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The concept of the well posedness for a special scalar problem is linked with strictly efficient solutions of vector optimization
problem involving nearly convexlike set-valued maps. Two scalarization theorems and two Lagrange multiplier theorems for strict
efficiency in vector optimization involving nearly convexlike set-valuedmaps are established. A dual is proposed and duality results
are obtained in terms of strictly efficient solutions. A new type of saddle point, called strict saddle point, of an appropriate set-valued
Lagrange map is introduced and is used to characterize strict efficiency.

1. Introduction

One important problem in vector optimization is to find
the efficient points of a set. As observed by Kuhn, Tucker,
and later by Geoffrion, some efficient points exhibit certain
abnormal properties. To eliminate such abnormal efficient
points, various concepts of proper efficiency have been
introduced. The original concept was introduced by Kuhn
and Tucker [1] and Geoffrion [2] and was later modified
and formulated in a more general framework by Borwein
[3], Hartley [4], Benson [5], Henig [6], and Borwein and
Zhuang [7]; also see the references therein. In particular, the
concept of strict efficiencywas first introduced byBednarczak
and Song [8] in order to obtain upper semicontinuity of the
section mapping 𝐺(𝑦) = 𝑆 ∩ (𝑦 − 𝐶) at an efficient point.
Zaffaroni [9] used a special scalar function to characterize
the strict efficiency and obtained some properties of strict
efficiency, which includes well posedness.

Recently, several authors have turned their interests to
vector optimization of set-valued maps. For instance, see
[10–16]. Li [17] extended the concept of Benson proper
efficiency to set-valued maps and presented two scalarization
theorems and Lagrange multiplier theorems for set-valued
vector optimization problem under cone subconvexlikeness.

Mehra [18] and Xia and Qiu [19] discussed the super effi-
ciency in vector optimization problem involving nearly cone-
convexlike set-valued maps and nearly cone-subconvexlike
set-valued maps, respectively. Miglierina [20] linked the
properly efficient solutions of set-valued vector optimization
with well-posedness hypothesis of a special scalar problem.

In this paper, inspired by [8, 17, 18], we study strict
efficiency for vector optimization problem involving nearly
cone-convexlike set-valued maps in the framework of real
normed locally convex spaces. The paper is organized as fol-
lows. In Section 2, we recall some basic concepts and lemmas.
In Section 3, the well posedness of a special scalar problems
on strict efficiency involving nearly cone-convexlike set-
valued maps is discussed. In Section 4, two scalarization
theorems for strict efficiency in vector optimization prob-
lems involving nearly cone-convexlike set-valued maps are
obtained. In Section 5, we establish two Lagrange multiplier
theorems which show that strictly efficient solution of the
constrained vector optimization problem is equivalent to
strictly efficient solution of an appropriate unconstrained
vector optimization problem. In Section 6, some results on
strict duality are given. In Section 7, a new concept of strict
saddle point for set-valued Lagrangianmap is introduced and
is then utilized to characterize strict efficiency.
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2. Preliminaries

Throughout this paper, let 𝑋 be a linear space and 𝑌 and
𝑍 two real normed locally convex spaces, with topological
dual spaces 𝑌

∗ and 𝑍
∗. For a set 𝐴 ⊂ 𝑌, cl𝐴, int𝐴, 𝜕𝐴,

and𝐴
𝑐 denote the closure, the interior, the boundary, and the

complement of 𝐴, respectively. Moreover, we will denote by
𝐵 the closed unit ball of 𝑌. A set 𝐶 ⊂ 𝑌 is said to be a cone if
𝜆𝑐 ∈ 𝐶 for any 𝑐 ∈ 𝐶 and 𝜆 ≥ 0. A cone𝐶 is said to be convex
if 𝐶 + 𝐶 ⊂ 𝐶, and it is said to be pointed if 𝐶 ∩ (−𝐶) = {0}.
The generated cone of 𝐶 is defined by

cone 𝐶 := {𝜆𝑐 | 𝜆 ≥ 0, 𝑐 ∈ 𝐶} . (1)

The dual cone of 𝐶 is defined as

𝐶
+

:= {𝜑 ∈ 𝑌
∗

| 𝜑 (𝑐) ≥ 0, ∀𝑐 ∈ 𝐶} . (2)

The quasi-interior of 𝐶+ is the set

𝐶
+𝑖

:= {𝜑 ∈ 𝑌
∗

| 𝜑 (𝑐) > 0, ∀𝑐 ∈ 𝐶 \ {0
𝑌
}} . (3)

Recall that a base of a cone𝐶 is a convex subset Θ of 𝐶 such
that

0
𝑌

∉ clΘ, 𝐶 = cone Θ. (4)

Of course, 𝐶 is pointed whenever 𝐶 has a base. Furthermore,
if 𝐶 is a nonempty closed convex pointed cone in 𝑌, then
𝐶
+𝑖

̸= 0 if and only if 𝐶 has a base.

Definition 1. Let 𝑆 be a nonempty subset of 𝑌. The set of
all strictly efficient points and the set of all efficient points
with respect to the convex cone𝐶with nonempty interior are
defined as

𝑆𝑡𝐸 (𝑆, 𝐶) := {𝑦 | for every 𝜖 > 0, ∃𝛿 > 0

such that (𝑆 − 𝑦) ∩ (𝛿𝐵 − 𝐶) ⊆ 𝜖𝐵} ,

𝐸 (𝑆, 𝐶) := {𝑦 | (𝑆 − 𝑦) ∩ −𝐶 = 0
𝑌
} .

(5)

It is easy to verify that

𝑆𝑡𝐸 (𝑆, 𝐶) ⊆ 𝐸 (𝑆, 𝐶) . (6)

Also, in this paper, we assume that 𝐶 ⊂ 𝑌 and 𝐷 ⊂ 𝑍

are pointed closed convex cone with nonempty interior. 𝐹 :

𝑋 → 2
𝑌 and 𝐺 : 𝑋 → 2

𝑍 are set-valued maps with
nonempty value. Let𝐿(𝑍, 𝑌) be the space of continuous linear
operations from 𝑍 to 𝑌, and let

𝐿
+
(𝑍, 𝑌) := {𝑇 ∈ 𝐿 (𝑍, 𝑌) | 𝑇 (𝐷) ⊂ 𝐶} . (7)

Let (𝐹, 𝐺) be the set-valued map from 𝑋 to 𝑌 × 𝑍, denoted
by

(𝐹, 𝐺) (𝑥) = 𝐹 (𝑥) × 𝐺 (𝑥) . (8)

If 𝜑 ∈ 𝑌
∗, 𝑇 ∈ 𝐿(𝑍, 𝑌), we also define 𝜑𝐹 : 𝑋 → 2

R and
𝐹 + 𝑇𝐺 : 𝑋 → 2

𝑌 by (𝜑𝐹)(𝑥) = 𝜑[𝐹(𝑥)] and (𝐹 + 𝑇𝐺)(𝑥) =

𝐹(𝑥) + 𝑇[𝐺(𝑥)], respectively.

Definition 2 (see [12]). A set-valued map 𝐹 : 𝑋 → 2
𝑌 is said

to be nearly𝐶-convexlike on𝑋 if cl (𝐹(𝑥)+𝐶) is convex in 𝑌.

Lemma 3 (see [12]). Let 𝐹 : 𝑋 → 2
𝑌 be nearly 𝐶-

convexlike set-valued map on 𝑋. Then exactly one of the
following statement holds:

(i) ∃𝑥 ∈ 𝑋 such that 𝐹(𝑥) ∩ (− int𝐶) ̸= 0,
(ii) ∃𝜑 ∈ 𝐶

+

\ {0
𝑌
} such that (𝜑𝐹)(𝑥) ⊂ R

+
.

Lemma 4 (see [12]). If (𝐹, 𝐺) is nearly𝐶×𝐷-convexlike on𝑋,
then

(i) for each 𝜑 ∈ 𝐶
+

\ {0
𝑌
}, (𝜑𝐹, 𝐺) is nearly R

+
× 𝐷-

convexlike on 𝑋;
(ii) for each 𝑇 ∈ 𝐿

+
(𝑍, 𝑌), 𝐹 + 𝑇𝐺 is nearly 𝐶-convexlike

on 𝑋.

Lemma 5 (see [21]). Let 𝑆 be a closed convex subset of 𝑌 and
𝐾 a closed convex pointed cone. Then 𝑆 ∩ (−𝐾 \ {0

𝑌
}) = 0, if

and only if there exists 𝜑 ∈ 𝐾
+𝑖 such that 𝜑(𝑠) ≥ 0, for all 𝑠 ∈ 𝑆.

3. Strict Efficiency and Well Posedness

Consider the following vector optimization problemwith set-
valued maps:

𝐶-min𝐹 (𝑥)

s.t. 𝐺 (𝑥) ∩ (−𝐷) ̸= 0,

𝑥 ∈ 𝑋.

(VP)

Denote the feasible solution set of (VP) by

𝐴 := {𝑥 ∈ 𝑋 : 𝐺 (𝑥) ∩ (−𝐷) ̸= 0} , (9)

And denote the image of 𝐴 under 𝐹 by

𝐹 (𝐴) = ⋃

𝑥∈𝐴

𝐹 (𝑥) . (10)

Definition 6. Apoint 𝑥 is said to be a strictly efficient solution
of (VP), if there exists 𝑦 ∈ 𝐹(𝑥) such that 𝑦 ∈ 𝑆𝑡𝐸[𝐹(𝐴), 𝐶],
and the point (𝑥, 𝑦) is said to be a strictly efficient minimizer
of (VP).

Definition 7. For a set 𝑆 ⊆ 𝑌, let the function Δ
𝑆

: 𝑌 →

R ∪ {±∞} be defined as

Δ
𝑆
(𝑦) = 𝑑

𝑆
(𝑦) − 𝑑

𝑌\𝑆
(𝑦) , (11)

where 𝑑
𝑆
(𝑦) = inf{‖𝑠 − 𝑦‖ : 𝑠 ∈ 𝑆} with 𝑑

0
(𝑦) = +∞.

The function Δ was first introduced in [22], and its main
properties are gathered together in the following proposition.

Proposition 8 (see [9]). If the set 𝑆 is nonempty and 𝑆 ̸= 𝑌,
then

(1) Δ
𝑆
is real valued;

(2) Δ
𝑆
is 1-Lipschitzian;
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(3) Δ
𝑆
(𝑦) < 0 for every 𝑦 ∈ int𝐴, Δ

𝑆
(𝑦) = 0 for every

𝑦 ∈ 𝜕𝐴, and Δ
𝑆
(𝑦) > 0 for every 𝑦 ∈ int 𝑆𝑐;

(4) if 𝑆 is closed, then it holds that 𝑆 = {𝑦 : Δ
𝑆
(𝑦) ≤ 0};

(5) if 𝑆 is a convex, then Δ
𝑆
is convex;

(6) if 𝑆 is a cone, then Δ
𝑆
is positively homogeneous;

(7) if 𝑆 is a closed convex cone, then Δ
𝑆
is nonincreasing

with respect to the ordering relation induced on 𝑌.

We consider the following parameterized scalar problem:

minΔ
−𝐶

(𝑦 − 𝑦)

s.t. 𝑦 ∈ 𝐹 (𝐴) .

(P
𝑦
)

The following theorem characterize the relation between
strictly efficient points of (VP) and the parameterized scalar
problem (P

𝑦
).

Theorem 9. Let 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐹(𝑥). Then (𝑥, 𝑦) is a
strictly efficient minimizer of (VP) if and only if there exists
a nondecreasing function 𝜙 : R

+
→ R

+
with 𝜙(0) = 0 and

𝜙(𝑡) > 0 for all 𝑡 > 0, such that Δ
−𝐶

(𝑦 − 𝑦) ≥ 𝜙(‖𝑦 − 𝑦‖) for
all 𝑦 ∈ 𝐹(𝐴).

Proof. Since (𝑥, 𝑦) is a strictly efficient minimizer of vector
optimization problem (VP) can be rephrased as follows: for
every 𝜖 > 0 there exists 𝛿 > 0 such that 𝑑

−𝐶
(𝑦 − 𝑦) ≥ 𝛿 for

every 𝑦 ∈ 𝐹(𝐴) with ‖𝑦 − 𝑦‖ > 𝜖. So suppose that the point
(𝑥, 𝑦) is a strictly efficientminimizer of (VP) and consider the
following functions:

𝜙
0
(𝜖) = inf {𝑑

−𝐶
(𝑦 − 𝑦) | 𝑦 ∈ 𝐹 (𝐴) ,

𝑦 − 𝑦
 ≥ 𝜖} ,

𝜙 (𝜖) = min (𝜙
0
(𝜖) , 1) .

(12)

It is evident that 𝜙 is nondecreasing, null at the origin, and
positive elsewhere; moreover, for every 𝑦 ∈ 𝐹(𝐴) it holds that

Δ
−𝐶

(𝑦 − 𝑦) = 𝑑
−𝐶

(𝑦 − 𝑦) ≥ 𝜙 (
𝑦 − 𝑦

) . (13)

If, on the other hand, there exists a nondecreasing function 𝜙

with the above properties and such that Δ
−𝐶

(𝑦 −𝑦) ≥ 𝜙(‖𝑦 −

𝑦‖) for all 𝑦 ∈ 𝐹(𝐴), then it holds that Δ
−𝐶

(𝑦 − 𝑦) = 𝑑
−𝐶

(𝑦 −

𝑦) > 0 for all 𝑦 ∈ 𝐹(𝐴) with 𝑦 ̸= 𝑦. To show that (𝑥, 𝑦) is a
strictly efficient minimizer of (VP), for every 𝜖 > 0, we can
let 𝛿 = inf{𝑑

−𝐶
(𝑦 − 𝑦) : ‖𝑦 − 𝑦‖ > 𝜖}, and it implies that the

proof is completed.

The scalar problem (P
𝑦
) is Tikhonov well posed if

Δ
−𝐶

(𝑦 − 𝑦) > 0 for all 𝑦 ∈ 𝐹(𝐴) with 𝑦 ̸= 𝑦 and

𝑦
𝑛
∈ 𝐹 (𝐴) , 𝑑

−𝐶
(𝑦
𝑛
− 𝑦) → 0 ⇒ 𝑦

𝑛
→ 𝑦. (14)

Theorem 10. Let 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐹(𝑥). The (𝑥, 𝑦) is a strictly
efficient minimizer of (VP) if and only if 𝑦 is a solution of (P

𝑦
)

and the scalar problem (P
𝑦
) is Tikhonov well posed.

Proof. If (𝑥, 𝑦) is a strictly efficient minimizer of (VP), then,
by Theorem 9, 𝑦 is the unique solution of (P

𝑦
) and there

exists a forcing function 𝜙 such that Δ
−𝐶

(𝑦−𝑦) ≥ 𝜙(‖𝑦−𝑦‖),
for all 𝑦 ∈ 𝐹(𝐴). Since 𝜙(𝑡

𝑛
) → 0 implies 𝑡

𝑛
→ 0, hence for

any sequence 𝑦
𝑛
∈ 𝐹(𝐴) such that Δ

−𝐶
(𝑦
𝑛
− 𝑦) → 0, then it

must converge to 𝑦.
Conversely, if the scalar problem (P

𝑦
) is Tikhonov well

posed, then𝑑
−𝐶

(𝑦−𝑦) = Δ
−𝐶

(𝑦−𝑦)holds for every𝑦 ∈ 𝐹(𝐴).
Thus, we consider the function 𝜙(𝜖) = inf{𝑑

−𝐶
(𝑦 − 𝑦) : ‖𝑦 −

𝑦‖ ≥ 𝜖}; it holds by the construction that 𝑑
−𝐶

(𝑦−𝑦 ≥ 𝜙(𝑦−𝑦),
and it is to see that 𝜙 is nondecreasing on [0,∞) with 𝜙(0) = 0

and 𝜙(𝑡) > 0 for all 𝑡 > 0. Hence, again, by theTheorem 9, we
get that (𝑥, 𝑦) is a strictly efficient minimizer of (VP).

4. Strict Efficiency and Linear Scalarization

In association with the vector optimization problem (VP)
involving set-valuedmaps, we consider the following linearly
scalar optimization problem with a set-valued map:

min (𝜑𝐹) (𝑥)

s.t. 𝑥 ∈ 𝐴,

(LSP
𝜑
)

where 𝜑 ∈ 𝑌
∗

\ {0
𝑌
∗}.

Definition 11. If 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐹(𝐴) and

𝜑 (𝑦) ≤ 𝜑 (𝑦) , ∀𝑦 ∈ 𝐹 (𝐴) , (15)

then 𝑥 and (𝑥, 𝑦) are called a minimal solution and a
minimizer of (LSP

𝜑
), respectively.

Lemma 12. Let 𝑦 ∈ 𝑆 ⊂ 𝑌, and 𝐶 is a closed convex cone with
having a compact base Θ. Then 𝑦 is a strictly efficient point of
𝑆 if and only if cl (𝑆 + 𝐶 − 𝑦) ∩ −𝐶 = {0

𝑌
}.

Proof. The definition of strict efficiency of 𝑆 can be rephrased
as follows: for every 𝜖 > 0, there exists 𝛿 > 0 such that 𝑑

−𝐶
(𝑦−

𝑦) > 𝛿 for every 𝑦 ∈ 𝑆 with ‖𝑦 − 𝑦‖ > 𝜖. Hence, if there
exists sequence 𝑦

𝑛
∈ 𝑆, 𝑐

𝑛
∈ 𝐶, and some 𝑐 ∈ int 𝐶 such

that 𝑦
𝑛
+ 𝑐
𝑛
− 𝑦 → −𝑐, then 𝑦

𝑛
+ 𝑐
𝑛
+ 𝑐 − 𝑦 → 0; hence,

𝑑
−𝐶

(𝑦 − 𝑦) → 0. Since 𝑦
𝑛
− 𝑦 = −(𝑐

𝑛
+ 𝑐), 𝑐 ̸= 0, and 𝐶 is

pointed, 𝑦
𝑛
− 𝑦 is outside some small ball around the origin.

This shows that 𝑦 is not the strictly efficient point of 𝑆, this
contraction shows that cl (𝑆 + 𝐶 − 𝑦) ∩ −𝐶 = {0

𝑌
}.

Conversely, if 𝑦 is not a strictly efficient point of 𝑆, then
there exists 𝜖 > 0 and a sequence 𝑦

𝑛
∈ 𝑆, and 𝑐

𝑛
∈ 𝐶 such that

𝑦𝑛 − 𝑦
 ≥ 𝜖,

𝑦𝑛 + 𝑐
𝑛
− 𝑦

 → 0. (16)

We write 𝑐
𝑛

= 𝜆
𝑛
𝜃
𝑛
with 𝜆

𝑛
> 0 and 𝜃

𝑛
∈ Θ, then, by (16)

and asΘ is compact, there exists 𝛼 > 0 and𝑁 ∈ 𝑅
+ such that

𝛼 < 𝜆
𝑛
. Indeed, by (16), we have 𝑐

𝑛
∉ (𝜖/2)𝐵; furthermore,

since Θ is compact, thus 𝜆
𝑛
does not converse to 0, and it

implies that there exists a real number 𝛼 > 0 and 𝑁 ∈ R+

such that 𝛼 < 𝜆
𝑛
for all 𝑛 ≥ 𝑁. Now, we define 𝑐

𝑛
= (𝜆
𝑛
−𝛼)𝜃
𝑛
,

𝑛 ≥ 𝑁.
Thus, we obtain

𝑦
𝑛
+ 𝑐


𝑛
− 𝑦 = 𝑦

𝑛
+ 𝑐
𝑛
− 𝑦 − 𝛼𝜃

𝑛
→ −𝛼𝜃 ̸= 0. (17)
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Hence,

cl (𝑆 + 𝐶 − 𝑦) ∩ −𝐶 \ {0
𝑌
} ̸= 0. (18)

This contradiction shows that 𝑦 is a strictly efficient point of
𝑆.

Theorem 13. Let 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐹(𝑥), let 𝐶 have a compact base,
and let 𝜑 ∈ 𝐶

+𝑖 be fixed. If (𝑥, 𝑦) is a minimizer of (LSP
𝜑
),

then (𝑥, 𝑦) is a strictly efficient minimizer of (VP).

Proof. By Lemma 12, we need only to prove that

cl (𝐹 (𝐴) + 𝐶 − 𝑦) ∩ −𝐶 = {0
𝑌
} . (19)

Indeed, let 𝑐 ∈ cl (𝑆 + 𝐶 − 𝑦) ∩ −𝐶. Then there exists {𝑦
𝑛
} ⊂

𝐹(𝐴), {𝑐
𝑛
} ⊂ 𝐶 such that

𝑐 = lim
𝑛→+∞

(𝑦
𝑛
+ 𝑐
𝑛
− 𝑦) , (20)

hence,

𝜑 (𝑐) = lim
𝑛→+∞

[𝜑 (𝑦
𝑛
) + 𝜑 (𝑐

𝑛
) − 𝜑 (𝑦)] . (21)

Since (𝑥, 𝑦) is a minimizer of (LSP
𝜑
) and 𝑦

𝑛
∈ 𝐹(𝐴), we have

𝜑(𝑦
𝑛
) ≥ 𝜑(𝑦), while 𝑐

𝑛
∈ 𝐶 and 𝜑 ∈ 𝐶

+𝑖 imply that 𝜑(𝑐
𝑛
) ≥ 0.

Hence, 𝜑(𝑐) ≥ 0. On the other hand, since 𝑐 ∈ −𝐶, we have
𝜑(𝑐) ≤ 0. Thus 𝜑(𝑐) = 0. Again, by 𝜑 ∈ 𝐶

+ and 𝑐 ∈ −𝐶, we
must have 𝑐 = 0

𝑌
.

Hence, we have shown that cl (𝑆 + 𝐶 − 𝑦) ∩ −𝐶 = {0
𝑌
}.

Therefore, this proof is completed.

Theorem 14. Let 𝐹 be nearly 𝐶-convexlike on 𝐴, 𝑥 ∈ 𝐴, and
𝑦 ∈ 𝐹(𝑥), and let 𝐶 have a compact base. If (𝑥, 𝑦) is a strictly
efficient minimizer of (VP), then there exists 𝜑 ∈ 𝐶

+ such that
(𝑥, 𝑦) is a minimizer of (LSP

𝜑
).

Proof. Since (𝑥, 𝑦) is a strictly efficient minimizer of (VP),
thus by Lemma 12, we have

−𝐶 ∩ cl [𝐹 (𝐴) + 𝐶 − 𝑦] = {0
𝑌
} . (22)

By the definition of nearly 𝐶-convexlike set-valued map
𝐹, we have that cl [𝐹(𝐴) + 𝐶 − 𝑦] is closed convex set in 𝑌,
since 𝐶 is a closed, convex, pointed, compact cone. Thus, by
Lemma 5, there exists 𝜑 ∈ 𝐶

+𝑖 such that

𝜑 (cl [𝐹 (𝐴) + 𝐶 − 𝑦]) ≥ 0. (23)

Since

𝐹 (𝐴) − 𝑦 ⊂ 𝐹 (𝐴) + 𝐶 − 𝑦 ⊂ cl [𝐹 (𝐴) + 𝐶 − 𝑦] , (24)

we obtain

𝜑 (𝑦) − 𝜑 (𝑦) ≥ 0, ∀𝑦 ∈ 𝐹 (𝐴) . (25)

Therefore, (𝑥, 𝑦) is a minimizer of (LSP
𝜑
).

If we denote by 𝑆𝑡𝐸(VP) the set of strictly efficient
minimizer of (VP) and by 𝑀(LSP

𝜑
) the set of minimizer of

(LSP
𝜑
), then from Theorems 13 and 14, we get immediately

the following corollary.

Corollary 15. Let 𝐹 be nearly 𝐶-convexlike on 𝑋. Then,

𝑆𝑡𝐸 (𝑉𝑃) = ⋃

𝜑∈𝐶
+𝑖

𝑀(𝐿𝑆𝑃
𝜑
) . (26)

5. Strict Efficiency and Lagrange Multipliers

In this section,we establish twoLagrangemultiplier theorems
which show that the set of strictly efficient minimizer of the
constrained set-valued vector optimization problem (VP), it
is equivalent to the set of an appropriate unconstrained vector
optimization problem.

The following concept is a generalization of Slater con-
straint qualification in mathematical programming and in
vector optimization.

Definition 16. We say that (VP) satisfies the generalized Slater
constraint qualification if there exists 𝑥 ∈ 𝑋 such that 𝐺(𝑥) ∩

(− int𝐷) ̸= 0.

Theorem 17. Let 𝐹 be nearly 𝐶-convexlike on𝑋. Let (𝐹, 𝐺) be
nearly 𝐶 × 𝐷-convexlike on 𝑋 and let 𝐶 have a compact base.
Furthermore, let (VP) satisfy the generalized Slater constraint
qualification. If (𝑥, 𝑦) is a strictly efficient minimizer of (VP),
then there exists 𝑇 ∈ 𝐿

+
(𝑍, 𝑌) such that 𝑇[𝐺(𝑥) ∩ (−𝐷)] =

0
𝑌
and (𝑥, 𝑦) is a strictly efficient minimizer of the following

unconstrained vector optimization problem:

𝐶-min𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]

𝑠.𝑡. 𝑥 ∈ 𝑋.

(UVP)

Proof. Since (𝑥, 𝑦) is a strictly efficient minimizer of (VP), by
Theorem 14, there exists 𝜑 ∈ 𝐶

+𝑖 such that

𝜑 [𝐹 (𝑥) − 𝑦] ≥ 0, ∀𝑥 ∈ 𝐴. (27)

Define 𝐻 : 𝑋 → 2
R×𝑍 by

𝐻(𝑥) = 𝜑 [𝐹 (𝑥) − 𝑦] × 𝐺 (𝑥) = (𝜑𝐹, 𝐺) (𝑥) − (𝜑 (𝑦, 0
𝑍
)) .

(28)

Since (𝐹, 𝐺) is nearly 𝐶 × 𝐷-convexlike on 𝑋, by Lemma 4,
we have that 𝐻 is nearlyR

+
× 𝐷-convexlike on 𝑋, while (27)

implies that

𝐻(𝑥) ∩ [− int (R
+
× 𝐷)] ̸= 0, ∀𝑥 ∈ 𝑋, (29)

has no solution, and hence, by Lemma 3, there exists (𝜆, 𝜓) ∈

R
+
× 𝐷 \ {0

𝑌
∗} such that

𝜆𝜑 [𝐹 (𝑥) − 𝑦] + 𝜓 [𝐺 (𝑥)] ≥ 0, ∀𝑥 ∈ 𝑋. (30)

Since 𝑥 ∈ 𝐴, that is, 𝐺(𝑥) ∩ (−𝐷) ̸= 0, this implies that there
exists 𝑧 ∈ 𝐺(𝑥) such that −𝑧 ∈ 𝐷. Then, since 𝜓 ∈ 𝐷

+, we get

𝜓 (𝑧) ≤ 0. (31)

Also, let 𝑥 = 𝑥 in (30) and noting that𝑦 ∈ 𝐹(𝑥), and 𝑧 ∈ 𝐺(𝑥),
we get 𝜓(𝑧) ≥ 0.
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Hence,

𝜓 [𝐺 (𝑥) ∩ −𝐷] = 0
𝑌
. (32)

We now claim that 𝜆 ̸= 0. If this is not the case, then

𝜓 ∈ 𝐷
+

\ {0
𝑌
∗} . (33)

By the generalized Slater constraint qualification, there exists
𝑥 ∈ 𝑋 such that

𝐺 (𝑥) ∩ − int𝐷 ̸= 0, (34)

and so there exists �̃� ∈ 𝐺(𝑥) such that

−�̃� ∈ int𝐷. (35)

Hence, 𝜓(�̃�) < 0. But substituting 𝜆 = 0 into (30), and by
taking 𝑥 = 𝑥 and �̃� ∈ 𝐺(𝑥) in (30), we have

𝜓 (�̃�) ≥ 0. (36)

This contradiction shows that 𝜆 > 0. From this and 𝜑 ∈ 𝐶
+𝑖,

we can choose 𝑐 ∈ 𝐶\ {0
𝑌
} such that 𝜆𝜑(𝑐) = 1 and define the

operator 𝑇 : 𝑍 → 𝑌 by

𝑇 (𝑧) = 𝜓 (𝑧) 𝑐. (37)

Obviously,

𝑇 ∈ 𝐿
+
(𝑍, 𝑌) , 𝑇 [𝐺 (𝑥) ∩ −𝐷] = {0

𝑌
} . (38)

Thus,

0
𝑌

∈ 𝑇 [𝐺 (𝑥)] , 𝑦 ∈ 𝐹 (𝑥) ⊂ 𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] . (39)

From (30) and (37), we obtain

𝜆𝜑 [𝐹 (𝑥) + 𝑇𝐺 (𝑥)]

= 𝜆𝜑 [𝐹 (𝑥)] + 𝜓 [𝐺 (𝑥)] 𝜆𝜑 (𝑐)

= 𝜆𝜑 [𝐹 (𝑥)] + 𝜓 [𝐺 (𝑥)]

≥ 𝜆𝜑 (𝑦) , ∀𝑥 ∈ 𝑋.

(40)

Dividing the above inequality by 𝜆 > 0, we obtain

𝜑 [𝐹 (𝑥) + 𝑇𝐺 (𝑥)] ≥ 𝜑 (𝑦) , ∀𝑥 ∈ 𝑋. (41)

Since, (𝐹, 𝐺) is nearly 𝐶 × 𝐷-convexlike on 𝑋, by Lemma 4,
𝐹+𝑇𝐺 is nearly𝐶-convexlike on𝑋.Therefore, byTheorem 13
and𝜑 ∈ 𝐶

+𝑖, we have that (𝑥⋅𝑦) is a strictly efficientminimizer
of (UVP).

Theorem 18. Let 𝑥, 𝑦 ∈ 𝐹(𝑥) and let𝐶 have a compact base. If
there exists 𝑇 ∈ 𝐿

+
(𝑍, 𝑌) such that 0

𝑌
∈ 𝑇[𝐺(𝑥)] and (𝑥, 𝑦) is

a strictly efficient minimizer of (UVP), then (𝑥, 𝑦) is a strictly
efficient minimizer of (VP).

Proof. From the assumption, we have

𝑦 ∈ 𝐹 (𝑥) ⊂ 𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] , (42)

(−𝐶) ∩ cl[⋃

𝑥∈𝑋

(𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]) + 𝐶 − 𝑦] = {0
𝑌
} . (43)

Since 𝑥 ∈ 𝐴, we have 𝐺(𝑥) ∩ (−𝐷) ̸= 0. Thus there exists 𝑧
𝑥
∈

𝐺(𝑥) ∩ (−𝐷). Then,

−𝑇 (𝑧
𝑥
) ∈ 𝐶, (44)

which implies that 𝐶 − 𝑇(𝑧
𝑥
) ⊂ 𝐶; that is, 𝐶 ⊂ 𝐶 + 𝑇(𝑧

𝑥
),

∀𝑥 ∈ 𝐴. So, we have

𝐹 (𝐴) + 𝐶 − 𝑦 ⊂ ⋃

𝑥∈𝐴

[𝐹 (𝑥) + 𝐶 − 𝑦]

⊂ ⋃

𝑥∈𝐴

(𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] + 𝐶 − 𝑦)

⊂ ⋃

𝑥∈𝐴

(𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]) + 𝐶 − 𝑦.

(45)

This together with (43) implies

(−𝐶) ∩ cl [𝐹 (𝐴) + 𝐶 − 𝑦] = {0
𝑌
} . (46)

Noting that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐹(𝑥) ⊂ 𝐹(𝐴) and by Lemma 12, we
have that (𝑥, 𝑦) is a strictly efficient minimizer of (VP).

6. Strict Efficiency and Duality

Definition 19. The Lagrange map for (VP) is the set-valued
mapL : 𝑋 × 𝐿

+
(𝑍, 𝑌) → 2

𝑌 defined by

L (𝑥, 𝑇) = 𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] . (47)

We denote

L (𝑋, 𝑇) = ⋃

𝑥∈𝑋

L (𝑥, 𝑇) = ⋃

𝑥∈𝑋

(𝐹 + 𝑇𝐺) (𝑥) ,

L (𝑥, 𝐿
+
(𝑍, 𝑌)) = ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇)

= ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

(𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]) .

(48)

Definition 20. The set-valued map Φ : 𝐿
+
(𝑍, 𝑌) → 2

𝑌 is
defined as

Φ (𝑇) = 𝑆𝑡𝐸 [L (𝑋, 𝑇) , 𝐶] , ∀𝑇 ∈ 𝐿
+
(𝑍, 𝑌) , (49)

which is called a strict dual map of (VP).

Using this definition, we define the Lagrange dual prob-
lem associated with the primal problem (VP) as follows:

𝐶-maxΦ (𝑇)

s.t. 𝑇 ∈ 𝐿
+
(𝑍, 𝑌) .

(VD)

Definition 21. 𝑦 ∈ ⋃
𝑇∈𝐿
+
(𝑍,𝑌)

Φ(𝑇) is called an efficient point
of (VD) if

𝑦 − 𝑦 ∉ 𝐶 \ {0
𝑌
} , 𝑦 ∈ ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

Φ (𝑇) . (50)

We can now establish the following dual theorems.
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Theorem 22 (weak duality). If 𝑥 ∈ 𝐴 and 𝑦
0

∈

⋃
𝑇∈𝐿
+
(𝑍,𝑌)

Φ(𝑇), then

[𝑦
0
− 𝐹 (𝑥)] ∩ (𝐶 \ {0

𝑌
}) = 0. (51)

Proof. From 𝑦
0
∈ ⋃
𝑇∈𝐿
+
(𝑍,𝑌)

Φ(𝑇), there exists 𝑇 ∈ 𝐿
+
(𝑍, 𝑌)

such that

𝑦
0
∈ Φ (𝑇)

∈ 𝑆𝑡𝐸(⋃

𝑥∈𝑋

[𝐹 (𝑥) + 𝑇𝐺 (𝑥)] , 𝐶)

⊂ 𝐸(⋃

𝑥∈𝑋

[𝐹 (𝑥) + 𝑇𝐺 (𝑥)] , 𝐶) .

(52)

Hence,

(𝑦
0
− 𝐹 (𝑥) − 𝑇 [𝐺 (𝑥)]) ∩ (𝐶 \ {0

𝑌
}) = 0, ∀𝑥 ∈ 𝑋. (53)

In particular,

𝑦
0
− 𝑦 − 𝑇 (𝑧) ∉ 𝐶 \ {0

𝑌
} , ∀𝑦 ∈ 𝐹 (𝑥) , ∀𝑧 ∈ 𝐺 (𝑥) .

(54)

Noting that 𝑥 ∈ 𝐴, we choose 𝑧 ∈ 𝐺(𝑥)∩(−𝐷).Then, −𝑇(𝑧) ∈

𝐶, and taking 𝑧 = 𝑧 in (54), we have

𝑦
0
− 𝑦 − 𝑇 (𝑧) ∉ 𝐶 \ {0

𝑌
} , ∀𝑦 ∈ 𝐹 (𝑥) . (55)

Hence, from −𝑇(𝑧) ∈ 𝐶 and𝐶+𝐶\{0
𝑌
} ⊆ 𝐶\{0

𝑌
}, we obtain

𝑦
0
− 𝑦 ∉ 𝐶 \ {0

𝑌
} , ∀𝑦 ∈ 𝐹 (𝑥) . (56)

This completes the proof.

Theorem 23 (strong duality). Let 𝐹 be nearly C-convexlike on
𝑋. Let (𝐹, 𝐺) be nearly (𝐶×𝐷)-convexlike on𝑋 and let 𝐶 have
a compact base. Furthermore, let (VP) satisfy the generalized
Slater constraint qualification. If 𝑥 is a strictly efficient solution
of (VP), then there exists that 𝑦 ∈ 𝐹(𝑥) is an efficient point of
(VD).

Proof. Since𝑥 is a strictly efficient solution of (VP), then there
exists𝑦 ∈ 𝐹(𝑥) such that (𝑥, 𝑦) is a strictly efficientminimizer
of (VP). According to Theorem 17, there exists 𝑇 ∈ 𝐿

+
(𝑍, 𝑌)

such that 𝑇[𝐺(𝑥) ∩ (−𝐷)] = {0
𝑌
}, and (𝑥, 𝑦) is a strictly

efficient minimizer of (UVP). Hence, 𝑦 ∈ 𝑆𝑡𝐸[⋃
𝑥∈𝑋

(𝐹(𝑥) +

𝑇[𝐺(𝑥)]), 𝐶] = Φ(𝑇) ⊂ ⋃
𝑇∈𝐿
+
(𝑍,𝑌)

Φ(𝑇). By Theorem 22, we
have

(𝑦 − 𝑦) ∉ 𝐶 \ {0
𝑌
} , ∀𝑦 ∈ ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

Φ (𝑇) . (57)

Therefore, by Definition 20, we know that 𝑦 is an efficient
point of (VD).

7. Strict Efficient and Strict Saddle Point

We will now introduce a new concept of strict saddle point
for a set-valued Lagrange map L and use it to characterize
strict efficiency.

For a nonempty subset 𝑆 of 𝑌, we define a set

𝑆𝑡𝑀 (𝑆, 𝐶) = {𝑦 ∈ 𝑆 | ∀𝜖 > 0, ∃𝛿 > 0

such that (𝑆 − 𝑦) ∩ (−𝛿𝐵 + 𝐶) ⊆ 𝜖𝐵} .

(58)

It is easy to find that 𝑦 ∈ 𝑆𝑡𝑀(𝑆, 𝐶) if and only if −𝑦 ∈

𝑆𝑡𝐸(−𝑆, 𝐶), and if 𝑌 is normed space and 𝐶 has a compact
base. Then by Lemma 12, we have 𝑦 ∈ 𝑆𝑡𝑀(𝑆, 𝐶) if and only
if cl (𝑆 − 𝐶 − 𝑦) ∩ 𝐶 = {0

𝑌
}.

Definition 24. A pair (𝑥, 𝑇) ∈ 𝑋 × 𝐿
+
(𝑍, 𝑌) is said to be a

strict saddle point of Lagrange mapL if

L (𝑥, 𝑇) ∩ 𝑆𝑡𝐸[⋃

𝑥∈𝑋

L (𝑥, 𝑇) , 𝐶]

∩ 𝑆𝑡𝑀[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) , 𝐶]

]

̸= 0.

(59)

We first present an important equivalent characterization
for a strict saddle point of the Lagrange mapL.

Lemma 25. Let𝐶 have a compact base. (𝑥, 𝑇) ∈ 𝑋×𝐿
+
(𝑍, 𝑌)

is said to be a strict saddle point of Lagrange map L if only if
there exist 𝑦 ∈ 𝐹(𝑥) and 𝑧 ∈ 𝐺(𝑥) such that

(i) 𝑦 ∈ 𝑆𝑡𝐸[⋃
𝑥∈𝑋

L(𝑥, 𝑇), 𝐶] ∩

𝑆𝑡𝑀[⋃
𝑇∈𝐿
+
(𝑍,𝑌)

L(𝑥, 𝑇), 𝐶],

(ii) 𝑇(𝑧) = 0
𝑌
.

Proof (necessity). Since (𝑥, 𝑇) is a strict saddle point of the
map L, by Definition 24 there exists 𝑦 ∈ 𝐹(𝑥), 𝑧 ∈ 𝐺(𝑥)

such that

𝑦 + 𝑇 (𝑧) ∈ 𝑆𝑡𝐸 [⋃

𝑥∈𝑋

L (𝑥, 𝑇) , 𝐶] , (60)

𝑦 + 𝑇 (𝑧) ∈ 𝑆𝑡𝑀[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) , 𝐶]

]

. (61)

From (61), we have

𝐶 ∩ cl[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) − 𝐶 − (𝑦 + 𝑇 (𝑧))]

]

= {0
𝑌
} .

(62)
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Since every 𝑇 ∈ 𝐿
+
(𝑍, 𝑌), we have

𝑇 (𝑧) − 𝑇 (𝑧)

= [𝑦 + 𝑇 (𝑧)] − [𝑦 + 𝑇 (𝑧)]

∈ 𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] − [𝑦 + 𝑇 (𝑧)]

= L (𝑥, 𝑇) − [𝑦 + 𝑇 (𝑧)] .

(63)

We have

{𝑇 (𝑧) : 𝑇 ∈ 𝐿
+
(𝑍, 𝑌)} − 𝐶 − 𝑇 (𝑧)

⊂ ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) − 𝐶 − [𝑦 + 𝑇 (𝑧)] .
(64)

Hence,

cl[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

{𝑇 (𝑧)} − 𝐶 − 𝑇 (𝑧)]

]

⊂ cl[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) − 𝐶 − [𝑦 + 𝑇 (𝑧)]]

]

.

(65)

Thus, from (62), we have

𝐶 ∩ cl[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

{𝑇 (𝑧)} − 𝐶 − 𝑇 (𝑧)]

]

= {0
𝑌
} . (66)

Let 𝑓 : 𝐿(𝑍, 𝑌) → 𝑌 be defined by

𝑓 (𝑇) = −𝑇 (𝑧) . (67)

Then, (66) can be written as

(−𝐶) ∩ cl [𝑓 (𝐿
+
(𝑍, 𝑌)) + 𝐶 − 𝑓 (𝑇)] = {0

𝑌
} . (68)

This together with Lemma 12 shows that 𝑇 ∈ 𝐿
+
(𝑍, 𝑌) is a

strictly efficient point of the vector optimization problem

𝐶-min𝑓 (𝑇)

s.t. 𝑇 ∈ 𝐿
+
(𝑍, 𝑌) .

(69)

Since 𝑓 is a linear map, then of course −𝑓 is nearly 𝐶-
convexlike on 𝐿

+
(𝑍, 𝑌). Hence, by Theorem 14, there exists

𝜑 ∈ 𝐶
+𝑖 such that

𝜑 [−𝑇 (𝑧)] = 𝜑 [𝑓 (𝑇)] ≤ 𝜑 [𝑓 (𝑇)]

= 𝜑 [−𝑇 (𝑧)] , ∀𝑇 ∈ 𝐿
+
(𝑍, 𝑌) .

(70)

Now, we claim that

−𝑧 ∈ 𝐷. (71)

If this is not true, then since 𝐷 is a closed convex cone set,
by the strong separation theorem in topological vector space
[21], there exists 𝜇 ∈ 𝑍

∗

\ {0
𝑍
∗} such that

𝜇 (−𝑧) < 𝜇 (𝜆𝑑) , ∀𝑑 ∈ 𝐷, ∀𝜆 > 0. (72)

In the above expression, taking 𝑑 = 0
𝑧
∈ 𝐷 gets

𝜇 (𝑧) > 0, (73)

while letting 𝜆 → +∞ leads to

𝜇 (𝑑) ≥ 0, ∀𝑑 ∈ 𝐷. (74)

Hence,

𝜇 ∈ 𝐷
+

\ {0
𝑍
∗} . (75)

Let 𝑐∗ ∈ int𝐶 be fixed, and define 𝑇
∗

: 𝑍 → 𝑌 as

𝑇
∗

(𝑧) = [
𝜇 (𝑧)

𝜇 (𝑧)
] 𝑐
∗

+ 𝑇 (𝑧) . (76)

It is evident that 𝑇∗ ∈ 𝐿(𝑍, 𝑌) and that

𝑇
∗

(𝑑) = [
𝜇 (𝑑)

𝜇 (𝑧𝑐∗)
] + 𝑇 (𝑑) ∈ 𝐶 + 𝐶 ⊂ 𝐶, ∀𝑑 ∈ 𝐷. (77)

Hence, 𝑇∗ ∈ 𝐿
+
(𝑍, 𝑌). Taking 𝑧 = 𝑧 in (66), we obtain

𝑇
∗

(𝑧) − 𝑇 (𝑧) = 𝑐
∗

. (78)

Hence,

𝜑 [𝑇
∗

(𝑧)] − 𝜑 [𝑇 (𝑧)] = 𝜑 (𝑐
∗

) > 0, (79)

which contradicts (70). Therefore,

−𝑧 ∈ 𝐷. (80)

Thus, −𝑇(𝑧) ∈ 𝐶, since 𝑇 ∈ 𝐿
+
(𝑍, 𝑌). If 𝑇(𝑧) ̸= 0

𝑌
, then

−𝑇 (𝑧) ∈ 𝐶 \ {0
𝑌
} , (81)

hence, 𝜑[𝑇(𝑧)] < 0, by 𝜑 ∈ 𝐶
+𝑖, while taking 𝑇 = 0 ∈

𝐿
+
(𝑍, 𝑌) leads to

𝜑 (𝑇 (𝑧)) ≥ 0. (82)

This contradiction shows that 𝑇(𝑧) = 0
𝑌
, that is, condition

(ii) holds.
Therefore, by (60) and (61), we know

𝑦 ∈ 𝑆𝑡𝐸[⋃

𝑥∈𝑋

L (𝑥, 𝑇) , 𝐶]

∩ 𝑆𝑡𝑀[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) , 𝐶]

]

;

(83)

that is, condition (i) holds.

Sufficiency. From 𝑦 ∈ 𝐹(𝑥), 𝑧 ∈ 𝐺(𝑥), and condition (ii), we
get

𝑦 = 𝑦 + 𝑇 (𝑧) ∈ 𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)] = L (𝑥, 𝑇) . (84)
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And by condition (i), we obtain

𝑦 ∈ L (𝑥, 𝑇) ∩ 𝑆𝑡𝐸[⋃

𝑥∈𝑋

L (𝑥, 𝑇) , 𝐶]

∩ 𝑆𝑡𝑀[

[

⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) , 𝐶]

]

.

(85)

Therefore, (𝑥, 𝑇) is a strict saddle point of the set-valued
Lagrange mapL, and the proof is complete.

The following saddle-point theorems allow us to express
a strictly efficient solution of (VP) as a strict saddle of the set-
valued Lagrange mapL.

Theorem 26. Let 𝐹 be nearly 𝐶-convexlike on 𝐴, let (𝐹, 𝐺) be
nearly (𝐶 × 𝐷)-convexlike on 𝐴, and let 𝐶 have a compact
base. Moreover, (VP) satisfies generalized Slater constrained
qualification.

(i) If (𝑥, 𝑇) is a strict saddle point of the mapL, then 𝑥 is
strictly efficient solution of (VP).

(ii) If (𝑥, 𝑦) is a strictly efficient minimizer of (VP), and
𝑦 ∈ 𝑆𝑡𝑀[⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L(𝑥, 𝑇), 𝐶], then there exists 𝑇 ∈

𝐿
+
(𝑍, 𝑌) such that (𝑥, 𝑇) is a strict saddle point of the

mapL.

Proof. (i) By the necessity of Lemma 25, we have

0
𝑌

∈ 𝑇 [𝐺 (𝑥)] , (86)

and there exists 𝑦 ∈ 𝐹(𝑥) such that (𝑥, 𝑦) is a strictly efficient
minimizer of the problem

𝐶-min𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]

s.t. 𝑥 ∈ 𝑋.

(UVP)

According to Theorem 18, (𝑥, 𝑦) is a strictly efficient
minimizer of (VP). Therefore, 𝑥 is strictly efficient solution
of (VP).

(ii) From the assumption, and by the Theorem 17, there
exists 𝑇 ∈ 𝐿

+
(𝑍, 𝑌) such that

𝑦 ∈ 𝑆𝑡𝐸[⋃

𝑥∈𝑋

L (𝑥, 𝑇) , 𝐶] ,

𝑇 [𝐺 (𝑥) ∩ (−𝐷)] = 0
𝑌
.

(87)

Therefore, there exists 𝑧 ∈ 𝐺(𝑥) such that 𝑇(𝑧) = 0
𝑌
. Hence,

from Lemma 25, it follows that (𝑥, 𝑇) is a strict saddle point
of the mapL.

Lemma 27. Let (𝑥, 𝑇) ∈ 𝑋 × 𝐿
+
(𝑍, 𝑌), 𝑦 ∈ 𝐹(𝑥), and 𝑧 ∈

𝐺(𝑥). Then the following conditions:

(a) 𝑦 ∈ 𝑆𝑡𝐸[⋃
𝑥∈𝑋

L(𝑥, 𝑇), 𝐶] ∩

𝑆𝑡𝑀[⋃
𝑇∈𝐿
+
(𝑍,𝑌)

L(𝑥, 𝑇), 𝐶],

(b) 𝑇(𝑧) = 0
𝑌
,

are equivalent to the following conditions:

(i) 𝑦 ∈ 𝑆𝑡𝐸[⋃
𝑥∈𝑋

L(𝑥, 𝑇), 𝐶] ∩ 𝑆𝑡𝑀[𝐹(𝑥), 𝐶],
(ii) 𝐺(𝑥) ⊂ −𝐷,
(iii) 𝑇(𝑧) = 0

𝑌
.

Proof. By conditions (a) and (b), it is easy to verify that
conditions (i) and (iii) hold. Now, we show that 𝐺(𝑥) ⊂ −𝐷.
If this is not true, then there would exist 𝑧

0
∈ 𝐺(𝑥) such that

−𝑧
0
∉ 𝐷. (88)

Then, since𝐷 is a closed convex set, by the strong separation
theorem in topological vector space (see [21]), there exists
𝜓
0
∈ 𝑍
∗

\ {0
𝑍
∗} such that

𝜓
0
(−𝑧
0
) < 𝜓 (𝜆𝑑) , ∀𝑑 ∈ 𝐷, ∀𝜆 > 0. (89)

In the above expression, taking 𝑑 = 0
𝑧
∈ 𝐷 gives

𝜓
0
(𝑧
0
) > 0, (90)

and taking 𝜆 → +∞ leads to

𝜓
0
(𝑑) ≥ 0, ∀𝑑 ∈ 𝐷. (91)

Hence,

𝜓
0
∈ 𝐷
+

\ {0
𝑧
∗} . (92)

Take 𝑐
0
∈ int𝐶 and define 𝑇

0
: 𝑍 → 𝑌 as

𝑇
0
(𝑧) = 𝜓

0
(𝑧) 𝑐
0
. (93)

Then, 𝑇
0
∈ Ł
+
(𝑍, 𝑌) and

𝑇
0
(𝑧
0
) = 𝜓
0
(𝑧
0
) 𝑐
0
∈ int𝐶 ⊂ 𝐶 \ {0

𝑌
} . (94)

And, by condition (a), we have

𝑦 − 𝑦 ∉ 𝐶 \ {0
𝑌
} , ∀𝑦 ∈ ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) . (95)

From

𝑦 + 𝑇
0
(𝑧
0
) ∈ 𝐹 (𝑥) + 𝑇

0
[𝐺 (𝑥)]

= 𝐿 (𝑥, 𝑇
0
) ⊂ ⋃

𝑇∈𝐿
+
(𝑍,𝑌)

L (𝑥, 𝑇) ,
(96)

and by (95), we have

𝑇
0
(𝑧
0
) = [𝑦 + 𝑇

0
(𝑧
0
)] − 𝑦 ∉ 𝐶 \ {0

𝑌
} . (97)

This conflicts with (99). Therefore, 𝐺(𝑥) ⊂ −𝐷.
Conversely, by (i), we have

𝑦 ∈ 𝑆𝑡𝑀 [𝐹 (𝑥) , 𝐶] , (98)

that is,

cl [𝐹 (𝑥) − 𝐶 − 𝑦] ∩ 𝐶 = {0
𝑌
} . (99)
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By condition (ii), for every 𝑇 ∈ 𝐿
+
(𝑍, 𝑌), we have

𝑇 [𝐺 (𝑥)] ⊂ 𝑇 (−𝐷) ⊂ −𝐶. (100)

Thus,

⋃

𝑥∈𝑋

L (𝑥, 𝑇) − 𝐶 − 𝑦

= ⋃

𝑥∈𝑋

[𝐹 (𝑥) + 𝑇 [𝐺 (𝑥)]] − 𝐶 − 𝑦

= ⋃

𝑥∈𝑋

𝑇 [𝐺 (𝑥)] + 𝐹 (𝑥) − 𝐶 − 𝑦

⊂ 𝐹 (𝑥) − 𝐶 − 𝐶 − 𝑦

⊂ 𝐹 (𝑥) − 𝐶 − 𝑦.

(101)

Therefore, by (99), we have

cl[⋃

𝑥∈𝑋

L (𝑥, 𝑇) − 𝐶 − 𝑦] ∩ 𝐶 = {0
𝑌
} , (102)

that is, 𝑦 ∈ 𝑆𝑡𝑀[⋃
𝑥∈𝑋

L(𝑥, 𝑇)]. Therefore, this proof is
completed.

By Lemmas 25 and 27 and Theorem 26, we can obtain
immediately the following corollary.

Corollary 28. Let 𝐹 be nearly 𝐶-convexlike on𝐴, let (𝐹, 𝐺) be
nearly (𝐶×𝐷)-convexlike on𝐴, and let (VP) satisfy generalized
Slater constrained qualification.

(i) If (𝑥, 𝑇) is a strict saddle point of the mapL, then 𝑥 is
strictly efficient solution of (VP).

(ii) If (𝑥, 𝑦) is a strictly efficient minimizer of (VP) and
𝐺(𝑥) ⊂ −𝐷, 𝑦 ∈ 𝑆𝑡𝑀[𝐹(𝑥), 𝐶], then there exists
𝑇 ∈ 𝐿

+
(𝑍, 𝑌) such that (𝑥, 𝑇) is a strict saddle point

of the mapL.
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