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For integer-order systems, there are well-known practical rules for RL sketching. Nevertheless, these rules cannot be directly applied
to fractional-order (FO) systems. Besides, the existing literature on this topic is scarce and exclusively focused on commensurate
systems, usually expressed as the ratio of two noninteger polynomials. The practical rules derived for those do not apply to other
symbolic expressions, namely, to transfer functions expressed as the ratio of FO zeros and poles. However, this is an important
case as it is an extension of the classical integer-order problem usually addressed by control engineers. Extending the RL practical
sketching rules to such FO systems will contribute to decrease the lack of intuition about the corresponding system dynamics.This
paper generalises several RL practical sketching rules to transfer functions specified as the ratio of FO zeros and poles. The subject
is presented in a didactic perspective, being the rules applied to several examples.

1. Introduction

Root locus (RL) analysis is a graphical method that shows
how the poles of a closed-loop transfer function change with
relation to a given systemparameter [1, 2]. Usually, the chosen
parameter is a proportional gain, 𝐾 ≥ 0, included in a unity
feedback closed-loop controlled system (Figure 1).

The open and closed-loop transfer functions are given by
𝐺OL(𝑠) = 𝐾 ⋅ 𝐺(𝑠) and 𝐺CL(𝑠) = 𝐾 ⋅ 𝐺(𝑠)/[1 + 𝐾 ⋅ 𝐺(𝑠)],
respectively. The denominator of 𝐺CL(𝑠) is the characteristic
equation, and its roots are the system closed-loop poles.
Every point of the RL simultaneously satisfies the well-known
argument (angle) and magnitude conditions given by

arg {𝐾 ⋅ 𝐺 (𝑠)} = (2ℎ + 1) ⋅ 180
∘

, ℎ = 0, ±1, ±2, . . . ,

abs {𝐾 ⋅ 𝐺 (𝑠)} = 1.

(1)

The RL is a classical and powerful tool for the dynamical
analysis and design of integer-order linear time-invariant
(LTI) systems [1–6]. Nowadays, there are efficient numerical

algorithms, implemented in several software packages (e.g.,
MATLAB, Octave, Scilab, and FreeMat) [7–10] that take
advantage of the powerful digital processors of modern
computers to perform RL analysis. For fractional-order (FO)
systems, while several studies addressing RL are available [11–
17], the problem is more difficult and researchers havemainly
preferred to adopt frequency-based methods.

On the other hand, the ability to quickly sketch RL
by hand is invaluable in making fundamental decisions
early in the design process. For integer-order systems, there
are well-known practical rules for RL sketching, but those
cannot be directly applied to FO systems. Moreover, the
existing literature on this topic exclusively focuses on the
particular case of commensurate FO systems that occur when
truncating real valued integro-differential orders up to a finite
precision [15, 16].This allows the generalisation of some rules
to FO systems, but limiting the precision and the type of
symbolic expressions [17, 18].The rules for commensurate FO
systems do not apply to transfer functions expressed as the
ratio of FO zeros and poles. However, this is an important
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Figure 1: Unity feedback closed-loop controlled system.

case as it is an extension of the classical integer-order problem
usually addressed by control engineers when dealing with RL
analysis.

In this paper, we extend several practical rules, available
to sketch the RL of integer-order systems, to the FO domain.
The main contribution is that the practical sketching rules
apply to open-loop transfer functions expressed as the ratio
of FO zeros and poles, contributing to fill the gap in the
existing literature about this topic. The subject is presented
in a didactic perspective, being the rules applied to several
examples that contribute to reduce the lack of intuition about
the corresponding system dynamics.

Bearing these ideas in mind, the paper is organized as
follows. Section 2 introduces fundamental concepts related
to fractional calculus. Section 3 analyses several FO systems
and generalises the RL rules to a class of FO systems. Finally,
Section 4 draws the main conclusions.

2. Fractional Calculus

Fractional calculus (FC) denotes the branch of calculus
that extends the concepts of integrals and derivatives to
noninteger and complex orders [19–23]. During the last years,
FC was found to play a fundamental role in the modelling of
a considerable number of phenomena [24–29] and emerged
as an important tool for the study of dynamical systems
where classical methods reveal strong limitations. Nowadays,
the application of FC concepts includes a wide spectrum of
studies [30–33], going from the dynamics of financialmarkets
[34, 35], biological systems [36, 37], earth sciences [38], and
DNA sequencing [39] up to mechanical [40–43], electrical
[44–46], and control systems [21, 24].

The generalisation of the concept of derivative and
integral to noninteger orders, 𝛼, has been addressed by
several mathematicians. The Riemann-Liouville, Grünwald-
Letnikov, and Caputo definitions of fractional derivative are
the most used and are given, respectively, by [47]

RL
𝑎
𝐷
𝛼

𝑡

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
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𝑡

𝑎

𝑓 (𝜏)
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𝑛 − 1 < 𝛼 < 𝑛,

(2)
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where Γ (⋅) represents Euler’s gamma function, [𝑥] is the
integer part of 𝑥, and ℎ is a time step.

The Laplace transform applied to (2) yields

𝐿 {
RL
𝑎
𝐷
𝛼

𝑡

𝑓 (𝑡)} = 𝑠
𝛼

𝐿 {𝑓 (𝑡)} −

𝑛−1

∑

𝑘=0

𝑠
𝑘 RL
0
𝐷
𝛼−𝑘−1

𝑡

𝑓 (0
+

) , (5)

where 𝐿 and 𝑠 denote the Laplace operator and variable,
respectively, and t represents time.

The general LTI, single-input-single-output (SISO), and
FO incommensurate system can be represented by [48]

𝑎
𝑛
𝐷
𝛼
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(6)

where 𝑥(𝑡) and 𝑦(𝑡) represent the system input and out-
put, respectively, 𝐷(⋅)is the derivative operator, {𝑎

𝑝
, 𝑏
𝑞
} ∈

R, {𝛼
𝑝
, 𝛽
𝑞
} ∈ R+

0

, 𝑝 = 0, . . . , 𝑛, and 𝑞 = 0, . . . , 𝑚. Besides,
it is considered that 𝛼
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In the Laplace domain, (6) results in a transfer function
given by the ratio of two non-integer polynomials:
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𝑏
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𝑠
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If 𝛼
𝑝
= 𝑘
𝑝
/V, 𝛽
𝑞
= 𝑘
𝑞
/V, with V ∈ R+and 𝑘

𝑝
, 𝑘
𝑞
∈ N
0
, then

(7) is a commensurate FO system and can be written as

𝐺 (𝑠) =

∑
𝑚

𝑞=0

𝑏
𝑞
(𝑠
1/]
)
𝑘
𝑞

∑
𝑛

𝑝=0

𝑎
𝑝
(𝑠1/])
𝑘
𝑝

. (8)

The FO system is said to be rational if V ∈ N.
In general, a polynomial 𝑃(𝑠𝛼) is a multivalued function,

the domain of which is a Riemann surface with an infinite
number of sheets [48]. Only in the particular case of 𝛼 being
rational, the number of sheets will be finite. Such type of
function becomes single-valued when an appropriate cut of
the complex plane is assumed. This branch cut is not unique,
but the negative real axis is usually chosen. In this case, the
origin of the complex plane is a branch point and the first
Riemann sheet, ℘, is defined as

℘ = {𝑟𝑒
𝑗𝜙

𝑟 ∈ R+, −𝜋 < 𝜙 < 𝜋} . (9)

For example, Figure 2 depicts two Riemann surfaces
corresponding to the function 𝑃(𝑠𝛼) = 𝑠

𝛼

+ 𝑏 (𝛼 > 0, 𝑏 > 0),
the roots of which are

𝑠 = 𝑏
1/𝛼

⋅ 𝑒
𝑗(𝜋+2ℎ𝜋)/𝛼

, ℎ = 0, ±1, ±2, . . . ; 𝑗 = √−1. (10)

For 𝛼 = 1/2 and 𝑏 = 1, the Riemann surface has
two sheets (Figure 2(a)), and for 𝛼 = 4/3 and 𝑏 = 1, the
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Figure 2: Riemann surfaces: (a) 𝑃(𝑠𝛼) = 𝑠
1/2

+ 1 has two sheets; (b) 𝑃(𝑠𝛼) = 𝑠
4/3

+ 1 has three sheets.

Riemann surface presents three different sheets (Figure 2(b)).
In the former case, there are no roots, and in the latter case,
two roots appear on the first sheet. Riemann surfaces are
important when dealing with RL of FO systems, as will be
seen in Section 3.

3. Root Locus

In this section, we assume that the system open-loop transfer
function is given by the following:

𝐺 (𝑠) = 𝐾

∏
𝑚

𝑞=1

(𝑠 + 𝑏
𝑞
)
𝛽
𝑞

∏
𝑛

𝑝=1

(𝑠 + 𝑎
𝑝
)
𝛼
𝑝

, (11)

where 𝑎
𝑝
, 𝑏
𝑞
∈ C and 𝛼

𝑝
, 𝛽
𝑞
∈ R+.

Equation (11) represents a direct extension to the
FO domain of the classical integer-order problem usually
addressed by control engineers when dealing with RL anal-
ysis. Rules for RL sketching applicable to this case are
summarised in Table 1. Only the first Riemann sheet will be
considered.

In the sequel, several examples are presented, namely, (i)
one FO real pole; (ii) two FO real poles; (iii) one FO pole and
one FO zero; (iv) a pair of FO complex conjugate poles. The
RLplots are generated using the numeric algorithmpresented
in [17]. The application of the practical sketching rules is
detailed for a few examples, and for all cases, the RL plots
serve the purpose of elucidating system dynamics. This will
help readers to gain intuition about system behaviour as a
function of poles and zeros fractional orders.

3.1. One Fractional-Order Real Pole. In this case, the open-
loop transfer function is given by

𝐺
1
(𝑠) =

𝐾

(𝑠 + 𝑎
1
)
𝛼
1

, (12)

where the RL corresponds to the roots of the characteristic
equation

(𝑠 + 𝑎
1
)
𝛼
1

+ 𝐾 = 0, (13)

𝑠 = −𝑎
1
+ 𝐾
1/𝛼
1 ⋅ 𝑒
𝑗(2ℎ+1)⋅𝜋/𝛼

1 , ℎ = 0, ±1, ±2, . . . . (14)

In general, the RL spreads along several Riemann sheets,
meaning that RL branches can begin in one sheet, cross
the branch cut, and enter in another sheet. For example,
considering 𝐺

1
(𝑠) with 𝑎

1
= 2 and 𝛼

1
= 1.5, we verify

that the characteristic (13) has roots in two Riemann sheets
(Figure 3(a)). However, choosing 𝛼

1
= 1.6 results in roots in

five different sheets (Figure 3(b)).
It is well-known that just the first Riemann sheet has

physical significance [49]. As such, in the sequel, we consider
only the RL branches corresponding to the first sheet.

Observing the RL of 𝐺
1
(𝑠), we verify that for 0 < 𝛼

1
< 1,

there are no closed-loop poles. However, for 1 ≤ 𝛼 < 4,
several graphs are obtained, as shown in Figure 4. Starting
from the integer case (𝛼

1
= 1) represented in Figure 4(a), as

the FO pole increases, two branches emerge from the open-
loop pole 𝑠 = −2 and flow towards infinity (Figure 4(b)). For
𝛼
1
= 2, we get the classical plot with two vertical branches

(Figure 4(c)). Increasing 𝛼
1
(2 < 𝛼

1
< 3), two RL branches

are still observed (Figure 4(d)). When 𝛼
1

= 3, the well-
known three branches RL occurs (Figure 4(e)), and finally,
when the FO pole is in the interval 3 < 𝛼

1
< 4, four branches

emerge. Larger values of the FO pole (i.e., 𝛼
1

≥ 4) were
also investigated. We concluded that the RL sketching rules
also apply. The results are of the same type, and therefore, we
decided not to include them.

The practical rules apply to all FO cases. For example, for
the RL shown in Figure 4(f), as 𝛼

1
= 3.5, the RL has four

branches.The asymptotes centroid and angles are 𝜎 = −2 and
𝜑 = −154.3

∘, −51.4∘, 51.4∘, and 154.3
∘, respectively. Solving

the characteristic equation for 𝑠 = 𝑗𝜔, the RL branches
intersect the imaginary axis at 𝜔 = ±2.51, for𝐾 = 59.2.
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Figure 3: Root-Locus of 𝐺
1

(𝑠): (a) 𝑎
1

= 2 and 𝛼
1

= 1.5 result in RL branches in two sheets; (b) 𝑎
1

= 2 and 𝛼
1

= 1.6 result in RL branches in
five sheets.

Table 1: Practical rules for RL sketching of FO systems as defined in (11).

Fractional-order case, (11)
Rule 1 RL is symmetrical about the real axis.

Rule 2 If 𝑙 < ∑
𝑛

𝑝= 1

𝛼
𝑝

< 𝑙 + 2, 𝑙 = 1, 3, 5, . . .,
then the number of branches is 𝑙 + 1.

Rule 3 Mark all open-loop poles and zeros on the s-plane.
Rule 4 If necessary, use the angle condition (1) to determine the open-loop poles that have RL branches departing from them.

Rule 5

Compute the asymptotes centroid, 𝜎, and angle, 𝜑, according to the following expressions:

𝜎 =

−∑
𝑛

𝑝= 1

𝑎
𝑝

𝛼
𝑝

+ ∑
𝑚

𝑞= 1

𝑏
𝑞

𝛽
𝑞

∑
𝑛

𝑝= 1

𝛼
𝑝

− ∑
𝑚

𝑞= 1

𝛽
𝑞

,

𝜑 =
(2ℎ + 1) ⋅ 180

∘

∑
𝑛

𝑝= 1

𝛼
𝑝

− ∑
𝑚

𝑞= 1

𝛽
𝑞

, ℎ = 0, ±1, ±2, . . ..

Rule 6 Points in the real axis belong to the RL if, for all poles and zeros seen to the right, 𝛿 = ∑
𝑛

𝑝= 1

𝛼
𝑝

− ∑
𝑚

𝑞= 1

𝛽
𝑞

is an integer odd
number.

Rule 7 Find the intersection of the RL with the imaginary axis making 𝑠 = 𝑗𝜔 in the characteristic equation and solving it in order to
determine 𝐾 and 𝜔.

Rule 8 Compute the breakaway and break-in points using the characteristic equation and determining 𝑑𝐾/𝑑𝑠 = 0.
Rule 9 Determine the departure and arrival angles using the angle condition (1).

3.2. Two Fractional-Order Real Poles. In this subsection, we
consider the open-loop transfer function given by

𝐺
2
(𝑠) =

𝐾

(𝑠 + 𝑎
1
)
𝛼
1

(𝑠 + 𝑎
2
)
𝛼
2

. (15)

The RL was computed for various values of {𝛼
1
, 𝛼
2
} (𝑎
1
=

2, 𝑎
2
= 1) and the graphs analysed. It was observed that no RL

branches exist when 𝛼
12
= 𝛼
1
+ 𝛼
2
< 1. Several RL examples

are depicted in Figures 5 to 7 for 1 ≤ 𝛼
12
< 4. The results are

presented in three groups: (i) 1 ≤ 𝛼
12

< 2; (ii) 2 ≤ 𝛼
12

< 3;
(iii) 3 ≤ 𝛼

12
< 4. Similar results were observed for 𝛼

12
≥ 4

and 𝑎
1
< 𝑎
2
. For both cases, the practical sketching rules still

apply.
Figure 5 shows the plots from group (i). When 𝛼

12
= 1,

the RL has a single branch in the real axis (Figures 5(a) and
5(b)). As 𝛼

12
increases (1 < 𝛼

12
< 2), two branches emerge

from the poles 𝑠 = −2 or 𝑠 = −1, depending on the values of
𝛼
1
and 𝛼

2
, and tend to infinity (Figures 5(c) to 5(f)).

As said in Section 3.1, all practical rules are valid for𝐺
2
(𝑠),

(15). Using the case shown in Figure 5(f), for example, we
have 𝛼

1
+ 𝛼
2
= 1.9, meaning that the RL has two branches.

As we have two open-loop poles, rule 4 must be used to
determine the pole from which the branches are departing.
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Figure 5: Root locus of 𝐺
2

(𝑠). Cases from group (i), 1 ≤ 𝛼
12

< 2 (𝑎
1

= 2, 𝑎
2

= 1).
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Figure 6: Root locus of 𝐺
2

(𝑠). Cases from group (ii), 2 ≤ 𝛼
12

< 3 (𝑎
1

= 2, 𝑎
2

= 1).
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Figure 7: Root locus of 𝐺
2

(𝑠). Cases from group (iii), 3 ≤ 𝛼
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< 4 (𝑎
1

= 2, 𝑎
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= 1).
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Figure 8: Root locus of 𝐺
3

(𝑠). Cases from group (i), 1 ≤ 𝛼
1

< 2 (𝑎
1

= 1, 𝑏
1

= 2).

Thus, applying the angle condition to the test points 𝑝
1
and

𝑝
2
, we obtain 𝜙

1
= −90

∘ and 𝜙
2
= 90
∘, respectively, indicating

that no branches can depart from 𝑠 = −2. Rule 4 can be used
in all cases; nevertheless, an easier to use specific rule about
RL starting and ending points still requires more research
before a definitive statement.

The angle condition is also used to determine the depart-
ing angles from pole 𝑠 = −1, resulting in 𝜙 = ±138.46

∘. The
asymptotes centroid and angles are 𝜎 = −1.3 and 𝜑 = ±94.7

∘,
respectively.

Figure 6 depicts results from group (ii).When𝛼
12
= 2, we

get the plots represented in Figures 6(a) and 6(b).We observe
twoRL branches that, as before, depending on the values of𝛼

1

and 𝛼
2
, can depart from one or the other open-loop poles. In

both cases, the branches tend to infinity with angles𝜑 = ±90
∘.

Increasing the value of 𝛼
12

(2 < 𝛼
12

< 3), two RL branches
are still observed (Figures 6(c) to 6(h)).

The results from group (iii) are illustrated in Figure 7. For
𝛼
12

= 3, the RL of Figures 7(a) to 7(c) shows three branches
that depart from the same or different open-loop poles and

flow to infinity with angles 𝜑 = 180
∘ and ±60∘. Increasing 𝛼

12

(3 < 𝛼
12
< 4), four RL branches arise (Figures 7(d) to 7(g)).

The results obtained for two FO real poles are similar to
those of a single real pole.Thismeans a similar behavior, both
in terms of the number of branches and the type of RL charts,
whenever 𝛼

1
and 𝛼

12
are close. It should be noted that the

RL depends not only on the equivalent order 𝛼
12

(by means
of rules 2, 5, or 6) but also on the FO of each pole. By other
words, the same value of 𝛼

12
may lead to different RL.

3.3. One Fractional-Order Pole and One Fractional-Order
Zero. In this case, the open-loop transfer function is given
by

𝐺
3
(𝑠) =

𝐾(𝑠 + 𝑏
1
)
𝛽
1

(𝑠 + 𝑎
1
)
𝛼
1

. (16)

TheRLwas obtained for various values of {𝛼
1
, 𝛽
1
} (𝑎
1
= 1,

𝑏
1
= 2) and the graphs analysed as previously. It was observed

that no RL branches exist when 𝛼
1

< 1. Figures 8 to 10
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Figure 9: Root locus of 𝐺
3

(𝑠). Cases from group (ii), 2 ≤ 𝛼
1

< 3 (𝑎
1

= 1, 𝑏
1

= 2).

depict several RL for 1 ≤ 𝛼
1

< 4. As before, for easing
the comparison, the results are presented in three groups: (i)
1 ≤ 𝛼

1
< 2; (ii) 2 ≤ 𝛼

1
< 3; (iii) 3 ≤ 𝛼

1
< 4. Additional

experiments were carried out, both for different values of the
FO pole and FO zero and for 𝑎

1
> 𝑏
1
. We concluded that the

sketching rules are valid for all cases and the results are similar
to those presented.

Figure 8 shows plots from group (i). We see that each
RL has two branches that depend on the difference between
the orders of the denominator and numerator, 𝛿 = 𝛼

1
− 𝛽
1
:
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Figure 10: Root locus of 𝐺
3

(𝑠). Cases from group (iii), 3 ≤ 𝛼
1

< 4 (𝑎
1

= 1, 𝑏
1

= 2).
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Figure 11: Root locus of 𝐺
4

(𝑠) for 1 < 𝛼
1

< 8 (𝑎
1

= 1 − 𝑗2).
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when 𝛿 < 1, both branches converge to the open-loop zero
(Figure 8(a)); if 𝛿 = 1, one branch converges to the open-
loop zero and the other tends to infinity (on the real axis)
(Figure 8(b)); for 1 < 𝛿 < 2, the two branches flow to infinity
(Figure 8(c)).

Applying rule 6 to the case depicted in Figure 8(b), for
all real axis points in the line ] − ∞, −2], we have 𝛿 = 1,
meaning that this line belongs to the RL. The break-in point
is computed using rule 8, resulting in 𝑠 = −2.3.

Figure 9 depicts several plots from group (ii), that is, 2 ≤
𝛼
1
< 3. All RL still have two branches, the paths of which

depend on the difference between the FO of the open-loop
pole and zero (Figures 9(a) to 9(e)).

Several RL for group (iii), 3 ≤ 𝛼
1
< 4, are shown in

Figure 10. It can be observed that all RL have four branches,
and as before, the paths depend on the difference between the
orders of the open-loop pole and zero.

3.4. One Pair of Fractional-Order Complex Conjugate Poles.
The open-loop transfer function is given by

𝐺
4
(𝑠) =

𝐾

(𝑠2 + 2𝜉𝜔
𝑛
𝑠 + 𝜔2
𝑛

)
𝛼
1
/2

=
𝐾

(𝑠 + 𝑎
1
)
𝛼
1
/2

⋅ (𝑠 + 𝑎
∗

1

)
𝛼
1
/2

,

(17)

where 𝑎
1
∈ C and 𝑎∗

1

denotes the conjugate of 𝑎
1
.

Plotting the RL, it can be seen that there are no branches
unless 𝛼

1
≥ 1. In Figure 11, several RL graphs are shown for

1 < 𝛼
1
< 8. Figure 11(a) depicts the RL for 𝛼

1
= 1.2, where

we can see that there are gaps between the open-loop poles
and the points were the branches initiate. Recalling that the
RL can spread along several Riemann sheets, meaning that
RL branches can begin in one sheet, cross the branch cut,
and enter in another sheet, the gaps correspond to points
not belonging to the first Riemann sheet. As in the previous
examples, when 1 < 𝛼

1
< 3, the RL has two branches

(Figures 11(a) to 11(c)). When 3 < 𝛼
1
< 5, the number of

branches is four. Even though, for 3 < 𝛼
1
< 4, there are

gaps in two branches (Figure 11(d)), and for 4 < 𝛼
1
< 5, two

extra small branches depart from the open-loop poles and
end close to those points, entering in another Riemann sheet
(Figure 11(e)). The same qualitative behaviour is observed for
5 < 𝛼
1
< 7 (Figures 11(f) to 11(g)). Figure 11(h) depicts the RL

for 7 < 𝛼
1
< 8, revealing eight branches departing from the

open-loop poles.
To conclude the analysis, we use the case shown in

Figure 11(g) to underline that all RL practical rules are
applicable, namely, the asymptotes centroid and angles, which
are 𝜎 = −1 and 𝜑 = −158.8

∘, −52.9∘, 52.9, and 158.8
∘,

respectively. The angle condition is used to determine the
departing angles from pole 𝑠 = −1+𝑗2, resulting in the values
𝜙 = −142.9, −37.1∘, 68.8, and 174.7∘.

4. Conclusion

The Root-Locus (RL) is a classical method for the analysis
and synthesis of linear time-invariant (LTI) integer-order

systems, consisting of the plot of the paths of all possible
closed-loop poles as a design parameter varies in a given
range. Nowadays, there are efficient numerical algorithms
devoted to RL analysis, implemented by several packages.
For integer-order systems, there are well-known practical
rules for RL sketching, but those cannot be directly applied
to FO systems, and the existing literature on this topic
almost exclusively focuses on particular cases, namely, the
commensurate FO systems.

This paper generalises RL practical rules to a class of
FO systems, which are defined by an open-loop transfer
function expressed as a ratio of FO zeros and poles. As usual,
using practical rules, even though the RL sketch might result
somewhat incomplete, the ability to quickly sketch RL by
hand is invaluable, from the control designer viewpoint, in
making fundamental decisions early in the design process.
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