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This study presents an effective approach to realize the optimal H∞ exponential synchronization of multiple time-delay chaotic
(MTDC) systems. First, a neural network (NN) model is employed to approximate the MTDC system. Then, a linear differential
inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space
representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of
Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently,
the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Based on the LMI, a fuzzy controller
is synthesized not only to realize the exponential synchronization but also to achieve the optimal H∞ performance by minimizing
the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed
throughout this work.

1. Introduction

In practice, due to information transmission, time delays
naturally exist in many systems. The existence of time delay
is frequently a source of instability and is encountered in var-
ious engineering systems [1–5]. Consequently, the problem
of stability analysis in time-delay systems remains a major
focus of researchers wishing to inspect the properties of such
systems.

Since chaotic phenomenon in time-delay systems was
first found byMackey andGlass [6], there has been increasing
interest in time-delay chaotic systems. Chaos is a well-
known nonlinear phenomenon, and it is irregular, seemingly
random and extremely sensitive to initial conditions [7].
Based on these properties, chaos has received a great deal
of interest among scientists from various research fields [8–
12]. One of its research fields for communication, chaotic
synchronization, has been investigated extensively.

The chaotic synchronization proposed by Pecora and
Carroll in 1990 [13] is intended to control one chaotic system
to follow another. Since the introduction of this concept, var-
ious synchronization approaches, such as nonlinear feedback
control [14] and adaptive control [15], have been widely
developed in the past two decades. Chaos synchronization
can be applied in the vast areas of physics and engineering
science, especially in secure communication [16]. Therefore,
chaotic synchronization has become a popular study [14–23].

In real physical systems, some noises or disturbances
always exist that may cause instability and thereby destroy
the synchronization performance. Hence, how to reduce the
effect of external disturbances in synchronization process
for chaotic systems is an important issue [24, 25]. The 𝐻

∞

control has been conferred for synchronization in chaotic
systems over the last few years [24–28]. And the𝐻∞ synchro-
nization problem was also investigated extensively for time-
delay chaotic systems (see, e.g., [25, 29–31]). Accordingly,
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the objective of this study is to realize the exponential
synchronization of multiple time-delay chaotic (MTDC) sys-
tems, and at the same time the effect of external disturbance
on control performance is attenuated to a minimum level.

Neural-network- (NN-) based modeling has become an
active research field in the past few years due to its unique
merits in solving complex nonlinear system identification
and control problems [32–37]. Over the past decade, fuzzy
control has rapidly developed in both the academic and
industrial communities and there have been many successful
applications. Despite the successes of fuzzy control, it has
become evident that many basic problems remain to be
solved. Stability analysis and systematic design are certainly
among the most important issues for fuzzy control systems.
Lately, there have been significant research efforts devoted
to these issues (see [38–41]). However, all of them neglect
the modeling errors between nonlinear systems and fuzzy
models. The existence of modeling errors may be a potential
source of instability for control designs based on the assump-
tion that the fuzzy model exactly matches the nonlinear plant
[42]. Recently, Kiriakidis [42], Chen et al. [43, 44], and Cao
et al. [45, 46] proposed novel approaches to overcome the
influence ofmodeling errors in the field ofmodel-based fuzzy
control for nonlinear systems.

Consequently, an effective method is proposed via
neural-network- (NN-) based technique to realize the opti-
mal 𝐻∞ exponential synchronization of multiple time-delay
chaotic (MTDC) systems in this study. Based on the above,
the trajectories of slave systems can approach those of master
systems and the effect of external disturbance on control
performance is attenuated to a minimum level.

This study is organized as follows.The system description
is arranged in Section 2. In Section 3, a robustness design
of fuzzy controllers is proposed to realize the optimal 𝐻∞

exponential synchronization. The design algorithm is shown
in Section 4. In Section 5, the effectiveness of the proposed
approach is illustrated by a numerical example. Finally, the
conclusions are drawn in Section 6.

2. System Description

Consider a pair of multiple time-delay chaotic (MTDC)
systems in master-slave configuration. The dynamics of the
master system (𝑁

𝑚
) and slave system (𝑁

𝑠
) are described as

follows:

𝑁
𝑚
: 𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑚

∑

𝑘 =1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) , (1)

𝑁
𝑠
:
̂̇
𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑚

∑

𝑘 =1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) + 𝐵𝑈 (𝑡) + 𝜕 (𝑡) ,

(2)

where 𝑓(⋅) and 𝐻
𝑘
(⋅) are the nonlinear vector-valued

functions, 𝜕(𝑡) denotes the external disturbance, 𝜏
𝑘
(𝑘 =

1, 2, . . . , 𝑚) are the time delays, and 𝑈(𝑡) is the control input.
Moreover, 𝑋(𝑡) and 𝑋(𝑡) are the state vectors of 𝑁

𝑚
and 𝑁

𝑠
,

respectively.

𝑥1(𝑡)...
𝑥𝛿(𝑡)

...

...

...
...

...

...

∑

· · ·

· · ·
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Figure 1: An NN model.

In this section, a neural network (NN) model is first
established to approximate the MTDC system.The dynamics
of the NN model are then converted into a linear differential
inclusion (LDI) state-space representation. Finally, on the
basis of the LDI state-space representation, a fuzzy controller
is synthesized to realize the synchronization of MTDC
systems.

2.1. Neural Network (NN) Model. The MTDC system can be
approximated by an NNmodel, as shown in Figure 1, that has
𝑆 layers with 𝐽

𝜎

(𝜎 = 1, 2, . . . , 𝑆) neurons for each layer, in
which 𝑥

1
(𝑡) ∼ 𝑥

𝛿
(𝑡) are the state variables and 𝑥

1
(𝑡 − 𝜏

1
) ∼

𝑥
1
(𝑡 − 𝜏

𝑚
), 𝑥

2
(𝑡 − 𝜏

1
) ∼ 𝑥

𝛿
(𝑡 − 𝜏

𝑚
) are the state variables with

delays.
To distinguish among these layers, the superscripts are

used for identifying the layers. Specifically, we append the
number of the layer as a superscript to the names for each
of these variables. Thus, the weight matrix for the 𝜎th layer
is written as 𝑊

𝜎. Moreover, it is assumed that V𝜎
𝜍
(𝑡) (𝜍 =

1, 2, . . . , 𝐽
𝜎

; 𝜎 = 1, 2, . . . , 𝑆) is the net input and 𝑇(V𝜎
𝜍
(𝑡)) is

the transfer function of the neuron. Subsequently, the transfer
function vector of the 𝜎th layer is defined as

Ψ
𝜎

(V
𝜎

𝜍
(𝑡)) ≡ [𝑇 (V

𝜎

1
(𝑡)) 𝑇 (V

𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V

𝜎

𝐽
𝜎 (𝑡))]

𝑇

,

𝜎 = 1, 2, . . . , 𝑆,

(3)

where 𝑇(V𝜎
𝜍
(𝑡)) (𝜍 = 1, 2, . . . , 𝐽

𝜎

) is the transfer function of
the 𝜍th neuron. The final output of NN model can then be
inferred as follows:

𝑋̇ (𝑡) = Ψ
𝑆

(𝑊
𝑆

Ψ
𝑆−1

(𝑊
𝑆−1

Ψ
𝑆−2

× (⋅ ⋅ ⋅ Ψ
2

(𝑊
2

Ψ
1

(𝑊
1

Λ (𝑡))) ⋅ ⋅ ⋅ ))) ,

(4)
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where

Λ
𝑇

(𝑡) = [𝑋
𝑇

(𝑡) 𝑋
𝑇

(𝑡 − 𝜏
𝑘
)] (5)

with

𝑋 (𝑡) = [𝑥
1
(𝑡) 𝑥

2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝛿
(𝑡)]

𝑇

,

𝑋 (𝑡 − 𝜏
𝑘
) = [𝑥

1
(𝑡 − 𝜏

1
) ⋅ ⋅ ⋅ 𝑥

1
(𝑡 − 𝜏

𝑚
) 𝑥

2
(𝑡 − 𝜏

1
)

⋅ ⋅ ⋅ 𝑥
𝛿
(𝑡 − 𝜏

𝑚
)]
𝑇 for 𝑘 = 1, 2, . . . , 𝑚.

(6)

2.2. Linear Differential Inclusion (LDI). To deal with the
synchronization problem of MTDC systems, this study
establishes the following LDI state-space representation for
the dynamics of the NN model, described as [47, 48]:

𝑂̇ (𝑡) = 𝐴 (𝑎 (𝑡)) 𝑂 (𝑡) ,

𝐴 (𝑎 (𝑡)) =

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑎 (𝑡)) 𝐴

𝑖
,

(7)

where 𝜙 is a positive integer, 𝑎(𝑡) is a vector signifying the
dependence of ℎ

𝑖
(⋅) on its elements, 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝜙) are

constant matrices, and 𝑂(𝑡) = [𝑜
1
(𝑡) 𝑜

2
(𝑡) ⋅ ⋅ ⋅ 𝑜

ℵ
(𝑡)]

𝑇.
Furthermore, it is assumed that ℎ

𝑖
(𝑎(𝑡)) ≥ 0 and

∑
𝜙

𝑖 =1
ℎ
𝑖
(𝑎(𝑡)) = 1. Based on the properties of LDI, without

loss of generality, we can use ℎ
𝑖
(𝑡) instead of ℎ

𝑖
(𝑎(𝑡)). The

following procedure represents the dynamics of the NN
model (4) by LDI state-space representation [47].

To begin with, notice that the output 𝑇(V𝜎
𝜍
(𝑡)) satisfies

𝑔
𝜎

𝜍0
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍1
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) ≥ 0,

𝑔
𝜎

𝜍1
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍0
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) < 0,

(8)

where 𝑔
𝜎

𝜍0
and 𝑔

𝜎

𝜍1
denote the minimum and the maximum

of the derivative of 𝑇(V𝜎
𝜍
(𝑡)), respectively, and are given in the

following:

𝑔
𝜎

𝜍𝜑
=

{{{{{

{{{{{

{

min
V

𝑑𝑇 (V𝜎
𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

when 𝜑 = 0,

max
V

𝑑𝑇 (V𝜎
𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

when 𝜑 = 1.

(9)

Subsequently, the min-max matrix 𝐺
𝜎 of the 𝜎th layer is

defined as follows:

𝐺
𝜎

≡ diag [𝑔
𝜎

𝜍𝜑
𝜍

] =

[
[
[
[
[
[
[
[

[

𝑔
𝜎

1𝜑
1

0 0 ⋅ ⋅ ⋅ 0

0 𝑔
𝜎

2𝜑
2

0 d 0

0 0 𝑔
𝜎

3𝜑
3

0
...

... d 0 d 0

0 0 ⋅ ⋅ ⋅ 0 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

]
]
]
]
]
]
]
]

]

. (10)

Moreover, based on the interpolation method, the transfer
function 𝑇(V𝜎

𝜍
(𝑡)) can be represented as follows [47]:

𝑇 (V
𝜎

𝜍
(𝑡)) = (ℎ

𝜎

𝜍0
(𝑡) 𝑔

𝜎

𝜍0
+ ℎ

𝜎

𝜍1
(𝑡) 𝑔

𝜎

𝜍1
) V

𝜎

𝜍
(𝑡)

= (

1

∑

𝜑=0

ℎ
𝜎

𝜍𝜑
(𝑡) 𝑔

𝜎

𝜍𝜑
) V

𝜎

𝜍
(𝑡) ,

(11)

where the interpolation coefficients ℎ
𝜎

𝜍𝜑
(𝑡) ∈ [0, 1] and

∑
1

𝜑= 0
ℎ
𝜎

𝜍𝜑
(𝑡) = 1. Equations (3) and (11) show that

Ψ
𝜎

(V
𝜎

𝜍
(𝑡)) ≡ [𝑇 (V𝜎

1
(𝑡)) 𝑇 (V𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V𝜎

𝐽
𝜎 (𝑡))]

𝑇

= [(

1

∑

𝜑
1
= 0

ℎ
𝜎

1𝜑
1

(𝑡) 𝑔
𝜎

1𝜑
1

) V
𝜎

1
(𝑡) (

1

∑

𝜑
2
= 0

ℎ
𝜎

2𝜑
2

(𝑡) 𝑔
𝜎

2𝜑
2

)

× V
𝜎

2
(𝑡) ⋅ ⋅ ⋅ (

1

∑

𝜑
𝐽
= 0

ℎ
𝜎

𝐽
𝜎
𝜑
𝐽

(𝑡) 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

) V
𝜎

𝐽
𝜎 (𝑡)]

]

𝑇

.

(12)

Therefore, the final output of the NN model (4) can be
reformulated as follows:

𝑋̇ (𝑡) =

1

∑

𝑝= 0

ℎ
𝑆

𝜍𝑝
(𝑡) 𝐺

𝑆

× (𝑊
𝑆

[⋅ ⋅ ⋅ [

1

∑

𝑛 = 0

ℎ
2

𝜍𝑛
(𝑡) 𝐺

2

× (𝑊
2

[

1

∑

𝑏 = 0

ℎ
1

𝜍𝑏
(𝑡) 𝐺

1

× (𝑊
1

Λ (𝑡)) ])] ⋅ ⋅ ⋅ ])

=

1

∑

𝑝= 0

⋅ ⋅ ⋅

1

∑

𝑛 = 0

1

∑

𝑏 = 0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

Λ (𝑡)

= ∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) 𝐶

𝜎

Ω
Λ (𝑡) ,

(13)
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where

1

∑

𝑏 = 0

ℎ
1

𝜍𝑏
(𝑡) ≡

1

∑

𝑏
1
= 0

ℎ
1

1𝑏
1

(𝑡)

1

∑

𝑏
2
= 0

ℎ
1

2𝑏
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑏
𝐽
= 0

ℎ
1

𝐽
1
𝑏
𝐽

(𝑡) ,

1

∑

𝑛 = 0

ℎ
2

𝜍𝑛
(𝑡) ≡

1

∑

𝑛
1
= 0

ℎ
2

1𝑛
1

(𝑡)

1

∑

𝑛
2
= 0

ℎ
2

2𝑛
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑛
𝐽
= 0

ℎ
2

𝐽
2
𝑛
𝐽

(𝑡) ,

...

1

∑

𝑝= 0

ℎ
𝑆

𝜍𝑝
(𝑡) ≡

1

∑

𝑝
1
= 0

ℎ
𝑆

1𝑝
1

(𝑡)

1

∑

𝑝
2
= 0

ℎ
𝑆

2𝑝
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑝
𝐽
= 0

ℎ
𝑆

𝐽
𝑆
𝑝
𝐽

(𝑡) ,

∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) ≡

1

∑

𝑝= 0

⋅ ⋅ ⋅

1

∑

𝑛 = 0

1

∑

𝑏 = 0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) ,

𝜍 = 1, 2, . . . , 𝐽
𝜎

; 𝐶
𝜎

Ω
≡ 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

(14)

and 𝑏
𝜍
, 𝑛

𝜍
, 𝑝

𝜍
(𝜍 = 1, 2, . . . , 𝐽

𝜎) represent the variables 𝜑

of the 𝜍th neuron of the first, second, and the Sth layer,
respectively. Finally, according to (7), the dynamics of theNN
model (13) can be rewritten as the following LDI state-space
representation:

𝑋̇ (𝑡) =

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) 𝐶

𝑖
Λ (𝑡) , (15)

where ℎ
𝑖
(𝑡) ≥ 0, ∑𝜙

𝑖 =1
ℎ
𝑖
(𝑡) = 1, 𝜙 is a positive integer, and 𝐶

𝑖

is a constant matrix with appropriate dimension associated
with 𝐶

𝜎

Ω
. Moreover, the LDI state-space representation (15)

can be rearranged as follows:

𝑋̇ (𝑡) =

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (16)

where𝐴
𝑖
and𝐴

𝑖𝑘
are the partitions of𝐶

𝑖
corresponding to the

partitions of Λ𝑇

(𝑡).
From the above, the NN models of the master and slave

chaotic systems are described by the following LDI state-
space representations (17) and (18), respectively:

Master: 𝑋̇ (𝑡) =

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)}

(17)

Slave: ̇̂
𝑋 (𝑡) =

𝜙

∑

𝑗 =1

ℎ̂
𝑗
(𝑡) [𝐴

𝑗
𝑋 (𝑡) +

𝑚

∑

𝑘 =1

̂
𝐴
𝑗𝑘
𝑋(𝑡 − 𝜏

𝑘
)]

+ 𝐵𝑈 (𝑡) .

(18)

2.3. Fuzzy Controller. According to the control scheme, a
fuzzy controller is utilized to make the slave system synchro-
nize with the master system.

The fuzzy controller takes the following form:
Control Rule 𝑙:

IF 𝑒
1
(𝑡) is 𝑀

𝑙1
and ⋅ ⋅ ⋅ and 𝑒

𝛿
(𝑡) is 𝑀

𝑙𝛿

THEN 𝑈 (𝑡) = −𝐾
𝑙
𝐸 (𝑡) ,

(19)

where 𝑙 = 1, 2, . . . , 𝜌, and 𝜌 is the number of IF-THEN rules
of the fuzzy controller and𝑀

𝑙𝜂
(𝜂 = 1, 2, . . . , 𝛿) are the fuzzy

sets. Hence, the final output of this fuzzy controller can be
inferred as follows:

𝑈 (𝑡) =
−∑

𝜌

𝑙 =1
𝑤
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
𝜌

𝑙 =1
𝑤
𝑙
(𝑡)

= −

𝜌

∑

𝑙 =1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) ,

(20)

with 𝑤
𝑙
(𝑡) ≡ ∏

𝛿

𝜂 =1
𝑀

𝑙𝜂
(𝑒
𝜂
(𝑡)), ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/(∑

𝜌

𝑙 =1
𝑤
𝑙
(𝑡)),

in which 𝑀
𝑙𝜂
(𝑒
𝜂
(𝑡)) is the grade of membership of 𝑒

𝜂
(𝑡) in

𝑀
𝑙𝜂
. In this study, it is also assumed that 𝑤

𝑙
(𝑡) ≥ 0 (𝑙 =

1, 2, . . . , 𝜌) and ∑
𝜌

𝑙 =1
𝑤
𝑙
(𝑡) > 0 for all 𝑡. Therefore, ℎ

𝑙
(𝑡) ≥ 0

and ∑
𝜌

𝑙 =1
ℎ
𝑙
(𝑡) = 1 for all 𝑡.

3. Robustness Design of Chaotic
Synchronization and Stability Analysis

In this section, the synchronization of multiple time-delay
chaotic (MTDC) systems is examined under the influence of
modeling error.

3.1. Error Systems. From (1) and (2), the synchroniza-
tion error is defined as 𝐸(𝑡) ≡ 𝑋(𝑡) − 𝑋(𝑡) =

[𝑒
1
(𝑡), 𝑒

2
(𝑡), . . . , 𝑒

𝛿
(𝑡)]

𝑇 and then the dynamics of the error
system under the fuzzy control (20) can be described as
follows:

𝐸̇ (𝑡) = Γ̂ + 𝜕 (𝑡) − Γ

+

𝜙

∑

𝑖 =1

𝜙

∑

𝑗 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ̂

𝑗
(𝑡) ℎ

𝑙
(𝑡)

× {𝐷
𝑖𝑙
𝐸 (𝑡) + (𝐴

𝑗
− 𝐴

𝑖
)𝑋 (𝑡)

+

𝑚

∑

𝑘 =1

(
̂
𝐴
𝑗𝑘

− 𝐴
𝑖𝑘
)𝑋 (𝑡 − 𝜏

𝑘
)

+

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

−

𝜙

∑

𝑖 =1

𝜙

∑

𝑗 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ̂

𝑗
(𝑡) ℎ

𝑙
(𝑡)
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× {𝐷
𝑖𝑙
𝐸 (𝑡) + (𝐴

𝑗
− 𝐴

𝑖
)𝑋 (𝑡)

+

𝑚

∑

𝑘 =1

(
̂
𝐴
𝑗𝑘

− 𝐴
𝑖𝑘
)𝑋 (𝑡 − 𝜏

𝑘
)

+

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

=

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

× {𝐷
𝑖𝑙
𝐸 (𝑡) +

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

+ 𝜕 (𝑡) + Φ (𝑡) ,

(21)

where𝐷
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
,

Γ̂ ≡ 𝑓 (𝑋 (𝑡)) +

𝑚

∑

𝑘 =1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) + 𝑈 (𝑡) ,

Γ ≡ 𝑓 (𝑋 (𝑡)) +

𝑚

∑

𝑘 =1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
))

(22)

with

𝑈 (𝑡) = −

𝜌

∑

𝑙 =1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) ,

Φ (𝑡) ≡ Γ̂ − Γ − {

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐷

𝑖𝑙
𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]} .

(23)

Suppose that there exists a bounding matrix Δ𝑌
𝑖𝑙
such that

‖Φ (𝑡)‖ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) Δ𝑌

𝑖𝑙
𝐸 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(24)

for the trajectory 𝐸(𝑡), and the bounding matrix Δ𝑌
𝑖𝑙
can be

described as follows:

Δ𝑌
𝑖𝑙
= 𝜅

𝑖𝑙
𝑌, (25)

where 𝑌 is the specified structured bounding matrix and
‖𝜅

𝑖𝑙
‖ ≤ 1 for 𝑖 = 1, 2, . . . , 𝜙; 𝑙 = 1, 2, . . . , 𝜌. Equations (24)

and (25) show that

Φ
𝑇

(𝑡) Φ (𝑡) ≤ [

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) Δ𝑌

𝑖𝑙
𝐸 (𝑡)]

𝑇

× [

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) Δ𝑌

𝑖𝑙
𝐸 (𝑡)]

≤

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) ‖𝑌𝐸 (𝑡)‖

󵄩󵄩󵄩󵄩𝜅𝑖𝑙
󵄩󵄩󵄩󵄩

×

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

󵄩󵄩󵄩󵄩𝜅𝑖𝑙
󵄩󵄩󵄩󵄩 ‖𝑌𝐸 (𝑡)‖

≤ [𝑌𝐸 (𝑡)]
𝑇

[𝑌𝐸 (𝑡)] ≤ 𝐸
𝑇

(𝑡) 𝑌
𝑇

𝑌𝐸 (𝑡) .

(26)

Namely, Φ(𝑡) is bounded by the specified structured bound-
ing matrix 𝑌.

Remark 1 (see [43]). The following simple example describes
the procedures for determining 𝜅

𝑖𝑙
and 𝑌. First, assume that

the possible bounds for all elements in Δ𝑌
𝑖𝑙
are

Δ𝑌
𝑖𝑙
=

[
[
[
[
[

[

Δ𝑦
11

𝑖𝑙
Δ𝑦

12

𝑖𝑙
Δ𝑦

13

𝑖𝑙

Δ𝑦
21

𝑖𝑙
Δ𝑦

22

𝑖𝑙
Δ𝑦

23

𝑖𝑙

Δ𝑦
31

𝑖𝑙
Δ𝑦

32

𝑖𝑙
Δ𝑦

33

𝑖𝑙

]
]
]
]
]

]

, (27)

where −𝑦
𝑞𝑠

≤ Δ𝑦
𝑞𝑠

𝑖𝑙
≤ 𝑦

𝑞𝑠 for some 𝑦
𝑞𝑠

𝑖𝑙
with q, 𝑠 = 1, 2, 3;

𝑖 = 1, 2, . . . , 𝜙; and 𝑙 = 1, 2, . . . , 𝜌.
A possible description for the bounding matrix Δ𝑌

𝑖𝑙
is

Δ𝑌
𝑖𝑙
= [

[

𝜅
11

𝑖𝑙
0 0

0 𝜅
22

𝑖𝑙
0

0 0 𝜅
33

𝑖𝑙

]

]

[

[

𝑦
11

𝑦
12

𝑦
13

𝑦
21

𝑦
22

𝑦
23

𝑦
31

𝑦
32

𝑦
33

]

]

= 𝜅
𝑖𝑙
𝑌, (28)

where −1 ≤ 𝜅
𝑞𝑞

𝑖𝑙
≤ 1 for 𝑞 = 1, 2, 3. Notice that 𝜅

𝑖𝑙
can be

chosen by other forms as long as ‖𝜅
𝑖𝑙
‖ ≤ 1. Then, we check

the validity of (24) in the simulation. If it is not satisfied, we
can expand the bounds for all elements in Δ𝑌

𝑖𝑙
and repeat the

design procedure until (24) holds.

3.2. Delay-Dependent Stability Criterion for Exponential 𝐻∞

Synchronization. In this subsection, a delay-dependent cri-
terion is proposed to guarantee the exponential stability of
the error system described in (21). Moreover, in real physical
systems, some noises or disturbances always exist that may
cause instability and thereby destroy the synchronization
performance. To reduce the effect of the external disturbance,
an optimal𝐻∞ scheme is used to design the fuzzy control so
that the effect of external disturbance on control performance
can be attenuated to a minimum level. In other words, in this
study, the fuzzy controller (20) not only realizes exponential
synchronization but also achieves the optimal 𝐻∞ control
performance.
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Prior to the examination of the stability of the error
system, some definitions and a lemma are given next.

Definition 2 (see [49]). The slave system (2) can exponentially
synchronize with the master system (1) (i.e., the error system
(21) is exponentially stable) if there exist two positive num-
bers 𝛼 and 𝛽 such that the synchronization error satisfies

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
)) , ∀𝑡 ≥ 0. (29)

The positive number 𝛽 is called the exponential convergence
rate.

Definition 3 (see [24–28]). The master system (1) and slave
system (2) are said to be exponential 𝐻∞ synchronization if
the following conditions are satisfied:

(i) in the case of 𝜕(𝑡) = 0, the error system (21) is
exponentially stable,

(ii) under the zero initial conditions (i.e., 𝐸(𝑡) = 0 for 𝑡 ∈

[−𝜏max, 0], in which 𝜏max is the maximal value of 𝜏
𝑘
’s)

and a given constant 𝛾 > 0, the following condition
holds:

Θ (𝐸 (𝑡) , 𝜕 (𝑡)) = ∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 − 𝛾
2

∫

∞

0

𝜕
𝑇

(𝑡) 𝜕 (𝑡) 𝑑𝑡

≤ 0,

(30)

where the parameter 𝛾 is called the 𝐻
∞-norm bound or the

disturbance attenuation level. If the minimum 𝛾 is found
(i.e., the error system can reject the external disturbance as
strongly as possible) to satisfy the above conditions, the fuzzy
controller (20) is an optimal𝐻∞ synchronizer [25].

Lemma 4 (see [50]). For the real matrices A and B with
appropriate dimension, one has:

𝐴
𝑇

𝐵 + 𝐵
𝑇

𝐴 ≤ 𝜆𝐴
𝑇

𝐴 + 𝜆
−1

𝐵
𝑇

𝐵, (31)
where 𝜆 is a positive constant.

Theorem 5. For given positive constants a and n, if there
exist symmetric positive definite matrices 𝑃, 𝜓

𝑘
and positive

constant c, 𝛾 such that the following inequalities hold, then
the exponential 𝐻

∞ synchronization with the disturbance
attenuation 𝛾 is guaranteed via the fuzzy controller (20):

𝛾 > √𝑐𝑚, (32a)

Δ
𝑖𝑙
≡

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 +

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑃𝐷

𝑖𝑙

+

𝑚

∑

𝑘=1

𝜏
2

𝑘
𝑃
2

(𝑐
−1

+ 𝑛
−1

+ 𝑚𝑎
−1

)

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑌

𝑇

𝑌 + 𝐼

< 0,

(32b)

∇
𝑖𝑘

≡ 𝑚𝑎𝐴
𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘
< 0, (32c)

where 𝐷
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑚 and

𝑙 = 1, 2, . . . , 𝜌.

Proof. See the appendix.

Remark 6. Based on (24), Φ(𝑡) is assumed to be bounded
by the specified structured bounding matrix 𝑌 and then the
larger Φ(𝑡) results in larger 𝑌. Since the matrices Δ

𝑖𝑙
must

be negative definite to meet the stability condition (32b), the
larger 𝑌 will makeTheorem 5 more difficult to satisfy.

Corollary 7. Equations (32b) and (32c) can be reformulated
into LMIs via the following procedure.

By introducing the new variables 𝑄 = 𝑃
−1, 𝐹

𝑙
= 𝐾

𝑙
𝑄, and

𝜓
𝑘
= 𝑄𝜓

𝑘
𝑄, (32b) and (32c) can be rewritten as follows:

𝑚

∑

𝑘 =1

𝜏
𝑘
{𝑄𝐴

𝑇

𝑖
− 𝐹

𝑇

𝑙
𝐵
𝑇

+ 𝐴
𝑖
𝑄 − 𝐵𝐹

𝑙
}

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
(𝑐

−1

+ 𝑛
−1

+ 𝑚𝑎
−1

) 𝐼

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑄𝑌

𝑇

𝑌𝑄 + 𝑄
𝑇

𝑄

< 0,

(33a)

𝑚𝑎𝑄
𝑇

𝐴
𝑇

𝑖𝑘
𝐴
𝑖𝑘
𝑄 − 𝜓

𝑘
< 0 (33b)

for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑚, and 𝑙 = 1, 2, . . . , 𝜌. Based
on Schur’s complement [47], it is easy to show that the linear
matrix inequalities in (33a) and (33b) are equivalent to the
following LMIs in (34a) and (34b):

[
Ξ 𝑄𝑌

𝑇

𝑌𝑄
𝑇

−(𝑛𝑚)
−1

𝐼
] < 0, (34a)

[
−𝜓

𝑘
𝑄𝐴

𝑇

𝑖𝑘

𝐴
𝑖𝑘
𝑄 −(𝑎𝑚)

−1

𝐼
] < 0, (34b)

where

Ξ ≡

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑄𝐴

𝑇

𝑖
−

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐹
𝑇

𝑙
𝐵
𝑇

+

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐴
𝑖
𝑄 −

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐵𝐹

𝑙

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
(𝑐

−1

+ 𝑛
−1

+ 𝑚𝑎
−1

) 𝐼

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑄

𝑇

𝑄.

(34c)
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Therefore, Theorem 5 can be transformed into an LMI
problem, and efficient interior-point algorithms are now avail-
able in MATLAB LMI Solver to solve this problem.

Corollary 8 (see [51]). To verify the feasibility of solving the
inequalities in (34a), (34b) by LMI Solver (MATLAB), the
interior-point optimization techniques are utilized to compute
feasible solutions. Such techniques require that the system of
LMI is constrained to be strictly feasible; that is, the feasible
set has a nonempty interior. For feasibility problems, the LMI
Solver by feasp (feasp is the syntax used to test feasibility of a
system of LMIs in MATLAB) is shown as follows:

Find 𝑥 such that the LMI 𝐿 (𝑥) < 0 (35)

(in this study, (35) can be represented as (34a), (34b))
as

Minimize 𝑡 subject to 𝐿 (𝑥) < 𝑡 × 𝐼. (36)

From the above, the LMI constraint is always strictly
feasible in 𝑥, 𝑡 and the original LMI (35) is feasible if and only
if the global minimum 𝑡min of (36) satisfies 𝑡min< 0. In other
words, if 𝑡min< 0 will make (34a) and (34b) satisfied, then
the stability conditions (32b) and (32c) in Theorem 5 can be
met.Then, the obtained fuzzy controller (20) can exponentially
stabilize the error system, and the 𝐻

∞ control performance is
achieved at the same time.

Remark 9. To reduce the computational burden, this study
sets the positive constants a and n as unity.

Remark 10. It is an important issue to reduce the effect of
external disturbances in synchronization process. The 𝐻

∞-
norm bound 𝛾 is generally chosen as a positive small value
less than unity for attenuation of disturbance. A smaller
𝛾 is desirable as this yields better performance. However,
a smaller 𝛾 will result in a smaller 𝑐, making the stability
conditions (32b) more difficult to satisfy.

Corollary 11. To achieve optimal 𝐻∞ exponential synchro-
nization, the fuzzy control design is formulated as the following
constrained optimization problem:

minimize 𝛾 > √𝑐𝑚

subject to 𝑄 = 𝑄
𝑇

> 0,

𝜓
𝑘
= 𝜓

𝑇

𝑘
> 0, (34a) 𝑎𝑛𝑑 (34b) .

(37)

More details to search the minimum 𝛾 are given as follows.
The positive constant 𝑐 is minimized by the mincx function

of MATLAB LMI Toolbox. Therefore, the minimum distur-
bance attenuation level 𝛾

𝑚𝑖𝑛
> √𝑐

𝑚𝑖𝑛
𝑚 can be obtained.

Thecomplete design procedure can be summarized in the
following section.

4. Algorithm

Problem 1. Given two multiple time-delay chaotic systems
with different initial conditions, how can a fuzzy controller be
synthesized to realize the optimal 𝐻∞ exponential synchro-
nization?

This problem can be solved according to the following
steps.

Step 1. Construct the neural network (NN) models of the
master system (1) and the slave system (2), respectively. On
the basis of the interpolationmethod, theNNmodels are then
converted into LDI state-space representations.

Step 2. According to the state-feedback control scheme, a
fuzzy controller (20) is synthesized to exponentially stabilize
the error system.

Step 3. Define the synchronization error 𝐸(𝑡) = 𝑋(𝑡) −

𝑋(𝑡), and then the dynamics of the error system (21) can be
obtained.

Step 4. Based on Corollary 11, the positive constant 𝑐 is
minimized by the mincx function of MATLAB LMI Toolbox
and thenwe have theminimumdisturbance attenuation level.

Step 5. The matrices 𝑃, 𝐹
𝑙
, and 𝜓

𝑘
can be obtained with the

minimum disturbance attenuation 𝛾min.

5. Numerical Example

The following example is given to illustrate the effectiveness
of the proposed algorithm.

Problem2.Thepurpose of this example is to synthesize a fuzzy
controller to achieve optimal 𝐻∞ exponential synchroniza-
tion. Consider a pair of modified multiple time-delay Chen’s
chaotic systems in master-slave configuration, described as
follows:

𝑥̇
1
(𝑡) = 35 (𝑥

2
(𝑡) − 𝑥

1
(𝑡)) ,

𝑥̇
2
(𝑡) = − 7𝑥

1
(𝑡 − 0.15) − 𝑥

1
(𝑡) 𝑥

3
(𝑡) + 28𝑥

2
(𝑡 − 0.055)

𝑥̇
3
(𝑡) = 𝑥

1
(𝑡) 𝑥

2
(𝑡) − 3𝑥

3
(𝑡 − 0.12) ,

(38)

̇̂𝑥
1
(𝑡) = 35 (𝑥

2
(𝑡) − 𝑥

1
(𝑡)) + 𝜕 (𝑡) + 𝑢

1
(𝑡) ,

̇̂𝑥
2
(𝑡) = −7𝑥

1
(𝑡 − 0.15) − 𝑥

1
(𝑡) 𝑥

3
(𝑡) + 28𝑥

2
(𝑡 − 0.055)

+ 𝜕 (𝑡) + 𝑢
2
(𝑡) ,

𝑥̇
3
(𝑡) = 𝑥

1
(𝑡) 𝑥

2
(𝑡) − 3𝑥

3
(𝑡 − 0.12) + 𝜕 (𝑡) + 𝑢

3
(𝑡) ,

(39)
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𝑥̂
2 (𝑡)

(b)

Figure 2: (a) Chaotic behavior of the master system (38). (b) Chaotic behavior of the slave system (39) without control.

where [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 and [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 are
the state vectors of master and slave systems, respec-
tively. Let the different initial conditions of master and
slave systems be [𝑥

1
(0) = −0.5 𝑥

2
(0) = −2 𝑥

3
(0) = 6] and

[𝑥
1
(0) = 1 𝑥

2
(0) = 2 𝑥

3
(0) = −1], and let the external dis-

turbance 𝜕(𝑡) = 0.5 sin(2.3𝑡).
Figures 2(a) and 2(b) show the chaotic behaviors of the

master (38) and slave (39) systems, respectively.

Solution. We can solve the above problem according to the
following steps.

Step 1. Establish the NN models for master and slave sys-
tems via back propagation algorithm, respectively. First, the
NN model to approximate the master chaotic system is
constructed by 4–5–3, and the transfer functions of all hidden

neurons are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = {

2

[1 + exp (−V𝜎
𝜍
(𝑡) /0.5)]

− 1}

for 𝜎 = 1, 2.

(40)

On the other hand, the transfer functions of all output
neurons are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = V

𝜎

𝜍
(𝑡) , for 𝜎 = 3. (41)

After training, we can obtain the following the connection
weights (the indices in 𝑊

𝜎

𝜍𝜗
state that the weight of the 𝜎th

layer in the NN model represents the connection to the 𝜍th
neuron from the 𝜗th source):

𝑊
1

= [𝑊
1

𝜍𝜗
] = 10

−3

×
[
[

[

−2.2596 1.9650 −0.0363 −0.0032

−15.5783 −27.7458 −63.4663 1.0173

70.0573 −51.6754 2.1679 0.2317

52.1919 −18.8304 −51.5188 1.8090

−508.2983 −548.8484 632.4534 0.0048

586.7615 −331.7273 682.0762 0.4348

807.5113 −966.2829 −831.8849 −0.2983

814.8914 −164.8514 939.5783 −1.5049

563.0571 790.8728 −126.7520 −0.0013

904.2274 −284.3785 413.0475 −4.4174

217.1861 −763.1395 788.9868 0.0089

−391.4165 −277.6515 −780.2455 −3.8781

]
]

]

,

𝑊
2

= [𝑊
2

𝜍𝜗
] = 10

−3

×

[
[
[
[
[

[

90042.4610 265.5050 1364.4214 −132.9508

−99246.709 772.631 −4313.1671 605.4461

−221487.76 −1715.2506 −9271.4255 −413.9966

−6724.7569 0949.6135 −624.7541 −433.4421

93499.239 −735.4193 4088.0257 −799.674

]
]
]
]
]

]

,

𝑊
3

= [𝑊
3

𝜍𝜗
] = 10

−3

× [

[

349642.81 39165.768 −13541.566 −87345.175 56762.8100

702.9312 844318.23 117376.51 −667488.67 393028.9

82032.708 5430424.3 −402721.53 −952938.89 5075605.6

]

]

.

(42)

Then, the net inputs of the 𝜎th (𝜎 = 1, 2, 3) layer are

V
1

𝜍
(𝑡) = 𝑊

1

𝜍1
𝑥
1
(𝑡) + 𝑊

1

𝜍2
𝑥
2
(𝑡) + 𝑊

1

𝜍3
𝑥
3
(𝑡)

+ 𝑊
1

𝜍4
𝑥
1
(𝑡 − 0.15) + 𝑊

1

𝜍5
⋅ 0 + 𝑊

1

𝜍6
⋅ 0

+ 𝑊
1

𝜍7
⋅ 0 + 𝑊

1

𝜍8
𝑥
2
(𝑡 − 0.055) + 𝑊

1

𝜍9
⋅ 0

+ 𝑊
1

𝜍10
⋅ 0 + 𝑊

1

𝜍11
⋅ 0 + 𝑊

1

𝜍12
𝑥
2
(𝑡 − 0.12) ,

𝜍 = 1, 2, 3, 4,

(43a)
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V
2

𝜍
(𝑡) = 𝑊

2

𝜍1
𝑇 (V

1

1
(𝑡)) + 𝑊

2

𝜍2
𝑇 (V

1

2
(𝑡))

+ 𝑊
2

𝜍3
𝑇 (V

1

3
(𝑡)) + 𝑊

2

𝜍4
𝑇 (V

1

4
(𝑡)) ,

𝜍 = 1, 2, 3, 4, 5,

(43b)

V
3

𝜍
(𝑡) = 𝑊

3

𝜍1
𝑇 (V

2

1
(𝑡)) + 𝑊

3

𝜍2
𝑇 (V

2

2
(𝑡))

+ 𝑊
3

𝜍3
𝑇 (V

2

3
(𝑡)) + 𝑊

3

𝜍4
𝑇 (V

2

4
(𝑡))

+ 𝑊
3

𝜍5
𝑇 (V

2

5
(𝑡)) , 𝜍 = 1, 2, 3,

(43c)

𝑋̇ (𝑡) = [

[

𝑥̇
1
(𝑡)

𝑥̇
2
(𝑡)

𝑥̇
3
(𝑡)

]

]

=

[
[
[
[

[

𝑇 (V3
1
(𝑡))

𝑇 (V3
2
(𝑡))

𝑇 (V3
3
(𝑡))

]
]
]
]

]

(43d)

(the symbol V𝜎
𝜍
denotes the net input of the 𝜍th neuron of the

𝜎th layer in the NN model, and the indices 𝜎 and 𝜍 shown in
ℎ
𝜎

𝜍𝜑
(𝜑 = 1, 2) indicate the same thing).
According to (9), the minimum and the maximum of the

derivative of each transfer function shown in (40) and (41)
can be obtained as follows:

𝑔
1

𝜍0
= 𝑔

2

𝜍0
= 0, 𝑔

3

𝜍0
= 1,

𝑔
1

𝜍1
= 𝑔

2

𝜍1
= 𝑔

3

𝜍1
= 1, for 𝜍 = 1, 2, . . . , 𝐽

𝜎

.

(44)

To simplify the notation, we let 𝑔1
𝜍0

= 𝑔
1

0
, 𝑔1

𝜍1
= 𝑔

1

1
, 𝑔2

𝜍0
=

𝑔
2

0
, 𝑔2

𝜍1
= 𝑔

2

1
, 𝑔3

𝜍0
= 𝑔

3

0
, and 𝑔

3

𝜍1
= 𝑔

3

1
. Then, based on the

interpolation method, we have

𝑥̇
1
(𝑡) =

1

∑

𝑑=0

ℎ
3

1𝑑
(𝑡) 𝑔

3

𝑑

5

∑

𝜍 =1

𝑊
3

1𝜍
𝑇 (V

2

𝜍
(𝑡))

=

1

∑

𝑑=0

ℎ
3

1𝑑
(𝑡) 𝑔

3

𝑑

5

∑

𝜍 =1

𝑊
3

1𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
𝑇 (V

1

𝜐
(𝑡))

=

1

∑

𝑑=0

ℎ
3

1𝑑
(𝑡) 𝑔

3

𝑑

5

∑

𝜍 =1

𝑊
3

1𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
(ℎ

1

𝜐0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜐1
(𝑡) 𝑔

1

1
) V

1

𝜐
(𝑡)

=

1

∑

𝑑=0

ℎ
3

1𝑑
(𝑡) 𝑔

3

𝑑

5

∑

𝜍 =1

𝑊
3

1𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

1

∑

𝑠 =0

1

∑

𝑝=0

1

∑

𝑟 =0

1

∑

𝑜 =0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡)

+ 𝑔
1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡) + 𝑔

1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡))

=

1

∑

𝑑=0

ℎ
3

1𝑑
(𝑡) 𝑔

3

𝑑

×

1

∑

𝑐 =0

1

∑

𝑙 =0

1

∑

𝑘 =0

1

∑

𝑚=0

1

∑

𝑛 =0

ℎ
2

1𝑐
(𝑡) ℎ

2

2𝑙
(𝑡)

× ℎ
2

3𝑘
(𝑡) ℎ

2

4𝑚
(𝑡) ℎ

2

5𝑛
(𝑡)

⋅

1

∑

𝑠 =0

1

∑

𝑝=0

1

∑

𝑟 =0

1

∑

𝑜 =0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

× (𝑔
2

𝑐
𝑊

3

11
𝑔
1

𝑠
𝑊

2

11
V
1

1
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

11
𝑔
1

𝑝
𝑊

2

12
V
1

2
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

11
𝑔
1

𝑟
𝑊

2

13
V
1

3
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

11
𝑔
1

𝑜
𝑊

2

14
V
1

4
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

12
𝑔
1

𝑠
𝑊

2

21
V
1

1
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

12
𝑔
1

𝑝
𝑊

2

22
V
1

2
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

12
𝑔
1

𝑟
𝑊

2

23
V
1

3
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

12
𝑔
1

𝑜
𝑊

2

24
V
1

4
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

13
𝑔
1

𝑠
𝑊

2

31
V
1

1
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

13
𝑔
1

𝑝
𝑊

2

32
V
1

2
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

13
𝑔
1

𝑟
𝑊

2

33
V
1

3
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

13
𝑔
1

𝑜
𝑊

2

34
V
1

4
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

14
𝑔
1

𝑠
𝑊

2

41
V
1

1
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

14
𝑔
1

𝑝
𝑊

2

42
V
1

2
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

14
𝑔
1

𝑟
𝑊

2

43
V
1

3
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

14
𝑔
1

𝑜
𝑊

2

44
V
1

4
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

15
𝑔
1

𝑠
𝑊

2

51
V
1

1
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

15
𝑔
1

𝑝
𝑊

2

52
V
1

2
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

15
𝑔
1

𝑟
𝑊

2

53
V
1

3
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

15
𝑔
1

𝑜
𝑊

2

54
V
1

4
(𝑡)) ,

𝑥̇
2
(𝑡) =

1

∑

𝑒 =0

ℎ
3

2𝑒
(𝑡) 𝑔

3

𝑒

5

∑

𝜍 =1

𝑊
3

2𝜍
𝑇 (V

2

𝜍
(𝑡))

=

1

∑

𝑒 =0

ℎ
3

2𝑒
(𝑡) 𝑔

3

𝑒

5

∑

𝜍 =1

𝑊
3

2𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)
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×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
𝑇 (V

1

𝜐
(𝑡))

=

1

∑

𝑒 =0

ℎ
3

2𝑒
(𝑡) 𝑔

3

𝑒

5

∑

𝜍 =1

𝑊
3

2𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
(ℎ

1

𝜐0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜐1
(𝑡) 𝑔

1

1
) V

1

𝜐
(𝑡)

=

1

∑

𝑒 =0

ℎ
3

2𝑒
(𝑡) 𝑔

3

𝑒

5

∑

𝜍 =1

𝑊
3

2𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

1

∑

𝑠 =0

1

∑

𝑝=0

1

∑

𝑟 =0

1

∑

𝑜 =0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡)

+ 𝑔
1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡) + 𝑔

1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡))

=

1

∑

𝑒 =0

ℎ
3

2𝑒
(𝑡) 𝑔

3

𝑒

1

∑

𝑐 =0

1

∑

𝑙 =0

1

∑

𝑘 =0

1

∑

𝑚=0

1

∑

𝑛=0

ℎ
2

1𝑐
(𝑡) ℎ

2

2𝑙
(𝑡) ℎ

2

3𝑘
(𝑡)

× ℎ
2

4𝑚
(𝑡) ℎ

2

5𝑛
(𝑡)

⋅

1

∑

𝑠 =0

1

∑

𝑝=0

1

∑

𝑟 =0

1

∑

𝑜 =0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

× (𝑔
2

𝑐
𝑊

3

21
𝑔
1

𝑠
𝑊

2

11
V
1

1
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

21
𝑔
1

𝑝
𝑊

2

12
V
1

2
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

21
𝑔
1

𝑟
𝑊

2

13
V
1

3
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

21
𝑔
1

𝑜
𝑊

2

14
V
1

4
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

22
𝑔
1

𝑠
𝑊

2

21
V
1

1
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

22
𝑔
1

𝑝
𝑊

2

22
V
1

2
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

22
𝑔
1

𝑟
𝑊

2

23
V
1

3
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

22
𝑔
1

𝑜
𝑊

2

24
V
1

4
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

23
𝑔
1

𝑠
𝑊

2

31
V
1

1
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

23
𝑔
1

𝑝
𝑊

2

32
V
1

2
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

23
𝑔
1

𝑟
𝑊

2

33
V
1

3
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

23
𝑔
1

𝑜
𝑊

2

34
V
1

4
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

24
𝑔
1

𝑠
𝑊

2

41
V
1

1
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

24
𝑔
1

𝑝
𝑊

2

42
V
1

2
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

24
𝑔
1

𝑟
𝑊

2

43
V
1

3
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

24
𝑔
1

𝑜
𝑊

2

44
V
1

4
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

25
𝑔
1

𝑠
𝑊

2

51
V
1

1
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

25
𝑔
1

𝑝
𝑊

2

52
V
1

2
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

25
𝑔
1

𝑟
𝑊

2

53
V
1

3
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

25
𝑔
1

𝑜
𝑊

2

54
V
1

4
(𝑡)) ,

𝑥̇
3
(𝑡) =

1

∑

𝑓= 0

ℎ
3

3𝑓
(𝑡) 𝑔

3

𝑓

5

∑

𝜍 =1

𝑊
3

3𝜍
𝑇 (V

2

𝜍
(𝑡))

=

1

∑

𝑓= 0

ℎ
3

3𝑓
(𝑡) 𝑔

3

𝑓

5

∑

𝜍 =1

𝑊
3

3𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
𝑇 (V

1

𝜐
(𝑡))

=

1

∑

𝑓= 0

ℎ
3

3𝑓
(𝑡) 𝑔

3

𝑓

5

∑

𝜍 =1

𝑊
3

3𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

4

∑

𝜐 =1

𝑊
2

𝜍𝜐
(ℎ

1

𝜐0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜐1
(𝑡) 𝑔

1

1
) V

1

𝜐
(𝑡)

=

1

∑

𝑓= 0

ℎ
3

3𝑓
(𝑡) 𝑔

3

𝑓

5

∑

𝜍 =1

𝑊
3

3𝜍
(ℎ

2

𝜍0
(𝑡) 𝑔

2

0
+ ℎ

2

𝜍1
(𝑡) 𝑔

2

1
)

×

1

∑

𝑠 =0

1

∑

𝑝=0

1

∑

𝑟 =0

1

∑

𝑜 =0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡) + 𝑔

1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡)

+ 𝑔
1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡))

=

1

∑

𝑓= 0

ℎ
3

3𝑓
(𝑡) 𝑔

3

𝑓

1

∑

𝑐 =0

1

∑

𝑙 =0

1

∑

𝑘 =0

1

∑

𝑚=0

1

∑

𝑛 =0

ℎ
2

1𝑐
(𝑡) ℎ

2

2𝑙
(𝑡) ℎ

2

3𝑘
(𝑡)

× ℎ
2

4𝑚
(𝑡) ℎ

2

5𝑛
(𝑡)

⋅

2

∑

𝑠 =1

2

∑

𝑝=1

2

∑

𝑟 =1

2

∑

𝑜 =1

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

× (𝑔
2

𝑐
𝑊

3

31
𝑔
1

𝑠
𝑊

2

11
V
1

1
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

31
𝑔
1

𝑝
𝑊

2

12
V
1

2
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

31
𝑔
1

𝑟
𝑊

2

13
V
1

3
(𝑡)

+ 𝑔
2

𝑐
𝑊

3

31
𝑔
1

𝑜
𝑊

2

14
V
1

4
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

32
𝑔
1

𝑠
𝑊

2

21
V
1

1
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

32
𝑔
1

𝑝
𝑊

2

22
V
1

2
(𝑡)

+ 𝑔
2

𝑙
𝑊

3

32
𝑔
1

𝑟
𝑊

2

23
V
1

3
(𝑡)
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+ 𝑔
2

𝑙
𝑊

3

32
𝑔
1

𝑜
𝑊

2

24
V
1

4
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

33
𝑔
1

𝑠
𝑊

2

31
V
1

1
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

33
𝑔
1

𝑝
𝑊

2

32
V
1

2
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

33
𝑔
1

𝑟
𝑊

2

33
V
1

3
(𝑡)

+ 𝑔
2

𝑘
𝑊

3

33
𝑔
1

𝑜
𝑊

2

34
V
1

4
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

34
𝑔
1

𝑠
𝑊

2

41
V
1

1
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

34
𝑔
1

𝑝
𝑊

2

42
V
1

2
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

34
𝑔
1

𝑟
𝑊

2

43
V
1

3
(𝑡)

+ 𝑔
2

𝑚
𝑊

3

34
𝑔
1

𝑜
𝑊

2

44
V
1

4
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

35
𝑔
1

𝑠
𝑊

2

51
V
1

1
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

35
𝑔
1

𝑝
𝑊

2

52
V
1

2
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

35
𝑔
1

𝑟
𝑊

2

53
V
1

3
(𝑡)

+ 𝑔
2

𝑛
𝑊

3

35
𝑔
1

𝑜
𝑊

2

54
V
1

4
(𝑡)) .

(45)

Based on (10), let

𝐺
1

=

[
[
[

[

𝑔
1

𝑠
0 0 0

0 𝑔
1

𝑝
0 0

0 0 𝑔
1

𝑟
0

0 0 0 𝑔
1

𝑜

]
]
]

]

,

𝐺
2

33
=

[
[
[
[
[

[

𝑔
2

𝑐
0 0 0 0

0 𝑔
2

𝑙
0 0 0

0 0 𝑔
2

𝑘
0 0

0 0 0 𝑔
2

𝑚
0

0 0 0 0 𝑔
2

𝑛

]
]
]
]
]

]

,

𝐺
3

=
[
[

[

𝑔
3

𝑑
0 0

0 𝑔
3

𝑒
0

0 0 𝑔
3

𝑓

]
]

]

.

(46)

Then,

𝐸
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜𝑞

≡ 𝐺
3

𝑊
3

𝐺
2

𝑊
2

𝐺
1

𝑊
1

= [ΥRℵ
]
3×12

,

R = 1, 2, 3; ℵ = 1, 2 . . . , 12.

(47)

Plugging (43a)–(43c) into (45) leads to

𝑋̇ (𝑡) =

1

∑

𝑑= 0

1

∑

𝑒 = 0

1

∑

𝑓= 0

1

∑

𝑐 = 0

1

∑

𝑙 = 0

1

∑

𝑘 = 0

1

∑

𝑚=0

1

∑

𝑛 = 0

1

∑

𝑠 = 0

1

∑

𝑝= 0

1

∑

𝑟 = 0

1

∑

𝑜 = 0

ℎ
2

1𝑑
(𝑡) ℎ

2

2𝑒
(𝑡) ℎ

2

3𝑓
(𝑡) ℎ

2

1𝑐
(𝑡) ℎ

2

2𝑙
(𝑡) ℎ

2

3𝑘
(𝑡) ℎ

2

4𝑚
(𝑡) ℎ

2

5𝑛
(𝑡)

⋅ ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡) {𝐴

𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜
𝑋 (𝑡) + 𝐴

𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜1
𝑋 (𝑡 − 0.15)

+𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜2

𝑋 (𝑡 − 0.055) + 𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜3

𝑋 (𝑡 − 0.12)} ,

(48)

where

𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜

= [

[

Υ
1 1

Υ
1 2

Υ
1 3

Υ
2 1

Υ
2 2

Υ
2 3

Υ
3 1

Υ
3 2

Υ
3 3

]

]

,

𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜1

= [

[

Υ
1 4

Υ
1 5

Υ
1 6

Υ
2 4

Υ
2 5

Υ
2 6

Υ
3 4

Υ
3 5

Υ
3 6

]

]

,

𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜2

= [

[

Υ
1 7

Υ
1 8

Υ
1 9

Υ
2 7

Υ
2 8

Υ
2 9

Υ
3 7

Υ
3 8

Υ
3 9

]

]

,

𝐴
𝑑𝑒𝑓𝑐𝑙𝑘𝑚𝑛𝑠𝑝𝑟𝑜3

= [

[

Υ
1 10

Υ
1 11

Υ
1 12

Υ
2 10

Υ
2 11

Υ
2 12

Υ
3 10

Υ
3 11

Υ
3 12

]

]

,

𝑋 (𝑡) = [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇

,

𝑋 (𝑡 − 0.15) = [𝑥
1
(𝑡 − 0.15) 0 0]

𝑇

,

𝑋 (𝑡 − 0.055) = [0 𝑥
2
(𝑡 − 0.055) 0]

𝑇

,

𝑋 (𝑡 − 0.12) = [0 0 𝑥
3
(𝑡 − 0.12)]

𝑇

.

(49)

Next, by renumbering thematrices shown in (48), theNN
model of master system can be rewritten as the following LDI
state-space representation:

𝑋̇ (𝑡) =

4096

∑

𝑖 =1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋(𝑡) +

3

∑

𝑘 =1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (50)

where 𝜏
1
= 0.15, 𝜏

2
= 0.055, 𝜏

3
= 0.12,

𝐴
1
= 𝐴

000000000000
, . . . , 𝐴

4065
= 𝐴

111111111110
,

𝐴
4096

= 𝐴
111111111111

,

𝐴
1 1

= 𝐴
000000000000 1

, . . . , 𝐴
4095 1

= 𝐴
111111111110 1

,

𝐴
4096 1

= 𝐴
111111111111 1

,

𝐴
1 2

= 𝐴
000000000000 2

, . . . , 𝐴
4095 2

= 𝐴
111111111110 2

,

𝐴
4096 2

= 𝐴
111111111111 2

,

𝐴
1 3

= 𝐴
000000000000 3

, . . . , 𝐴
4095 3

= 𝐴
111111111110 3

,

𝐴
4096 3

= 𝐴
111111111111 3

.

(51)
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Similarly, the connection weights of the NN model for
the slave system are obtained as follows:

𝑊̂
1

= [𝑊̂
1

𝜍𝜗
] = 10

−3

×[

[

133.4435 −0079.5049 −17.6211 3.3882

−62.4012 53.2513 −4.9754 0.4651

−136.5871 80.423 17.6424 −3.432

46.5562 10.9547 24.1296 −1.6127

−225.1168 −64.0209 −954.1527 −3.4193

−383.4523 −999.858 275.4848 −0.25

−335.9 451.561 −121.296 3.4809

863.1865 −201.0341 183.5383 0.7656

480.1857 754.7737 707.4367 −2.159

−190.4024 655.3 295.4735 −0.2102

−897.175 −102.7268 13.5665 2.1915

896.0093 768.9494 −847.9542 0.5831

]

]

,

𝑊̂
2

= [Ŵ2

𝜍𝜗
] = 10

−3

×

[
[
[
[
[

[

21614.815 1817.1715 17964.295 −1655.6057

−2215.2823 0.641.7697 −2.146.7808 121.167

−989.3919 −1389.4418 −1046.1459 −410.0032

128543.46 −5108.3101 127475.58 2979.3142

−24482.498 1165.7441 −27137.819 −2515.8115

]
]
]
]
]

]

,

𝑊̂
3

= [𝑊̂
3

𝜍𝜗
] = 10

−3

× [

[

−215587.43 1177534.5 123780.4 18638.275 240168.12

294714.01 312655.73 −198923.25 −55013.034 −330253.83

−1607287.8 4247988 2000786 −48419.674 1579125.9

]

]

.

(52)

Step 2. The procedures of constructing the NNmodel for the
slave system are similar to those for the master system, and
then we have the NN model of the slave system:

̇̂
𝑋 (𝑡) =

4096

∑

𝑗 =1

ℎ̂
𝑗
(𝑡) {𝐴

𝑗
𝑋 (𝑡) +

3

∑

𝑘 =1

̂
𝐴
𝑗𝑘
𝑋(𝑡 − 𝜏

𝑘
)} + 𝐵𝑈 (𝑡)

(53)

with 𝜏
1

= 0.15, 𝜏
2

= 0.055, 𝜏
3

= 0.12, and B is a identity
matrix. The responses of 𝑋̇(𝑡) and ̇̂

𝑋(𝑡) for original systems
and NN models are shown in Figures 3(a) and 3(b).

Step 3. To synchronize the master and slave systems, a fuzzy
controller is synthesized as follows:

Control Rule 1: IF 𝑒
1
(𝑡) is 𝑀

1
, THEN 𝑈 (𝑡) = −𝐾

1
𝐸 (𝑡) ,

Control Rule 2: IF 𝑒
1
(𝑡) is 𝑀

2
, THEN 𝑈 (𝑡) = −𝐾

2
𝐸 (𝑡) ,

(54)

where 𝑀
1
and 𝑀

2
are the membership functions for each 𝑒

1

(see Figure 4):

𝑀
1
(𝑒

1
) =

{{{

{{{

{

1, 𝑒
1
≥ 30,

𝑒
1

30
, −30 < 𝑒

1
< 30,

1, 𝑒
1
≤ −30,

(55a)

𝑀
2
(𝑒

1
) = 1 − 𝑀

1
(𝑒

1
) . (55b)

According to (20), we have the overall fuzzy controller:

𝑈 (𝑡) = −
∑
2

𝑙 =1
𝑤
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
2

𝑙 =1
𝑤
𝑙
(𝑡)

= −

2

∑

𝑙 =1

ℎ
𝑙
(𝑡) 𝐾

𝑙𝑙
𝐸 (𝑡) (56)

with 𝑤
𝑙
(𝑡) ≡ 𝑀

𝑙
(𝑒
1
(𝑡)), ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/(∑

2

𝑙 =1
𝑤
𝑙
(𝑡)).

According to (21), the dynamics of the error system is
obtained as follows:

𝐸̇ (𝑡) =

4096

∑

𝑖 =1

2

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

× {𝐷
𝑖𝑙
𝐸 (𝑡) +

3

∑

𝑘 =1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

+ 𝜕 (𝑡) + Φ (𝑡) ,

(57)

where𝐷
𝑖𝑙
≡ 𝐴

𝑖
−𝐵𝐾

𝑙
, Γ̂ ≡ 𝑓(𝑋(𝑡))+∑

3

𝑘 =1
𝐻
𝑘
(𝑋(𝑡−𝜏

𝑘
))+𝑈(𝑡)

with 𝑈(𝑡) = −∑
2

𝑙 =1
ℎ
𝑙
(𝑡)𝐾

𝑙
𝐸(𝑡),

Γ ≡ 𝑓 (𝑋 (𝑡)) +

3

∑

𝑘=1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) ,

Φ (𝑡) ≡ Γ̂ − Γ− {

4096

∑

𝑖=1

2

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐷

𝑖𝑙
𝐸 (𝑡)

+

3

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]} .

(58)

Step 4. Based on (42), (48)–(57), the LMI in (34a) and (34b)
can be solved via MATLAB LMI Toolbox. In accordance
with Remark 1, the specified structured bounding matrices
𝑌 and 𝜅

𝑖𝑙
are set to be 𝑌 = [

4600 0 0

0 4600 0

0 0 4600

], 𝜅
𝑖𝑙

= [
1 0 0

0 1 0

0 0 1

].
Based on Corollary 11, the positive constant 𝑐 is minimized
by the mincx function of MATLAB LMI Toolbox: 𝑐min =

5.3341 × 10
−15, and then we have the minimum disturbance

attenuation level 𝛾min = 1.0329 × 10
−7.

Step 5. The common solutions 𝑃, 𝐹
1
, 𝐹

2
, 𝜓

1
, 𝜓

2
, and 𝜓

3
of

the stability conditions (32b) and (32c) can be obtained with
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Figure 3: (a) The responses of 𝑋̇(𝑡) for original system and NN model. (b) The responses of ̇̂
𝑋(𝑡) for original system and NN model.

the best value 𝑡min of LMI Solver (MATLAB) of −1.135048×
10

−8:

𝑃 = 10
4

× [

[

4001.1183 −268.3795 813.795

−268.3795 2206.7761 778.8835

813.795 778.8835 3191.7162

]

]

,

𝐹
1
= 10

−3

× [

[

0.1113 0.0257 −0.0346

0.0258 0.2094 −0.0576

−0.0347 −0.0578 0.1515

]

]

,

𝐹
2
= 10

−3

× [

[

0.1113 0.0258 −0.0347

0.0258 0.2094 −0.0576

−0.0347 −0.0576 0.1515

]

]

.

(59)

Furthermore, the resulting controller gains are

𝐾
1
= [

[

4103.0292 −1.3653 0.8911

1.3645 4103.0282 2.2966

−0.8907 −2.2952 4103.0288

]

]

,

𝐾
2
= [

[

4103.0292 −0.624 −0.6759

0.6233 4103.0282 1.7095

0.6763 −1.7081 4103.0288

]

]

,

𝜓
1
= 𝜓

2
= 𝜓

3
= [

[

0.6228 0.0000 0.0000

0.0000 0.6228 0.0001

0.0000 0.0001 0.6228

]

]

.

(60)

Figure 5 displays the state responses of both master and
slave systems. The chaotic behaviors of the master and
slave systems are shown in Figure 6. Moreover, Figure 7
illustrates the synchronization errors (𝑒

1
, 𝑒

2
, and 𝑒

3
) which

converge to zero. Furthermore, the assumption of ‖Φ(𝑡)‖ ≤

‖∑
4096

𝑖 =1
∑
2

𝑙 =1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)Δ𝑌

𝑖𝑙
𝐸(𝑡)‖ is satisfied from the illustra-

tion shown in Figure 8.

6. Conclusion

In this study, an effective approach is proposed to realize the
exponential synchronization of multiple time-delay chaotic
(MTDC) systems, and the optimal 𝐻

∞ performance is
achieved at the same time. First, we employed a neural
network (NN) model to approximate the MTDC system. A
linear differential inclusion (LDI) state-space representation
is then established for the dynamics of the NN model. Next,
a delay-dependent stability criterion derived in terms of
Lyapunov’s direct method is presented to guarantee that the
slave system can exponentially synchronize with the master
system. Subsequently, the stability condition of this criterion
is reformulated into a linear matrix inequality (LMI). Based
on the Lyapunov stability theory and LMI approach, a fuzzy
controller is synthesized to realize the exponential 𝐻∞ syn-
chronization of the chaotic master-slave systems and reduce
the 𝐻

∞-norm from disturbance to synchronization error at
the lowest level. Finally, simulation results demonstrate that
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Figure 5: State responses of both master and slave systems.

the exponential 𝐻∞ synchronization of MTDC systems can
be achieved by the designed fuzzy controller.

Appendix

Proof of Theorem 5

Let the Lyapunov function for the error system (21) be defined
as

Master
Slave

50

40

30

20

10

0

−10

𝑥
3
(
𝑡
)

20

0

−20

𝑥
2 (𝑡)

−20
−10

0 10 20

𝑥1(𝑡)

−15
−5

5 15
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−10

Figure 6:The chaotic behaviors of the master and the slave systems.

𝑒1

𝑒
1

𝑒2

𝑒
2

𝑒
3

𝑒3

Time (s)

Time (s)

Time (s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

4
2
0

−2

−4

10

0

−10

10
0

−10

5

−5

Figure 7: State responses of the error system.

𝑉 (𝑡) =

𝑚

∑

𝑘 =1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋,

(A.1)
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Figure 8: Plots of ‖Φ(𝑡)‖ (blue line) and ‖∑
4096

𝑖 =1
∑
2

𝑙 =1
ℎ
𝑙
(𝑡)ℎ

𝑙
(𝑡)Δ𝑌

𝑖𝑙
𝐸(𝑡)‖ (red line).

where the weighting matrices 𝑃=𝑃
𝑇

>0 and 𝜓
𝑘
=𝜓

𝑇

𝑘
>0. We

then evaluate the time derivative of𝑉(𝑡) on the trajectories of
(21) to obtain

𝑉̇ (𝑡) =

𝑚

∑

𝑘 =1

𝜏
𝑘
[𝐸̇

𝑇

(𝑡) 𝑃𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃𝐸̇ (𝑡)]

+

𝑚

∑

𝑘 =1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑚

∑

𝑘 =1

𝜏
𝑘
{

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

× [𝐷
𝑖𝑙
𝐸 (𝑡) +

𝑚

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+ 𝜕 (𝑡) + Φ (𝑡) }

𝑇

𝑃𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐸
𝑇

(𝑡) 𝑃

× {

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐷

𝑖𝑙
𝐸 (𝑡)

+

𝑚

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+ 𝜕 (𝑡) + Φ (𝑡) ]}

+

𝑚

∑

𝑘 =1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐷

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝑚

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝜏

𝑘
𝐴
𝑇

𝑖𝑑
𝑃𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+

𝑚

∑

𝑘 =1

[𝜕
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃𝜕 (𝑡)

+Φ
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃Φ (𝑡)]

−

𝑚

∑

𝑘 =1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] .

(A.2)

Based on Lemma 4 and (A.2), we have

𝑉̇ (𝑡) ≤

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐷

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝑚

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+ 𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡) ]

+

𝑚

∑

𝑘 =1

[𝑐𝜕
𝑇

(𝑡) 𝜕 (𝑡) + 𝑐
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡)

+ 𝑛Φ
𝑇

(𝑡) Φ (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡)]

−

𝑚

∑

𝑘 =1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

(A.3)
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≤

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐷

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

𝑚

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+ 𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡) ]

+

𝑚

∑

𝑘 =1

[𝑐𝜕
𝑇

(𝑡) 𝜕 (𝑡) + 𝑐
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡)

+ 𝑛𝐸
𝑇

(𝑡) 𝑌
𝑇

𝑌𝐸 (𝑡) (by (26))

+ 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃
2

𝐸 (𝑡)]

−

𝑚

∑

𝑘 =1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

(A.4)

=

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 +

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑃𝐷

𝑖𝑙

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
𝑃
2

(𝑐
−1

+ 𝑛
−1

+ 𝑚𝑎
−1

)

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑌

𝑇

𝑌]𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) [𝑚𝑎𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘
]

× 𝐸 (𝑡 − 𝜏
𝑘
) + 𝑐𝑚𝜕

𝑇

(𝑡) 𝜕 (𝑡) .

(A.5)

From (A.5), we have

𝑉̇ (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝛾
2

𝜕
𝑇

(𝑡) 𝜕 (𝑡)

≤

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 +

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑃𝐷

𝑖𝑙

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
𝑃
2

(𝑐
−1

+ 𝑛
−1

+ 𝑚𝑎
−1

)

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑌

𝑇

𝑌]

× 𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) [𝑚𝑎𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘
]

× 𝐸 (𝑡 − 𝜏
𝑘
) + 𝑐𝑚𝜕

𝑇

(𝑡) 𝜕 (𝑡) − 𝛾
2

𝜕
𝑇

(𝑡) 𝜕 (𝑡)

(A.6a)

=

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 +

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑃𝐷

𝑖𝑙

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
𝑃
2

(𝑐
−1

+ 𝑛
−1

+ 𝑚𝑎
−1

)

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑌

𝑇

𝑌 + 𝐼]𝐸 (𝑡)

+

𝑚

∑

𝑘 =1

𝜙

∑

𝑖 =1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
)

× [𝑚𝑎𝐴
𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘
] 𝐸 (𝑡 − 𝜏

𝑘
)

+ 𝑐𝑚𝜕
𝑇

(𝑡) 𝜕 (𝑡) − 𝛾
2

𝜕
𝑇

(𝑡) 𝜕 (𝑡)

(A.6b)

=

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) Δ
𝑖𝑙
𝐸 (𝑡)

+

𝜙

∑

𝑖 =1

𝑚

∑

𝑘 =1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) ∇

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝑐𝑚 − 𝛾
2

) 𝜕
𝑇

(𝑡) 𝜕 (𝑡)

≤

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝜆max (Δ 𝑖𝑙

) 𝐸
𝑇

(𝑡) 𝐸 (𝑡)

+

𝜙

∑

𝑖 =1

𝑚

∑

𝑘=1

ℎ
𝑖
(𝑡) 𝜆max (∇𝑖𝑘) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝑐𝑚 − 𝛾
2

) 𝜕
𝑇

(𝑡) 𝜕 (𝑡)

< 0,

(A.6c)
where

Δ
𝑖𝑙
≡

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐷
𝑇

𝑖𝑙
𝑃 +

𝑚

∑

𝑘 =1

𝜏
𝑘
𝑃𝐷

𝑖𝑙

+

𝑚

∑

𝑘 =1

𝜏
2

𝑘
𝑃
2

(𝑐
−1

+ 𝑛
−1

+ 𝑚𝑎
−1

)

+

𝑚

∑

𝑘 =1

𝜓
𝑘
+ 𝑛𝑚𝑌

𝑇

𝑌 + 𝐼 (see (32b))

∇
𝑖𝑘

≡ 𝑚𝑎𝐴
𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘

(see (32c)) .

(A.7)
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Integrating (A.6a), (A.6b), and (A.6c) from 𝑡 = 0 to 𝑡 =

∞, the following inequality is obtained as

𝑉 (∞) − 𝑉 (0) + ∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡

− 𝛾
2

∫

∞

0

𝜕
𝑇

(𝑡) 𝜕 (𝑡) 𝑑𝑡

≤ 0.

(A.8)

With zero initial conditions (i.e., 𝐸(𝑡) ≡ 0 for 𝑡 ∈

[−𝜏max, 0]), we have

∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 ≤ 𝛾
2

∫

∞

0

𝜕
𝑇

(𝑡) 𝜕 (𝑡) 𝑑𝑡. (A.9)

That is, (30) and the 𝐻
∞ control performance are

achieved with a prescribed attenuation 𝛾.
Since

𝑚

∑

𝑘 =1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡) ≤

𝑚

∑

𝑘 =1

𝜏
𝑘
𝐸
𝑇

(𝑡) 𝑃𝐸 (𝑡)

= 𝑉 (𝑡) −

𝑚

∑

𝑘 =1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋)

× 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡) (from (A.1)) ,

(A.10)
we can get the following inequality from (A.6a), (A.6b), and
(A.6c):

𝑉̇ (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝛾
2

𝜕
𝑇

(𝑡) 𝜕 (𝑡)

<

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

𝜆max (Δ 𝑖𝑙
)

∑
𝑚

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

𝑉 (𝑡)

< 0.

(A.11)

Then, we can obtain

𝑉 (𝑡)
󵄨󵄨󵄨󵄨𝜕(𝑡)=0 < 𝑉 (𝑡

0
) exp𝛽 (𝑡 − 𝑡

0
) , (A.12)

where

𝛽 =

𝜙

∑

𝑖 =1

𝜌

∑

𝑙 =1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [

𝜆max (Δ 𝑖𝑙
)

∑
𝑚

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

] . (A.13)

From (A.1) and (A.12), we have
𝑚

∑

𝑘=1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

≤

𝑚

∑

𝑘=1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
)

−

𝑚

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
) .

(A.14)

That is, ‖𝐸(𝑡)‖2 ≤ (𝑉(𝑡
0
)/(∑

𝑚

𝑘=1
𝜏
𝑘
𝜆min(𝑃))) exp𝛽(𝑡 − 𝑡

0
).

Consequently, we conclude that

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
))

with𝛼 ≡ √
𝑉 (𝑡

0
)

∑
𝑚

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

> 0, 𝛽 ≡ −
1

2
𝛽 > 0.

(A.15)

Therefore, based on Definition 2, the error system (21) with
the fuzzy controller (20) is exponentially stable for 𝜕(𝑡) = 0.
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