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We establish a new second-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.4142
which is the same as the Newton-Raphson method. By using some examples, the efficiency of the method is also discussed. It is
worth to note that (i) our method is performing very well in comparison to the fixed point method and the method discussed
in Babolian and Biazar (2002) and (ii) our method is so simple to apply in comparison to the method discussed in Babolian and
Biazar (2002) and involves only first-order derivative but showing second-order convergence and this is not the case in Babolian
and Biazar (2002), where the method requires the computations of higher-order derivatives of the nonlinear operator involved in
the functional equation.

1. Introduction

Our problem, to recall, is solving equations in one variable.
We are given a function 𝑓 and would like to find at least one
solution to the equation 𝑓(𝑥) = 0. Note that, priorly, we do
not put any restrictions on the function 𝑓; we need to be able
to evaluate the function; otherwise, we cannot even check that
a given solution 𝑥 = 𝛼 is true, that is, 𝑓(𝑟) = 0. In reality,
the mere ability to be able to evaluate the function does not
suffice. We need to assume some kind of “good behavior.”
The more we assume, the more potential we have, on the
one hand, to develop fast algorithms for finding the root. At
the same time, the more we assume, the fewer the functions
are going to satisfy our assumptions! This is a fundamental
paradigm in numerical analysis.

We know that one of the fundamental algorithm for
solving nonlinear equations is so-called fixed-point iteration
method [1].

In the fixed-point iteration method for solving the non-
linear equation 𝑓(𝑥) = 0, the equation is usually rewritten
as

𝑥 = 𝑔 (𝑥) , (1)

where
(i) there exists [𝑎, 𝑏] such that 𝑔(𝑥) ∈ [𝑎, 𝑏] for all 𝑥 ∈

[𝑎, 𝑏],
(ii) there exists [𝑎, 𝑏] such that |𝑔(𝑥)| ≤ 𝐿 < 1 for all

𝑥 ∈ [𝑎, 𝑏].
Considering the following iteration scheme:

𝑥
𝑛+1

= 𝑔 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . , (2)

and starting with a suitable initial approximation 𝑥
0
, we build

up a sequence of approximations, say {𝑥
𝑛
}, for the solution of

the nonlinear equation, say 𝛼. The scheme will converge to
the root 𝛼, provided that

(i) the initial approximation 𝑥
0
is chosen in the interval

[𝑎, 𝑏],
(ii) 𝑔 has a continuous derivative on (𝑎, 𝑏),
(iii) |𝑔(𝑥)| < 1 for all 𝑥 ∈ [𝑎, 𝑏],
(iv) 𝑎 ≤ 𝑔(𝑥) ≤ 𝑏 for all 𝑥 ∈ [𝑎, 𝑏] (see [1]).
The order of convergence for the sequence of approxi-

mations derived from an iteration method is defined in the
literature, as follows.
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Definition 1. Let {𝑥
𝑛
} converge to 𝛼. If there exist an integer

constant 𝑝 and real positive constant 𝐶 such that

lim
𝑛→∞



𝑥
𝑛+1

− 𝛼

(𝑥
𝑛
− 𝛼)
𝑝


= 𝐶, (3)

then 𝑝 is called the order and 𝐶 the constant of convergence.

To determine the order of convergence of the sequence
{𝑥
𝑛
}, let us consider the Taylor expansion of 𝑔(𝑥

𝑛
)

𝑔 (𝑥
𝑛
) = 𝑔 (𝑥) +

𝑔 (𝑥)

1!
(𝑥
𝑛
− 𝑥) +

𝑔 (𝑥)

2!
(𝑥
𝑛
− 𝑥)
2

+ ⋅ ⋅ ⋅

+
𝑔(𝑘) (𝑥)

𝑘!
(𝑥
𝑛
− 𝑥)
𝑘

+ ⋅ ⋅ ⋅ .

(4)

Using (1) and (2) in (4) we have

𝑥
𝑛+1

− 𝑥 = 𝑔 (𝑥) (𝑥
𝑛
− 𝑥) +

𝑔 (𝑥)

2!
(𝑥
𝑛
− 𝑥)
2

+ ⋅ ⋅ ⋅

+
𝑔(𝑘) (𝑥)

𝑘!
(𝑥
𝑛
− 𝑥)
𝑘

+ ⋅ ⋅ ⋅ ,

(5)

and we can state the following result [1].

Theorem2 (see [2]). Suppose that𝑔 ∈ 𝐶𝑝[𝑎, 𝑏]. If𝑔(𝑘)(𝑥) = 0,
for 𝑘 = 1, 2, . . . , 𝑝 − 1 and 𝑔(𝑝)(𝑥) ̸= 0, then the sequence {𝑥

𝑛
}

is of order 𝑝.

It is well known that the fixed pointmethod has first order
convergence.

During the last many years, the numerical techniques for
solving nonlinear equations have been successfully applied
(see, e.g., [2–4] and the references therein).

In [4], Babolian and Biazar modified the standard Ado-
mian decomposition method for solving the nonlinear equa-
tion 𝑓(𝑥) = 0 to derive a sequence of approximations to the
solution, with nearly superlinear convergence.However, their
method requires the computation of higher-order derivatives
of the nonlinear operator involved in the functional equation.

In this paper, a new iteration method extracted from the
fixed point method is proposed to solve nonlinear equations.
The proposed method has second-order convergence and
then applied to solve some problems in order to assess its
validity and accuracy. It is worth to mention that our method
involves only first-order derivative but showing second-order
convergence.

2. New Iteration Method

Consider the nonlinear equation

𝑓 (𝑥) = 0, 𝑥 ∈ R. (6)

We assume that 𝛼 is simple zero of 𝑓(𝑥), and 𝑥
0
is an

initial guess sufficiently close to 𝛼. Equation (6) is usually
rewritten as

𝑥 = 𝑔 (𝑥) . (7)

Following the approach of [4], if 𝑔(𝑥) ̸= 1, we can modify (7)
by adding 𝜃 ̸= − 1 to both sides as follows:

𝑥 + 𝜃𝑥 = 𝜃𝑥 + 𝑔 (𝑥) , (1 + 𝜃) 𝑥 = 𝜃𝑥 + 𝑔 (𝑥) , (8)

which implies that

𝑥 =
𝜃𝑥 + 𝑔 (𝑥)

1 + 𝜃
= 𝑔
𝜃
(𝑥) . (9)

In order for (9) to be efficient, we can choose 𝜃 such that
𝑔
𝜃
(𝑥) = 0, we yields

𝜃 = −𝑔 (𝑥) , (10)

so that (9) takes the form

𝑥 =
−𝑔 (𝑥) 𝑥 + 𝑔 (𝑥)

1 − 𝑔 (𝑥)
. (11)

This formulation allows us to suggest the following
iteration methods for solving nonlinear equation (6).

Algorithm 3. For a given 𝑥
0
, we calculate the approximation

solution 𝑥
𝑛+1

, by the iteration scheme

𝑥
𝑛+1

=
−𝑔 (𝑥

𝑛
) 𝑥
𝑛
+ 𝑔 (𝑥

𝑛
)

1 − 𝑔 (𝑥
𝑛
)

, 𝑔 (𝑥
𝑛
) ̸= 1. (12)

3. Convergence Analysis

Now we discuss the convergence analysis of Algorithm 3.

Theorem 4. Let 𝑓 : 𝐷 ⊂ R → R for an open interval 𝐷 and
consider that the nonlinear equation 𝑓(𝑥) = 0 (or 𝑥 = 𝑔(𝑥))
has a simple root 𝛼 ∈ 𝐷, where 𝑔(𝑥) : 𝐷 ⊂ R → R be
sufficiently smooth in the neighborhood of the root 𝛼; then the
order of convergence of Algorithm 3 is at least 2.

Proof. The iteration scheme is given by

𝑥
𝑛+1

=
−𝑔 (𝑥

𝑛
) 𝑥
𝑛
+ 𝑔 (𝑥

𝑛
)

1 − 𝑔 (𝑥
𝑛
)

, 𝑔 (𝑥
𝑛
) ̸= 1. (13)

Let 𝛼 be a simple zero of 𝑓, 𝑒
𝑛
= 𝑥
𝑛
− 𝛼, where 𝑒

𝑛
is the error

term involved at the 𝑛th step of Algorithm 3 and

𝑔 (𝛼) = 𝛼. (14)
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By Taylor’s expansion, we have

𝛼 − 𝑒
𝑛+1

=
−𝑔 (𝛼 − 𝑒

𝑛
) (𝛼 − 𝑒

𝑛
) + 𝑔 (𝛼 − 𝑒

𝑛
)

1 − 𝑔 (𝛼 − 𝑒
𝑛
)

= (−(𝑔 (𝛼) − 𝑒
𝑛
𝑔 (𝛼) + 𝑒2

𝑛

𝑔 (𝛼)

2!
− ⋅ ⋅ ⋅)

× (𝛼 − 𝑒
𝑛
) + 𝑔 (𝛼) − 𝑒

𝑛
𝑔 (𝛼) + 𝑒2

𝑛

𝑔 (𝛼)

2!

− ⋅ ⋅ ⋅ ) × (1− (𝑔 (𝛼) − 𝑒
𝑛
𝑔 (𝛼)

+ 𝑒2
𝑛

𝑔 (𝛼)

2!
− ⋅ ⋅ ⋅)

−1

= (−(𝑔 (𝛼) − 𝑒
𝑛
𝑔 (𝛼) + 𝑒2

𝑛

𝑔 (𝛼)

2!
− ⋅ ⋅ ⋅)

× (𝛼 − 𝑒
𝑛
) + 𝛼 − 𝑒

𝑛
𝑔 (𝛼) + 𝑒2

𝑛

𝑔 (𝛼)

2!

− ⋅ ⋅ ⋅ ) × (1 − 𝑔 (𝛼) + 𝑒
𝑛
𝑔 (𝛼)

− 𝑒2
𝑛

𝑔 (𝛼)

2!
+ ⋅ ⋅ ⋅)

−1

= (𝛼 − 𝛼𝑔 (𝛼) + 𝛼𝑒
𝑛
𝑔 (𝛼)

− 𝑒2
𝑛

(𝑔 (𝛼) + 𝛼𝑔 (𝛼))

2!
+ ⋅ ⋅ ⋅)

× (1 − 𝑔 (𝛼) + 𝑒
𝑛
𝑔 (𝛼) − 𝑒2

𝑛

𝑔 (𝛼)

2!
+ ⋅ ⋅ ⋅)

−1

= 𝛼 − 𝜌 (𝛼, 𝑔 (𝛼) , 𝑔


(𝛼) , 𝑔


(𝛼)) 𝑒
2

𝑛
− ⋅ ⋅ ⋅ ,

(15)

this shows that

𝑒
𝑛+1

= 𝜌 (𝛼, 𝑔 (𝛼) , 𝑔


(𝛼) , 𝑔


(𝛼)) 𝑒
2

𝑛
+ ⋅ ⋅ ⋅ . (16)

This completes the proof.

Remark 5. For

𝐺 (𝑥) =
−𝑔 (𝑥) 𝑥 + 𝑔 (𝑥)

1 − 𝑔 (𝑥)
(17)

Table 1

FPM Algorithm 3
𝑥
1
= −1.9476 𝑥

1
= −2.0050

𝑥
2
= −1.9731 𝑥

2
= −2

𝑥
3
= −1.9864

𝑥
4
= −1.9932

𝑥
5
= −1.9966

𝑥
6
= −1.9983

𝑥
7
= −1.9991

𝑥
8
= −1.9995

𝑥
9
= −1.9997

𝑥
10
= −1.9998

𝑥
11
= −1.9999

Table 2

FPM Algorithm 3
𝑥
1
= 2.1225 𝑥

1
= 2.12

𝑥
2
= 2.1197

𝑥
3
= 2.1201

𝑥
4
= 2.12

and using the software Maple, we can easily deduce that

𝐺 (𝑥) =
𝑔 (𝑥) (−𝑥 + 𝑔 (𝑥))

(1 − 𝑔(𝑥))
2

, (18)

𝐺 (𝑥) = ((1 − 𝑔 (𝑥)) (𝑔


(𝑥) (−𝑥 + 𝑔 (𝑥))

− 𝑔 (𝑥) (1 − 𝑔 (𝑥)))

+2𝑔2 (𝑥) (−𝑥 + 𝑔 (𝑥)))

× (1 − 𝑔 (𝑥))
−1

.

(19)

Now, it can be easily seen that for (14) we obtain 𝐺(𝛼) =
𝛼, 𝐺(𝛼) = 0, and 𝐺(𝛼) = −(1 − 𝑔(𝛼))𝑔(𝛼) ̸= 0.
Hence, according to Theorem 2, Algorithm 3 has second-
order convergence.

4. Applications

Now we present some examples [4] to illustrate the efficiency
of the developed methods namely, Algorithm 3. We compare
the fixed point method (FPM) with Algorithm 3.

Example 6. Consider the equation 𝑥3 + 4𝑥2 + 8𝑥 + 8 = 0. We
have𝑔(𝑥) = −(1+(1/2)𝑥2+(1/8)𝑥3) and𝑔(𝑥) = −𝑥−(3/8)𝑥2.
The exact solution of this equation is −2. Take 𝑥

0
= −1.9;

then the comparison of the two methods is shown in Table 1
correct up to four decimal places.

Example 7. Consider the equation 𝑥+ ln(𝑥 − 2) = 0. We have
𝑔(𝑥) = 2+𝑒−𝑥 and𝑔(𝑥) = −𝑒−𝑥.The graphical solution of this
equation is 2.1200 (4D). Take 𝑥

0
= 2.1, then the comparison

of the two methods is shown in Table 2 up to four decimal
places.
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Table 3

FPM Algorithm 3
𝑥
1
= 0.30302 𝑥

1
= 0.34046

𝑥
2
= 0.31755 𝑥

2
= 0.34592

𝑥
3
= 0.32699 𝑥

3
= 0.34595

𝑥
4
= 0.33322

𝑥
5
= 0.33737

𝑥
6
= 0.34016

𝑥
7
= 0.34203

𝑥
8
= 0.34330

𝑥
9
= 0.34416

𝑥
10
= 0.34474

𝑥
11
= 0.34513

𝑥
12
= 0.34540

𝑥
13
= 0.34558

𝑥
14
= 0.3457

𝑥
15
= 0.34578

𝑥
16
= 0.34584

𝑥
17
= 0.34588

𝑥
18
= 0.3459

𝑥
19
= 0.34592

𝑥
20
= 0.34593

𝑥
21
= 0.34594

Table 4

FPM Algorithm 3
𝑥
1
= 0.86131 𝑥

1
= 0.90768

𝑥
2
= 0.88812 𝑥

2
= 0.91001

𝑥
3
= 0.9001

𝑥
4
= 0.90551

𝑥
5
= 0.90796

𝑥
6
= 0.90908

𝑥
7
= 0.90959

𝑥
8
= 0.90982

𝑥
9
= 0.90992

𝑥
10
= 0.90997

𝑥
11
= 0.90999

𝑥
12
= 0.91000

𝑥
13
= 0.91

Example 8. Consider the equation 𝑥3 + 4𝑥2 + 8𝑥 + 8 = 0.
We have 𝑔(𝑥) = 0.2 + 1.8𝑥2 − 2𝑥3 + 𝑥4 − 0.2𝑥5 and 𝑔(𝑥) =
3.6𝑥 − 6𝑥2 + 4𝑥3 − 𝑥4. The graphical solution of this equation
is 0.34595 (5D). Take 𝑥

0
= 0.28, then the comparison of the

two methods is shown in Table 3 correct up to five decimal
places.

Example 9. Consider the equation 𝑒𝑥 − 3𝑥2 = 0. We have
𝑔(𝑥) = √𝑒𝑥/3 and 𝑔(𝑥) = (1/2√3)𝑒𝑥/2. The graphical
solution of this equation is 0.91 (2D). Take 𝑥

0
= 0.8; then the

comparison of the twomethods is shown in Table 4 corrected
up to five decimal places.

5. Conclusions

A new iteration method for solving nonlinear equations is
established. By using some examples the performance of the
method is also discussed.Themethod is performing very well
in comparison to the fixed point method and the method
discussed in [4]. The method can be studied for functional
equations and can be extended to a system of nonlinear
equations.
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