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This paper discusses the fundamentals of negative probabilities and fractional calculus. The historical evolution and the main
mathematical concepts are discussed, and several analogies between the two apparently unrelated topics are established. Based
on the new conceptual perspective, some experiments are performed shading new light into possible future progress.

1. Introduction

The scientific knowledge evolves by means of two distinct
and independent processes. The most common consists of
small incremental steps that improve existing methods and
tools. The second process, more rare and frequently not well
accepted, is made of sudden changes towards unpredictable,
strange, directions.These “quantum leaps” often remain with
the reputation of being “exotic” and having limited useful-
ness. History demonstrates that these prejudices lead to some
perplexity, later on, when the community realizes the possi-
bilities that such concepts unravel in nature.

Probability started with the correspondence between
Pierre de Fermat and Blaise Pascal in 1654, but the modern
theory of probability is usually credited to Andrey Kol-
mogorov (1931). Standard probabilities have values between
0 and 1 and are interpreted as the cases 0% and 100% chances
that some event will happen. So, conceiving a negative proba-
bility (NP) or, even, someother values lying outside that inter-
val, seems to be an “error.” Yet, the Nobel laureates Paul Dirac
and Richard Feynman discussed this concept in the scope
of quantum physics. In spite of this, the concept remained
limited to a few studies and only recently started to emerge
in some applications.

Today’s differential calculus is credited to Isaac Newton
(1643–1727) and Gottfried Leibniz (1646–1716) that, inde-
pendently, developed frameworks about derivatives and inte-
grals. Standard operations of differentiation, or of integration,
are a priori interpreted to be calculated for an integer number
of times. Again the idea of half derivative seems an “error,”

and, yet, it started as the classical calculus, with the ideas
of Leibniz. Furthermore, many important mathematicians
such as Euler, Fourier, Liouville, and Riemann contributed to
its development. Nevertheless, the area remained as “exotic”
until a few decades ago, when scientists recognized fractional
calculus (FC) to be an important tool for describing complex
phenomena.

BothNP and FC generalize standard concepts and extend
them towards real values outside the domains. We can talk
about fractional coins, or about fractional derivatives, but,
surprisingly, in spite of the resemblances in history as well as
in the mathematical concepts, both areas remain apart. This
paper debates such state of affairs and establishes a first link
between these two areas so that future developments can
benefit from the synergies of possible analogies.

Bearing these thoughts in mind, Section 2 introduces the
historical evolution and the main mathematical concepts
involved in the generalization towards NP and FC. Section 3
develops an analogy between the fields of probability and cal-
culus and, based on the new ideas, presents several experi-
ments in the area of control theory and discusses the results.
Finally, Section 4 draws the main conclusions.

2. Fundamental Concepts

This section introduces the fundamental concepts underlying
the study to be developed in the sequel. Section 2.1 presents
the evolution of the concept of NP and fractional coins.
Section 2.2 outlines the history of fractional calculus and the
concepts of FD.
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2.1. Negative Probabilities. In 1942, Dirac wrote a paper [1]
introducing the concepts of negative energies and negative
probabilities (NPs). Dirac wrote “Negative energies and prob-
abilities should not be considered as nonsense. They are well-
defined concepts mathematically, like a negative of money.”
Later, Feynman [2, 3] explored the idea in the scope of
quantum mechanics. He pointed that no one objects the use
of negative numbers in calculations, although “minus three
apples” is not a valid concept in real world. Furthermore, he
argued not only about NP, but also that probabilities above
one could be useful in calculations. In 1945, Bartlett [4] devel-
oped the first efforts towards a formal treatment of NP.

In 2005, Székely [5] introduced the concept of “half-coins”
as conceptual objects leading to NP. He started with a fair
coin having two sides, denoted as “0” and “1,” with identical
probabilities. Let us recall that for a discrete random variable
𝑋, taking values {0, 1, . . .}, the probability generating function
(pgf) is defined as 𝐺

𝑋
(𝑧) = 𝐸(𝑧

𝑋
) = ∑

∞

𝑘=0
𝑃(𝑋 = 𝑘)𝑧

𝑘
, 𝑧 ∈

C, where 𝑃(𝑋 = 𝑘) is the probability mass function of 𝑋.
Therefore, the pgf of a fair coin is 𝐺

𝑋
(𝑧) = (1/2)(1 + 𝑧). The

addition of independent randomvariables corresponds to the
multiplication of their pgfs, and, therefore, the pgf of the sum
of 𝑛 fair coins is 𝐺

𝑋
(𝑧) = [(1/2)(1 + 𝑧)]

𝑛. Székely proposed
the generalization of the pgf and defined “half-coin” as the one
producing the pgf:

𝐺
𝑋 (𝑧) = [

1

2
(1 + 𝑧)]

1/2

. (1)

This strange object makes a complete coin, because if we
flip two half coins, then the sumof the outcomes is 0 or 1, with
probability (1/2), as if we flipped a fair coin. Furthermore,
expanding (1), we verify that “half-coin” reveal an infinite
number of sides, some having negative probabilities. In fact,
we have 𝑃(𝑋 = 0) = 1/√2, 𝑃(𝑋 = 1) = 1/(2√2), 𝑃(𝑋 = 2) =

−1/(8√2) and a series of positive and negative probabilities.
Székely mentioned also biased coins and dice, as well as any
𝑛th root instead of the square root in (1).

NPs are allowed by defining quasiprobability distribu-
tions.Quasiprobability distributions relax some of the axioms
of probability theory; they share some of the features of
standard probabilities (e.g., the expectation value), but they
violate the first and third probability axioms.

NPs have been discussed mainly in physics, and we can
mention [6–11], but the topic remained somewhat untouched
in other scientific areas. Nevertheless, in 2004, Haug [12]
appliedNP in the area ofmathematical finance. In 2007, Tijms
and Staats [13] mentioned negative probabilities in waiting-
time probabilities. More recently, Burgin and Meissner [14]
address the application of NP to financial option pricing.

2.2. Fractional Calculus

NP. In 1695, Gottfried Leibniz sent a letter to Guillaume
l’Hôpital raising the question “Can the meaning of derivatives
with integer order be generalized to derivatives with noninteger
orders?.” l’Hôpital replied with another question “What if the
order will be 1/2?.” Leibniz answered “It will lead to a paradox,
from which one day useful consequences will be drawn.”

In 1738, Euler noticed that the evaluation of𝑑𝑝𝑥𝑎/𝑑𝑥𝑝 had
meaning for noninteger values 𝑝, but the first mention of a
FD appears in 1819, in a text of S. F. Lacroix. For the power
function 𝑦 = 𝑥 he gives the example:

𝑑
1/2

𝑦

𝑑𝑥1/2
=

2√𝑥

√𝜋
. (2)

FC was a research topic for three centuries, and many
important mathematicians had work on the area, namely,
Fourier, Abel, Liouville, and Riemann. Historical surveys can
be found in the books byOldham and Spanier [15],Miller and
Ross [16], and Samko et al. [17].

In 1893, Heaviside [18], in relation with his research in
electromagnetism and operational calculus, addressed briefly
the application of FC. Nevertheless, only in the last decades
[19], FC emerged as a useful mathematical tool in several
applications [20–24]. We can mention control theory, signal
processing, chemical physics, anomalous diffusion, andmany
other areas, where FC revealed superior results than classical
calculus [25–36].

There are several definition of FD, namely, the Riemann-
Liouville, Caputo, and Grünwald-Letnikov formulations [28,
37]. In this paper, it will be followed the Grünwald-Letnikov
definition of a FD of order 𝛼 given by

𝐺𝐿

𝑎 𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑘=0

(−1)
𝑘
(
𝛼

𝑘
)𝑓 (𝑡 − 𝑘ℎ) ,

𝑡 > 𝑎, 𝛼 > 0,

(3)

where Γ(⋅) is Euler’s gamma function, [𝑥] means the integer
part of 𝑥, and ℎ is the step time increment.

The geometrical interpretation of FD has been the subject
of debate, and several perspectives had been forwarded [38–
41].

Using the Laplace transform, for zero initial conditions,
we have the expression:

L {
0𝐷
𝛼

𝑡
𝑓 (𝑡)} = 𝑠

𝛼
L {𝑓 (𝑡)} , (4)

where 𝑠 and L denote the Laplace variable and operator,
respectively.

The Grünwald-Letnikov definition (3) is often adopted in
signal processing and control systems [42, 43] because it leads
directly to a discrete-time algorithmbased on the approxima-
tion of the time increment ℎ through the sampling period 𝑇:

Z {𝐷
𝛼

𝑡
𝑓 (𝑡)} = [

1

𝑇
(1 − 𝑧

−1
)]

𝛼

Z {𝑓 (𝑡)} , (5)

where 𝑧 and 𝑇 represent the Z-transform variable and
sampling period, respectively.

3. Synergies in the Fractional Perspectives

In the previous sections, the concepts of NP and FD were
presented briefly. It is worth noting that, in both cases, the
generalization of the classical concepts emerge naturally
when thinking of the transforms, that is, when using the fgm
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𝐾0 = −𝐾1 𝐾0 = 𝐾1
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Probability theory
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Figure 1: Conceptual diagram of the generalization of the worlds of
probability and differential calculus.

(in the probability world) and the Laplace or Z operator
in differential calculus. A closer look reveals that the NP in
the “half-coin” (1) and the FD Z{𝐷

𝛼

𝑡
} of a function (3) share

common features. In fact, in a more general level, we can say
that both follow the expression:

𝜓 (𝑧) = (𝐾
0
+ 𝐾
1
𝑧)
𝛼
, (6)

where 𝛼 ∈ R, 𝑧 ∈ C, and 𝐾
0
, 𝐾
1
∈ R are weights.

For a fair coin, we have identical positive weights (prob-
abilities); that is, 𝐾

0
= 𝐾
1

= 1/2, while for a derivative we
have symmetrical coefficients; that is, 𝐾

0
= −𝐾

1
= 1/𝑇.

The weights are “natural” in each of the native worlds, but
“strange” in the other counterpart. For example, the factor
𝐾
1
< 0 in the derivative can be interpreted as the probability

of an “antievent.” Let us now suppose thatwe consider𝛼 to not
have only positive, but also negative values. In the differential
calculus world it means simply that we have integral instead
of derivative. However, in the probability world it means
the inverse action of flipping a 𝛼-coin, or let us say the
“antiflipping.” By other words, while flipping two half coins
is the same as flipping one coin, flipping one half coin and
“antiflipping” one half coin is identical to do nothing! Again
what is common in one side seems uncommon in the other.
Figure 1, showing the worlds of probability and differential
calculus, summarizes these concepts.

Let us check the four expansions of (6) resulting from 𝛼 =

{−(1/2), +(1/2)} × (𝐾
0
, 𝐾
1
) = {(1, −1), (1, 1)}
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Figure 2: Time response of the unit feedback closed-loop system
with transfer function 𝐺(𝑠) = 1/𝑠(𝑠 + 1), 𝐾 = 0.5, 𝑇 = 0.1 s, and
the control algorithms (7)–(10).

Expressions (7) and (8), with the subtraction of terms 1
and 𝑥, lead to the fractional integral and fractional derivative,
respectively. Expressions (9) and (10), with the sum of terms
1 and 𝑧, represent the antiflipping and flipping of a half coin,
respectively. However, in the probability world, expressions
(7) and (8) describe the antiflipping and flipping of a half coin
with an antiface, respectively. On the other hand, in the world
of differential calculus, expressions (9) and (10) seem even
more difficult to interpret.

So, the question arises if there is some usefulness in
establishing an analogy between these two apparently unre-
lated fields. By other words, is there some hidden connection
between NP and FD, or is this merely an abstract manipula-
tion of expressions and concepts?Though it is not the subject
of this paper to explore all possibilities, we considered the
application of these concepts in the field of control theory.
Therefore, in the sequel, we analyse the time response of a unit
feedback closed-loop control system with transfer function
𝐺(𝑠) = 1/𝑠(𝑠 + 1) in the direct loop, under the action of
a discrete-time controller 𝐶(𝑧) = 𝐾 ⋅ Taylor{(1 ± 𝑧)

𝛼
, 0, 𝑟},

where 𝑟 denotes the truncation order. The control algorithm
is inspired in (7)–(10) interpreted as expressions in the Z
domain. Furthermore, in the four cases it is considered a
control gain 𝐾 = 0.5, a sampling frequency 𝑇 = 0.1 s, and
a unit step reference input 𝑅(𝑠) = 1/𝑠. There was no special
tuning technique for control gain 𝐾. Therefore, 𝐾 remains
identical in all experiments in order to ease the comparison.
Figure 2 depicts the closed-loop time response of the four
algorithms with truncation of the series up to term 𝑟 = 5.

Figure 3 depicts the frequency response of the four
control algorithms (𝐾 = 1, 𝑇 = 0.1 s) for 𝜔 ∈ [1, 20].

We verify that (9) and (10) “interpolate” the half-order
integral and derivative, (7) and (8), respectively. In fact, this
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Figure 3: Frequency response, 𝐾 = 1, 𝑇 = 0.1 s, and the control
algorithms (7)–(10) for 𝜔 ∈ [1, 20].

result should be expected since, observing (9) and (10), we
verify that the series has alternating positive and negative
terms, in opposition with (7) and (8), where we have always
positive (for integral) and always negative (for derivative)
terms. In conclusion, the NP-inspired series are something
“in the middle” of a fractional PID controller.

4. Conclusions

This paper presented the historical evolution and the main
concepts supporting two “exotic” areas, namely, negative
probabilities and fractional calculus. The observation of sim-
ple examples and the corresponding mathematical models
reveal new possibilities hidden when addressing separately

each area. Based on the new perspective, new algorithms in
the area of control systems are explored.The example intends
to be merely a first step in taking advantage of the synergies
that emerge in the analogies from which one day useful conse-
quences will be drawn.
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