)

4Re∫ 𝑎 (𝑥, 𝑡) 𝑢

𝑥
𝑑𝑥



≤ 4‖𝑎 (𝑥, 𝑡)‖
𝐿
2

𝑏
(R;Σ0)

𝑢
𝑥

 ≤ 𝜌
𝑢

𝑥



+ 𝐶
4

(𝜌,
𝑎

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) ,

(45)


2 ∫ 𝑏 (𝑥, 𝑡) 𝑛 𝑑𝑥



≤ 2‖𝑏 (𝑥, 𝑡)‖𝐿
2

𝑏
(R;Σ0)

‖𝑛‖ ≤ 𝜌‖𝑛‖
2

+ 𝐶
5

(𝜌,
𝑏

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) .

(46)

So
𝑑

𝑑𝑡
(‖𝑛‖

2
+ 𝑖 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥)

+ 2𝛽‖𝑛‖
2

+ 𝑖𝛼 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥

≤ 2𝜌‖𝑛‖
2

+ 4𝜌
𝑢

𝑥



2

+ 𝐶 (𝜌,
𝑌

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) .

(47)
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Analogously, we can also deduce that
𝑑

𝑑𝑡
(‖𝑛‖

2
+ 𝑖 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥)

+ 2𝛽‖𝑛‖
2

+ 𝑖𝛽 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥

≤ 2𝜌‖𝑛‖
2

+ 4𝜌
𝑢

𝑥



2

+ 𝐶 (𝜌,
𝑌

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) .

(48)

Set 𝛾 = min{𝛼, 𝛽}, and

𝐸 =
𝑢

𝑥



2

+ ‖𝑛‖
2

+ ∫ 𝑛|𝑢|
2
𝑑𝑥

− ∫ 𝐺 (|𝑢|
2
) 𝑑𝑥 + 2Re∫ 𝑎𝑢 𝑑𝑥

+ 𝑖 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥.

(49)

Then by (36), (47) and (37), (48) we can, respectively, get
𝑑

𝑑𝑡
𝐸 + 𝛼𝐸 + 𝛼

𝑢
𝑥



2

+ 𝛽‖𝑛‖
2

≤ 8𝜌
𝑢

𝑥



2

+ 3𝜌‖𝑛‖
2

+ 𝐶 (𝜌,
Y0

(𝑥, 𝑡)
𝐿
2

𝑏
(R;Σ0)

) ,

𝑑

𝑑𝑡
𝐸 + 𝛽𝐸 + 𝛼

𝑢
𝑥



2

+ 𝛽‖𝑛‖
2

≤ 8𝜌
𝑢

𝑥



2

+ 3𝜌‖𝑛‖
2

+ 𝐶 (𝜌,
𝑌

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) ,

(50)

which shows that if we set 𝜌 ≤ min{𝛼/8, 𝛽/3}, we can deduce
that

𝑑

𝑑𝑡
𝐸 + 𝛾𝐸 ≤ 𝐶

0
, ∀𝑡 ≥ 𝑡

0
, (51)

where 𝐶
0

= 𝐶(𝜌, ‖𝑌
0
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ0)

, ‖𝑎
0𝑡

(𝑥, 𝑡)‖
𝐿
2

𝑏
(R;Σ0)

). By
Gronwall lemma we see that

𝐸 (𝑡) ≤ 𝐸 (𝑡
0
) 𝑒

−𝛾(𝑡−𝑡0) +
𝐶

0

𝛾
, ∀𝑡 ≥ 𝑡

0
. (52)

Similar to (33), (34), (45), and (42), for 𝑡 ≥ 𝑡
0
we have


∫ 𝑛|𝑢|

2
𝑑𝑥 − ∫ 𝐺 (|𝑢|

2
) 𝑑𝑥

+2Re∫ 𝑎𝑢 𝑑𝑥 + 𝑖 ∫ (𝑢𝑢
𝑥

− 𝑢
𝑥
𝑢) 𝑑𝑥



≤ 𝜌‖𝑛‖
2

+ 𝜌
𝑢

𝑥



2

+ 𝐶 (𝜌,
𝑎

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) .

(53)

And then
𝐸 (𝑡

0
)
 ≤

𝑢
𝑥
(𝑡

0
)


2

+
𝑛(𝑡

0
)


2

+


∫ 𝑛 (𝑡

0
)

𝑢 (𝑡
0
)


2

𝑑𝑥 − ∫ 𝐺 (
𝑢 (𝑡

0
)


2

) 𝑑𝑥

+ 2Re∫ 𝑎 (𝑡
0
) 𝑢 (𝑡

0
) 𝑑𝑥

+𝑖 ∫ (𝑢 (𝑡
0
) 𝑢

𝑥
(𝑡

0
) − 𝑢

𝑥
(𝑡

0
) 𝑢 (𝑡

0
)) 𝑑𝑥



≤ 𝐶 (𝑅) ,

(54)

where 𝐶(𝑅) = 𝐶(𝜌, ‖𝑌
0
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ0)

, ‖𝑎
0𝑡

(𝑥, 𝑡)‖
𝐿
2

𝑏
(R;Σ0)

, 𝑅)

when ‖𝑊
𝜏
‖

𝐻
1
×𝐻

≤ 𝑅. Then by (52) we infer that

𝐸 (𝑡) ≤ 𝐶 (𝑅) 𝑒
−𝛾(𝑡−𝑡0) +

𝐶
0

𝛾
, ∀𝑡 ≥ 𝑡

0
,

≤
2𝐶

0

𝛾
, ∀𝑡 ≥ 𝑡

∗
,

(55)

where 𝑡
∗

= inf{𝑡 | 𝑡 ≥ 𝑡
0
and 𝐶(𝑅)𝑒

−𝛾(𝑡∗−𝑡0) ≤ 𝐶
0
/𝛾}. By (49),

(53), and (55) we infer that
𝑢

𝑥
(𝑡)



2

+ ‖𝑛(𝑡)‖
2

≤ 𝜌‖𝑛‖
2

+ 𝜌
𝑢

𝑥



2

+ 𝐶
0
. (56)

Choose 𝜌 = min{𝛼/8, 𝛽/3, 1/2}; then we have

𝑢
𝑥



2

+ ‖𝑛(𝑡)‖
2

≤ 𝐶 (
𝑌

0
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

,
𝑎

0𝑡
(𝑥, 𝑡)

𝐿
2

𝑏
(R;Σ0)

) , ∀𝑡 ≥ 𝑡
∗
,

(57)

which concludes the proof by using Lemma 8.

Lemma 10. Under assumptions of Lemma 9, if 𝑊(𝜏) ∈ 𝐸
0

=

𝐻
2

× 𝐻
1, solutions of problem (2)∼(5) satisfy

‖𝑊(𝑡)‖
2

𝐸0
≤ 𝐶

2
, ∀𝑡 ≥ 𝑡

3
, (58)

where 𝐶
2

= 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌
0
, 𝑎

0𝑡
) and 𝑡

3
= 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌

0
, 𝑎

0𝑡
,

‖𝑊
𝜏
‖

𝐸0
).

Proof. Taking the real part of the inner product of (2) with
𝑢

𝑥𝑥𝑡
in 𝐻, we have

𝑑

𝑑𝑡

𝑢
𝑥𝑥



2

− Re∫ 𝑛𝑢𝑢
𝑥𝑥𝑡

𝑑𝑥 + Re (𝑖𝛼𝑢, 𝑢
𝑥𝑥𝑡

)

+ Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥𝑡
𝑑𝑥

− Re∫ 𝑎 (𝑥, 𝑡) 𝑢
𝑥𝑥𝑡

𝑑𝑥 = 0.

(59)

By (2) and (3), we have

− Re∫ 𝑛𝑢𝑢
𝑥𝑥𝑡

𝑑𝑥

= −
𝑑

𝑑𝑡
∫Re (𝑛𝑢𝑢

𝑥𝑥
) 𝑑𝑥 + Re∫ 𝑛

𝑡
𝑢𝑢

𝑥
𝑥𝑑𝑥

+ Re∫ 𝑛𝑢
𝑡
𝑢

𝑥𝑥
𝑑𝑥

= −
𝑑

𝑑𝑡
∫Re (𝑛𝑢𝑢

𝑥𝑥
) 𝑑𝑥

− Re∫ 𝑢𝑢
𝑥𝑥

(|𝑢|
2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑏) 𝑑𝑥

+ Re∫ 𝑛𝑢
𝑥𝑥

(−𝑖𝑛𝑢 − 𝛼𝑢 + 𝑖𝑔 (|𝑢|
2
) 𝑢 − 𝑖𝑎) 𝑑𝑥.

(60)
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Since

Re (𝑖𝛼𝑢, 𝑢
𝑥𝑥𝑡

) = Re∫ 𝑖𝛼𝑢𝑢
𝑡𝑥𝑥

𝑑𝑥 = −Re∫ 𝑖𝛼𝑢
𝑡
𝑢

𝑥𝑥
𝑑𝑥, (61)

we see that

Re (𝑖𝛼𝑢, 𝑢
𝑥𝑥𝑡

) = 𝛼
𝑢

𝑥𝑥



2

− 𝛼Re∫ 𝑛𝑢𝑢
𝑥𝑥

𝑑𝑥

+ 𝛼Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥
𝑑𝑥

− 𝛼Re∫ 𝑎𝑢
𝑥𝑥

𝑑𝑥.

(62)

Multiplying (2) by 𝑢 and taking the real part, we find that

|𝑢|
2

𝑡
= 2Re (𝑖𝑢

𝑥𝑥
𝑢) − 2𝛼|𝑢|

2
− 2Re (𝑖𝑎𝑢) , (63)

therefore,

Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥𝑡
𝑑𝑥

= − ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

− ∫ 𝑔 (|𝑢|
2
)

1

2

𝑑

𝑑𝑡

𝑢𝑥



2

𝑑𝑥

= − ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

−
1

2

𝑑

𝑑𝑡
∫ 𝑔 (|𝑢|

2
)

𝑢𝑥



2

𝑑𝑥

+ ∫ 𝑔

(|𝑢|

2
)

𝑢𝑥



2

(Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

−Re (𝑖𝑎𝑢)) 𝑑𝑥.

(64)

Now we deal with (64) to get (70). Due to equalities

|𝑢|
2

𝑥
= 2Re (𝑢𝑢

𝑥
) ,

𝑑

𝑑𝑡
Re (𝑢𝑢

𝑥
) = Re (𝑢

𝑡
𝑢

𝑥
) + Re (𝑢𝑢

𝑥𝑡
) ,

(65)

we deduce that

∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑔


(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

− ∫ 𝑔


(|𝑢|
2
) |𝑢|

2

𝑡
2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢x) 𝑑𝑥

− ∫ 𝑔

(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)

𝑡
Re (𝑢𝑢

𝑥
) 𝑑𝑥

− ∫ 𝑔

(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢

𝑡
𝑢

𝑥
) 𝑑𝑥.

(66)

We take care of terms in (66) as follows:

∫ 𝑔


(|𝑢|
2
) |𝑢|

2

𝑡
2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

= 4 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥,

∫ 𝑔

(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)

𝑡
Re (𝑢𝑢

𝑥
) 𝑑𝑥

= ∫ 𝑔

(|𝑢|

2
) 2Re (𝑢

𝑡
𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

+ ∫ 𝑔

(|𝑢|

2
) 2Re (𝑢𝑢

𝑥𝑡
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

= 2 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥

+ ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥,

∫ 𝑔

(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢

𝑡
𝑢

𝑥
) 𝑑𝑥

= 2 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥.

(67)

It follows from (66)∼(67) that

− ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

= −
𝑑

𝑑𝑡
∫ 𝑔


(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

+ 4 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 4 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥

+ ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥.

(68)

And then

− ∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

= −
𝑑

𝑑𝑡
∫ 𝑔


(|𝑢|

2
)Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥
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+ 2 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼 |𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 2 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥x − 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑎)) 𝑑𝑥.

(69)

From (64) and (69) we have

Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥𝑡
𝑑𝑥

= −
𝑑

𝑑𝑡
∫ 𝑔


(|𝑢|

2
)Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

−
1

2

𝑑

𝑑𝑡
∫ 𝑔 (|𝑢|

2
)

𝑢𝑥



2

𝑑𝑥

+ 2 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 2 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥

+ ∫ 𝑔

(|𝑢|

2
)

𝑢𝑥



2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥.

(70)

By (59), (60), (62), and (70) we conclude that

𝑑

𝑑𝑡
(

𝑢
𝑥𝑥



2

− 2Re∫ 𝑛𝑢𝑢
𝑥𝑥

− 2 ∫ 𝑔

(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

− ∫ 𝑔 (|𝑢|
2
) |𝑢|

2

𝑥
− 2Re∫ 𝑎𝑢

𝑥𝑥
)

+ 2𝛼 (
𝑢

𝑥𝑥



2

− 2Re∫ 𝑛𝑢𝑢
𝑥𝑥

− 2 ∫ 𝑔

(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

− ∫ 𝑔 (|𝑢|
2
)

𝑢𝑥



2

− 2Re∫ 𝑎𝑢
𝑥𝑥

)

+ 2𝛼 ∫ 𝑛𝑢𝑢
𝑥𝑥

𝑑𝑥 + 4𝛼 ∫ 𝑔

(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

𝑑𝑥

+ 2𝛼 ∫ 𝑔 (|𝑢|
2
)

𝑢𝑥



2

𝑑𝑥 + 2𝛼Re∫ 𝑎𝑢
𝑥𝑥

𝑑𝑥

− 2Re∫ 𝑢𝑢
𝑥𝑥

(|𝑢|
2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑏) 𝑑𝑥

+ 2Re∫ 𝑛𝑢
𝑥𝑥

(−𝑖𝑛𝑢 − 𝛼𝑢 + 𝑖𝑔 (|𝑢|
2
) − 𝑖𝑎) 𝑑𝑥

+ 2𝛼Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥
𝑑𝑥

+ 4 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 4 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢 + 𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥

+ 2 ∫ 𝑔

(|𝑢|

2
)

𝑢𝑥



2

(Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 2Re∫ 𝑎
𝑡
𝑢

𝑥𝑥
𝑑𝑥 = 0,

(71)

where ∫ ⋅ = ∫ ⋅ 𝑑𝑥.
For later purpose, we let

𝐹 (𝑢, 𝑛) = −2Re∫ 𝑛𝑢𝑢
𝑥𝑥

𝑑𝑥

− 2 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

2

𝑑𝑥 − ∫ 𝑔 (|𝑢|
2
)

𝑢𝑥



2

𝑑𝑥

− 2Re∫ 𝑎𝑢
𝑥𝑥

𝑑𝑥,

(72)

− 𝐺 (𝑢, 𝑛)

= 2𝛼 ∫ 𝑛𝑢𝑢
𝑥𝑥

𝑑𝑥 + 4𝛼 ∫ 𝑔

(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

𝑑𝑥

+ 2𝛼 ∫ 𝑔 (|𝑢|
2
)

𝑢𝑥



2

𝑑𝑥 + 2𝛼Re∫ 𝑎𝑢
𝑥𝑥

𝑑𝑥

− 2Re∫ 𝑢𝑢
𝑥𝑥

(|𝑢|
2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑏) 𝑑𝑥

+ 2Re∫ 𝑛𝑢
𝑥𝑥

(−𝑖𝑛𝑢 − 𝛼𝑢 + 𝑖𝑔 (|𝑢|
2
) − 𝑖𝑎) 𝑑𝑥

+ 2𝛼Re∫ 𝑔 (|𝑢|
2
) 𝑢𝑢

𝑥𝑥
𝑑𝑥

+ 4 ∫ 𝑔


(|𝑢|
2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 4 ∫ 𝑔

(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥

(𝑢
𝑥𝑥

− 𝑛𝑢 + 𝑖𝛼𝑢

+𝑔 (|𝑢|
2
) 𝑢 − 𝑎)) 𝑑𝑥
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+ 2 ∫ 𝑔

(|𝑢|

2
)

𝑢𝑥



2

× (Re (𝑖𝑢
𝑥𝑥

𝑢) − 𝛼|𝑢|
2

− Re (𝑖𝑎𝑢)) 𝑑𝑥

+ 2Re∫ 𝑎
𝑡
𝑢

𝑥𝑥
𝑑𝑥.

(73)

Then from (71) we have

𝑑

𝑑𝑡
(
𝑢

𝑥𝑥



2

+ 𝐹) + 2𝛼 (
𝑢

𝑥𝑥



2

+ 𝐹) = 𝐺, (74)

or

𝑑

𝑑𝑡
(
𝑢

𝑥𝑥



2

+ 𝐹) + 𝛼 (
𝑢

𝑥𝑥



2

+ 𝐹) + 𝛼
𝑢

𝑥𝑥



2

= 𝐺 − 𝛼𝐹.

(75)

By Lemma 9 and Agmon inequality we have

‖𝑢(𝑡)‖
2

𝐻
1 + ‖𝑢(𝑡)‖

2

∞
+ ‖𝑛(𝑡)‖

2

𝐻
≤ 2𝐶

2
, ∀𝑡 ≥ 𝑡

2
. (76)

In the following, we denote by 𝐶 = 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌
0
, 𝑎

0𝑡
). By

Lemma 7 and (76) we estimate the size of |𝐺 − 𝛼𝐹| to get

𝑑

𝑑𝑡
(
𝑢

𝑥𝑥



2

+ 𝐹) + 𝛼 (
𝑢

𝑥𝑥



2

+ 𝐹) + 𝛼
𝑢

𝑥𝑥



2

≤ 𝐶 ∫ |𝑛|
2 𝑢𝑥𝑥

 𝑑𝑥 + 𝐶 ∫
𝑢𝑥



2 𝑢𝑥𝑥

 𝑑𝑥

+ 𝐶 ∫
𝑢𝑥



2

|𝑛𝑢| 𝑑𝑥 + 𝐶

≤ 𝐶
𝑢

𝑥𝑥

 ‖𝑛‖
2

4
+ 𝐶

𝑢
𝑥𝑥



𝑢
𝑥



2

4

+ 𝐶‖𝑢‖𝐿
∞ ‖𝑛‖

𝑢
𝑥



2

4
+ 𝐶

≤ 𝐶
𝑢

𝑥𝑥



𝑛
𝑥



1/2

‖𝑛‖
3/2

+ 𝐶
𝑢

𝑥𝑥



3/2𝑢
𝑥



3/2

+ 𝐶‖𝑢‖𝐿
∞ ‖𝑛‖

𝑢
𝑥𝑥



7/4

‖𝑢‖
1/4

+ 𝐶

≤ 𝐶
𝑢

𝑥𝑥



𝑛
𝑥



1/2

+ 𝐶
𝑢

𝑥𝑥



7/4

+ 𝐶

≤
𝛼

2

𝑢
𝑥𝑥



2

+
𝛽

2

𝑛
𝑥



2

+ 𝐶.

(77)

Taking the inner product of (3) with 𝑛
𝑥𝑥

in 𝐻, we see that

−
1

2

𝑑

𝑑𝑡

𝑛
𝑥



2

+ ∫ |𝑢|
2

𝑥
𝑛

𝑥𝑥
𝑑𝑥 − 𝛽

𝑛
𝑥



2

+ ∫ 𝑓 (|𝑢|
2
) 𝑛

𝑥𝑥
𝑑𝑥 − ∫ 𝑏𝑛

𝑥𝑥
𝑑𝑥 = 0.

(78)

Since

∫ |𝑢|
2

𝑥
𝑛

𝑥𝑥
𝑑𝑥 = 2 ∫Re (𝑢𝑢

𝑥
𝑛

𝑥𝑥
) 𝑑𝑥

= −2 ∫Re (𝑢𝑢
𝑥𝑥

𝑛
𝑥

+
𝑢𝑥



2

𝑛
𝑥
) 𝑑𝑥,

(79)

by (78) we can deduce that

𝑑

𝑑𝑡

𝑛
𝑥



2

+ 4 ∫Re (𝑢𝑢
𝑥𝑥

𝑛
𝑥
) 𝑑𝑥

+ 4 ∫
𝑢𝑥



2

𝑛
𝑥
𝑑𝑥 + 2𝛽

𝑛
𝑥



2

+ 2 ∫ 𝑓

(|𝑢|

2
) (𝑢

𝑥
𝑢 + 𝑢𝑢

𝑥
) 𝑛

𝑥
𝑑𝑥

− 2 ∫ 𝑏
𝑥
𝑛

𝑥
𝑑𝑥 = 0.

(80)

From (2) we know that

𝑖𝑢
𝑡𝑥

+ 𝑢
𝑥𝑥𝑥

− 𝑛
𝑥
𝑢 − 𝑛𝑢

𝑥
+ 𝑖𝛼𝑢

𝑥

+ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
𝑢 + 𝑔 (|𝑢|

2
) 𝑢

𝑥
− 𝑎

𝑥
(𝑥, 𝑡) = 0.

(81)

Taking the real part of the inner product to (81) with 𝑢
𝑥𝑥

in
𝐻, we have

Re∫ 𝑖𝑢
𝑡𝑥

𝑢
𝑥𝑥

− Re∫ 𝑛
𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

− Re∫ 𝑛𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 + Re∫ 𝑖𝛼𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥

+ Re∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ Re∫ 𝑔 (|𝑢|
2
) 𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 − Re∫ 𝑎

𝑥
𝑢

𝑥𝑥
𝑑𝑥 = 0.

(82)

Because of

𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 = 2Re∫ 𝑖𝑢

𝑡𝑥
𝑢

𝑥𝑥
𝑑𝑥, (83)

it holds that

1

2

𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 − Re∫ 𝑛

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

− Re∫ 𝑛𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 + Re∫ 𝑖𝛼𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥

+ Re∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ Re∫ 𝑔 (|𝑢|
2
) 𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥

− Re∫ 𝑎
𝑥
𝑢

𝑥𝑥
𝑑𝑥 = 0.

(84)
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By (84) and (80), we find that

𝑑

𝑑𝑡

𝑛
𝑥



2

+ 2
𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 + 4 ∫

𝑢𝑥



2

𝑛
𝑥
𝑑𝑥 + 2𝛽

𝑛
𝑥



2

+ 2 ∫ 𝑓

(|𝑢|

2
) |𝑢|

2

𝑥
𝑛

𝑥
𝑑𝑥

− 2 ∫ 𝑏
𝑥
𝑛

𝑥
𝑑𝑥 − 4Re∫ 𝑛𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥

+ 4𝛼Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 + 4Re∫ 𝑔


(|𝑢|

2
) |𝑢|

2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ 4Re∫ 𝑔 (|𝑢|
2
) 𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 − 4Re∫ 𝑎

𝑥
𝑢

𝑥𝑥
𝑑𝑥 = 0.

(85)

That is,

𝑑

𝑑𝑡
(

𝑛
𝑥



2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥)

+ 2𝛽 (
𝑛

𝑥



2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥)

= 4𝛽Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 − 4 ∫

𝑢𝑥



2

𝑛
𝑥
𝑑𝑥

− 2 ∫ 𝑓

(|𝑢|

2
) |𝑢|

2

𝑥
𝑛

𝑥
𝑑𝑥 + 2 ∫ 𝑏

𝑥
𝑛

𝑥
𝑑𝑥

+ 4Re∫ 𝑛𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 − 4𝛼Re∫ 𝑖𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥

− 4Re∫ 𝑔

(|𝑢|

2
) |𝑢|

2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

− 4Re∫ 𝑔 (|𝑢|
2
) 𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥 + 4Re∫ 𝑎

𝑥
𝑢

𝑥𝑥
𝑑𝑥.

(86)

Similar to (77), we estimate each term in (86), and then we
get

𝑑

𝑑𝑡
(

𝑛
𝑥



2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥)

+ 𝛽 (
𝑛

𝑥



2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥) + 𝛽

𝑛
𝑥



2

≤ 2𝛽Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥 + 𝐶

𝑢
𝑥𝑥

 + 𝐶
𝑢

𝑥



2

4

𝑛
𝑥



+ 𝐶
𝑛

𝑥

 + 𝐶
𝑢

𝑥

∞
‖𝑛‖

𝑢
𝑥𝑥



≤ 𝐶
𝑢

𝑥𝑥

 + 𝐶
𝑢

𝑥



3/2𝑢
𝑥𝑥



1/2 𝑛
𝑥



+ 𝐶
𝑛

𝑥

 + 𝐶‖𝑢‖
1/4𝑢

𝑥𝑥



3/4

‖𝑛‖
𝑢

𝑥𝑥



≤
𝛼

2

𝑢
𝑥𝑥



2

+
𝛽

2

𝑛
𝑥



2

+ 𝐶.

(87)

Let 𝛾 = min{𝛼, 𝛽}, and

𝐸 =
𝑢

𝑥𝑥



2

+
𝑛

𝑥



2

+ 𝐹 + 2Re∫ 𝑖𝑢
𝑥
𝑢

𝑥𝑥
𝑑𝑥. (88)

By (77) and (87) we deduce that

𝑑

𝑑𝑡
𝐸 + 𝛾𝐸 ≤ 𝐶, ∀𝑡 ≥ 𝑡

2
, (89)

which has the same form with (51) in the proof of Lemma 9.
Similar to the study of (51), we can derive that

𝐸 (𝑡
2
) ≤ 𝐶 (𝑅

2
) , 𝐸 (𝑡) ≤

2𝐶

𝛾
, ∀𝑡 ≥ 𝑡

2∗
, (90)

where 𝑡
2∗

= inf{𝑡 | 𝑡 ≥ 𝑡
2∗

, 𝐶(𝑅
2
)𝑒

−𝛾(𝑡2∗−𝑡0) ≤ 𝐶
0
/𝛾} and

𝐶(𝑅
2
) = 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌

0
, 𝑎

0𝑡
, 𝑅

2
) when ‖𝑊

𝜏
‖

𝐻
2
×𝐻
1 ≤ 𝑅

2
. By

(72) we deduce that

𝐹 + 2Re∫ 𝑖𝑢

𝑥
𝑢

𝑥𝑥
𝑑𝑥



≤ 2‖𝑢‖
∞ ‖𝑛‖

𝑢
𝑥𝑥

 + 𝐶‖𝑢‖
2

∞

𝑢
𝑥



2

+ ‖𝑢‖∞

𝑢
𝑥



2

+ ‖𝑎‖𝐿
2

𝑏
(R;∑
0
)

𝑢
𝑥𝑥



+ 2
𝑢

𝑥



𝑢
𝑥𝑥

 + 𝐶

≤ 𝐶
𝑢

𝑥𝑥

 + 𝐶 ≤
1

2

𝑢
𝑥𝑥



2

+ 𝐶,

(91)

and then by (88), (90), and (91) we deduce that

𝑢
𝑥𝑥



2

+ 2
𝑛

𝑥



2

≤ 𝐶, ∀𝑡 ≥ 𝑡
2∗

, (92)

which concludes the proof by Lemma 9.

4. Solutions for (2)∼(5)
Theorem 11. Under assumptions of Lemma 10, for each 𝑊

𝜏
∈

𝐸
0
, system (2)∼(5) has a unique global solution 𝑊(𝑥, 𝑡) ∈

𝐿
∞

(𝜏, 𝑇; 𝐸
0
), ∀𝑇 > 𝜏.

Proof. We prove this theorem briefly by two steps.

Step 1. The existence of the solution.
By Galërkin’s method, we apply the following approxi-

mate solution:

𝑊
𝑙
(𝑥, 𝑡) =

𝑙

∑

𝑗=1

𝑤
𝑙

𝑗
(𝑡) 𝜂

𝑗
(𝑥) , (93)

to approach the solution of the problem (2)∼(5), where {𝜂
𝑗
}
∞

𝑗=1

is a orthogonal basis of 𝐻(Ω) satisfying −Δ𝜂
𝑗

= 𝜆
𝑗
𝜂

𝑗
(𝑗 =

1, 2, . . .). And 𝑊
𝑙
(𝑥, 𝑡) satisfies

(𝑖𝑢
𝑙

𝑡
+ 𝑢

𝑙

𝑥𝑥
− 𝑛

𝑙
𝑢

𝑙
+ 𝑖𝛼𝑢

𝑙
+ 𝑔 (


𝑢

𝑙

2

) 𝑢
𝑙
− 𝑎, 𝜂

𝑗
) = 0,

(𝑛
𝑙

𝑡
+ 𝛽𝑛

𝑙
+


𝑢

𝑙

2

𝑥
+ 𝑓 (


𝑢

𝑙

2

) − 𝑏, 𝜂
𝑗
) = 0,

(𝑊
𝑙
(𝑥, 𝜏) , 𝜂

𝑗
) = (𝑊

𝜏
, 𝜂

𝑗
) , 𝑊

𝑙
|
𝜕Ω

= 0,

(94)

where 𝑗 = 1, 2, . . . , 𝑙. Then (94) becomes an initial boundary
value problem of ordinary differential equations. According
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to the standard existence theory for the ordinary differential
equations, there exists a unique solution of (94). Similar to
[4, 22], by the a priori estimates in Section 3 we know that
{𝑊

𝑙
}
∞

𝑙=1
converges (weakly star) to a𝑊(𝑥, 𝑡)which solves (2)∼

(5).

Step 2. The uniqueness of the solution.
Suppose𝑊

1
, 𝑊

2
are two solutions of the problem (2)∼(5).

Let 𝑊 = 𝑊
1

− 𝑊
2
, then 𝑊(𝑥, 𝑡) = (𝑢(𝑥, 𝑡), 𝑛(𝑥, 𝑡)) satisfies

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛

1
𝑢

1
+ 𝑛

2
𝑢

2
+ 𝑖𝛼𝑢

+ 𝑔 (
𝑢1



2

) 𝑢
1

− 𝑔 (
𝑢2



2

) 𝑢
2

= 0,

𝑛
𝑡
+ 𝛽𝑛 +

𝑢1



2

𝑥
−

𝑢2



2

𝑥

+ 𝑓 (
𝑢1



2

) − 𝑓 (

𝑢

2

2


) = 0,

𝑊|
𝑡=𝜏

= 0, 𝑊|
𝜕Ω

= 0.

(95)

Similar to [4, 5, 22], we can deduce that ‖𝑊‖ = 0.

5. Uniform Absorbing Set and
Uniform Attractor

From Theorem 11 we know that {𝑈
𝜎∈∑

(𝑡, 𝜏)}, the family of
processes corresponding to (2)∼(5), is well defined. And
assumption (13) is satisfied.

Theorem 12. Under assumptions of Theorem 11, {𝑈
𝜎∈∑

(𝑡, 𝜏)}

possesses a bounded uniformly absorbing set 𝐵
0
in 𝐸

0
.

Proof. Let 𝐵
0

= {𝑊 ∈ 𝐸
0

| ‖𝑊‖
2

𝐸0
≤ 𝐶(‖𝑊

𝜏
‖

𝐸0
, ‖𝑌

0
‖

𝐿
2
𝑐
(R;∑
0
)
)}.

FromTheorem 11 we know that 𝐵
0
is a bounded absorbing set

of the process 𝑈
𝜎=𝑌0

.
On the other hand, from Assumption 1 we know that

for each 𝑌 ∈ ∑, ‖𝑌‖
2

𝐿
2

𝑏
(R;∑
0
)

≤ ‖𝑌
0
‖

2

𝐿
2

𝑏
(R;∑
0
)
holds. Thus, the

solution of our system satisfies

‖𝑊‖𝐸0
≤ 𝐶 (

𝑊
𝜏

𝐸0
, ‖𝑌‖𝐿

2

𝑏
(R;∑
0
)
)

≤ 𝐶 (
𝑊

𝜏

𝐸0
,
𝑌

0

𝐿
2

𝑏
(R;∑
0
)
) .

(96)

So the set 𝐵
0

= {𝑊 ∈ 𝐸
0

| ‖𝑊‖
2

𝐸0
≤ 𝜌

2

0
≜

𝐶(‖𝑊
𝜏
‖

𝐸0
, ‖𝑌

0
‖

𝐿
2

𝑏
(R;∑
0
)
)} is a bounded uniformly absorbing

set of {𝑈
𝜎∈∑

(𝑡, 𝜏)}.

Theorem 13. Under assumptions of Theorem 12, {𝑈
𝜎∈∑

(𝑡, 𝜏)}

admits a weakly compact uniform attractorA
∑
.

Proof. To prove the existence of weakly compact uniform
attractor in 𝐸

0
, from Lemma 4 and Theorems 11 and 12,

the only thing we should do is to verify that {𝑈
𝜎∈∑

(𝑡, 𝜏)} is
(𝐸×∑, 𝐸)-continuous.Through the following proof,⇀means
weak converges, and ∗

⇀ means ∗weak converges.
For any fixed 𝑡

1
≥ 𝜏 ∈ R, let

(𝑊
𝜏𝑘

, 𝜎
𝑘
) ⇀ (𝑊

𝜏
, 𝜎) in 𝐸

0
× ∑ . (97)

We will complete the proof if we deduce that

𝑊
𝜎𝑘

(𝑡
1
) ⇀ 𝑊

𝜎
(𝑡

1
) in 𝐸

0
, (98)

where 𝑊
𝜎𝑘

(𝑡
1
) = (𝑢

𝑘
(𝑡

1
), 𝑛

𝑘
(𝑡

1
)) = 𝑈

𝜎𝑘
(𝑡

1
, 𝜏)𝑊

𝜏𝑘
, 𝑊

𝜎
(𝑡

1
) =

(𝑢(𝑡
1
), and 𝑛(𝑡

1
)) = 𝑈

𝜎
(𝑡

1
, 𝜏)𝑊

𝜏
.

From (97) andTheorem 11 we know that
𝑊

𝜏𝑘

𝐸0
≤ 𝐶, (99)

sup
𝑡∈[𝜏,𝑇]


𝑊

𝜎𝑘
(𝑡)

𝐸0

≤ 𝐶. (100)

By Agmon inequality,

‖V‖∞
≤ 𝐶‖V‖𝐻

1 . (101)

We see that

𝑊

𝜎𝑘
(𝑡)

∞
≤ 𝐶, ∀0 ≤ 𝑡 ≤ 𝑇. (102)

Note that

𝑖𝑢
𝑘𝑡

= −𝑢
𝑘𝑥𝑥

+ 𝑛
𝑘
𝑢

𝑘
− 𝑖𝛼𝑢

𝑘
− 𝑔 (

𝑢𝑘



2

) 𝑢
𝑘

+ 𝑎
𝑘

(𝑥, 𝑡) ,

(103)

𝑛
𝑘𝑡

= −
𝑢𝑘



2

𝑥
− 𝛽𝑛

𝑘
− 𝑓 (

𝑢𝑘



2

) + 𝑏
𝑘

(𝑥, 𝑡) , (104)

and 𝜎
𝑘

= (𝑎
𝑘
(𝑥, 𝑡), 𝑏

𝑘
(𝑥, 𝑡)) ∈ ∑. By (100) and (102), we find

that 𝜕
𝑡
𝑊

𝜎𝑘
(𝑡) ∈ 𝐿

∞
(𝜏, 𝑇; 𝐻) and

𝜕

𝑡
𝑊

𝜎𝑘
(𝑡)

𝐿
∞

(𝜏,𝑇;𝐻)
≤ 𝐶. (105)

Due toTheorem 11 and (105), we know that there exist �̃�(𝑡) ≜

(�̃�(𝑡), �̃�(𝑡)) ∈ 𝐿
∞

(𝜏, 𝑇; 𝐸
0
), and subsequences of {𝑊

𝜎𝑘
(𝑡)},

which are still denoted by {𝑊
𝜎𝑘

(𝑡)}, such that

𝑊
𝜎𝑘

(𝑡)
∗

⇀ �̃� (𝑡) in 𝐿
∞

(𝜏, 𝑇; 𝐸
0
) , (106)

𝜕
𝑡
𝑊

𝜎𝑘
(𝑡)

∗

⇀ 𝜕
𝑡
�̃� (𝑡) in 𝐿

∞
(𝜏, 𝑇; 𝐻) . (107)

Besides, for ∀𝑡
1

∈ [𝜏, 𝑇], by (100) we know that there exists
𝑊

0
≜ (𝑢

0
, 𝑛

0
) ∈ 𝐸

0
, such that

𝑊
𝜎𝑘

(𝑡
1
) ⇀ 𝑊

0 in 𝐸
0
. (108)

By (106) and a compactness embedding theorem, we claim
that

𝑢
𝑘

(𝑡) → �̃� (𝑡) strongly in 𝐿
2

(0, 𝑇; 𝐻) . (109)

In the following, we shall show that �̃�(𝑡) is a solution of
the problem (2)∼(5).

For ∀V ∈ 𝐻, ∀𝜓 ∈ 𝐶
∞

0
(𝜏, 𝑇), by (103) we find that

∫

𝑇

𝜏

(𝑖𝑢
𝑘𝑡

, 𝜓 (𝑡) V) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢
𝑘𝑥𝑥

, 𝜓 (𝑡) V) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛
𝑘
𝑢

𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛼𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (
𝑢𝑘



2

) 𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑎
𝑘

(𝑥, 𝑡) , 𝜓 (𝑡) V) 𝑑𝑡 = 0.

(110)
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Since

∫

𝑇

𝜏

(𝑛
𝑘
𝑢

𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 − ∫

𝑇

𝜏

(�̃��̃�, 𝜓 (𝑡) V) 𝑑𝑡

= ∫

𝑇

𝜏

((𝑢
𝑘

− �̃�) 𝑛
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡

+ ∫

𝑇

𝜏

(�̃� (𝑛
𝑘

− �̃�) , 𝜓 (𝑡) V) 𝑑𝑡,

(111)

by (102), (109), and (106),

∫

𝑇

𝜏

((𝑢
𝑘

− �̃�) 𝑛
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡

≤ sup
0≤𝑡≤𝑇

𝑛
𝑘
(𝑡)

∞

𝜓(𝑡)V
𝐿
2
(0,𝑇;𝐻)

𝑢
𝑘

− �̃�
𝐿
2
(0,𝑇;𝐻)

→ 0,

∫

𝑇

𝜏

(�̃� (𝑛
𝑘

− �̃�) , 𝜓 (𝑡) V) 𝑑𝑡

= ∫

𝑇

𝜏

((𝑛
𝑘

− �̃�) , 𝜓 (𝑡) V�̃�) 𝑑𝑡 → 0.

(112)

Then we have

∫

𝑇

𝜏

(𝑛
𝑘
𝑢

𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 → ∫

𝑇

𝜏

(�̃��̃�, V) 𝜓 (𝑡) 𝑑𝑡. (113)

By using the similar methods to the other terms of (110), we
have

∫

𝑇

𝜏

(𝑖�̃�
𝑡
, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(�̃�
𝑥𝑥

, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(�̃��̃�, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛼�̃�, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|�̃�|
2
) �̃�, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑎 (𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡 = 0.

(114)

Therefore, we obtain

𝑖�̃�
𝑡
+ �̃�

𝑥𝑥
− �̃��̃� + 𝑖𝛼�̃� + 𝑔 (|�̃�|

2
) �̃� = 𝑎 (𝑥, 𝑡) , (115)

which shows that (�̃�, �̃�, 𝑎(𝑡)) satisfies (2).
For ∀V ∈ 𝐻, ∀𝜓 ∈ 𝐶

∞

0
(𝜏, 𝑇) with 𝜓(𝑇) = 0, 𝜓(𝜏) = 1, by

(103) we find that

− ∫

𝑇

𝜏

(𝑖𝑢
𝑘
, V) 𝜓


(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢
𝑘𝑥𝑥

, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛
𝑘
𝑢

𝑘
, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛼𝑢
𝑘
, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (
𝑢𝑘



2

) 𝑢
𝑘
, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑎
𝑘

(𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (𝑢
𝑘

(𝜏) , V) .

(116)

Assumption (97) implies that

𝑢
𝑘

(𝜏) = 𝑢
𝜏𝑘

⇀ 𝑢
𝜏

in 𝐻. (117)

Then by (116) and (117), we have

− ∫

𝑇

𝜏

(𝑖�̃�, V) 𝜓

(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(�̃�
𝑥𝑥

, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(�̃��̃�, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛼�̃�, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|�̃�|
2
) �̃�, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑎 (𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (𝑢
𝜏
, V) .

(118)

While from (115) we know that

− ∫

𝑇

𝜏

(𝑖�̃�, V) 𝜓

(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(�̃�
𝑥𝑥

, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(�̃��̃�, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛼�̃�, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|�̃�|
2
) �̃�, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑎 (𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (�̃� (𝜏) , V) .

(119)

It come from (118) and (119) that

(𝑢
𝜏
, V) = (�̃� (𝜏) , V) , ∀V ∈ 𝐻. (120)

And then

�̃� (𝜏) = 𝑢
𝜏
. (121)

By (115) and (121), we have

�̃� (𝑡) = 𝑢 (𝑡) . (122)

For ∀V ∈ 𝐻, ∀𝜓 ∈ 𝐶
∞

0
(𝜏, 𝑡

1
), with 𝜓(𝜏) = 0, 𝜓(𝑡

1
) = 1, then

repeating the procedure of proofs of (116)∼(119), by (108) we
deduce that

𝑢
0

= �̃� (𝑡
1
) . (123)

It comes from (108), (122), and (123) that

𝑢
𝑘

(𝑡
1
) ⇀ 𝑢 (𝑡

1
) in 𝐻

2
(Ω) . (124)

Similarly, we can also deduce that

𝑛
𝑘

(𝑡
1
) ⇀ 𝑛 (𝑡

1
) in 𝐻

1
(Ω) . (125)

By (124) and (125), we derive (98). We complete the proof of
Theorem 13.
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