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This paper investigates the existence of nonnegative solutions for nonlinear fractional differential equations with nonlocal fractional
integrodifferential boundary conditions on an unbounded domain by means of Leray-Schauder nonlinear alternative theorem. An
example is discussed for the illustration of the main work.

1. Introduction

Recent studies on fractional differential equations, appeared
in several special issues and books, reveal an extensive devel-
opment of various aspects of the subject. One of the reasons
for the popularity of fractional calculus is the nonlocal behav-
ior of fractional-order operators in contrast to the classical
integer-order operators. This characteristic has motivated
many experts on modelling to introduce the concept of
fractional modelling by taking into account the ideas of
fractional calculus. Examples include various disciplines of
science and engineering such as physics, chemistry, biomath-
ematics, dynamical processes in porous media, dynamics
of earthquakes, material viscoelastic theory, and control
theory of dynamical systems. Furthermore, the outcome of
certain experimentations indicate that integral and derivative
operators of fractional order possess some characteristics
related to complex systems having long memory in time.
For details and examples, we refer the reader to the works
in [1–7].

Boundary value problems of fractional-order differential
equations have been extensively investigated during the last
few years, and a variety of results on the topic have been

established. A great deal of the work on fractional boundary
value problems involves local/nonlocal boundary conditions
on bounded and unbounded domains; for example, see
[8–26].

In this paper, we study a new class of problems on
fractional differential equations with nonlocal boundary
conditions on unbounded domains. Precisely, we consider
the following problem:

𝐷
𝛼

𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 1 < 𝛼 ≤ 2, 𝑡 ∈ 𝐽 = [0, +∞) ,

𝐼
2−𝛼

𝑢 (0) = 0,

𝐷
𝛼−1

𝑢 (+∞) = 𝜆𝐼
𝛼−1

𝑢 (𝜂) , 0 < 𝜆, 𝜂 < ∞,

(1)

where𝐷𝛼 denotes Riemann-Liouville fractional derivative of
order 𝛼, 𝑓 ∈ 𝐶(𝐽 ×R,R+), and R+ = [0, +∞).

2. Preliminaries

In this section, we present some useful definitions and related
theorems.
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Definition 1 (see [4]). The Riemann-Liouville fractional deri-
vative of order 𝛿 for a continuous function 𝑓 is defined by

𝐷
𝛿

𝑓 (𝑡) =
1

Γ (𝑛 − 𝛿)
(

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛿−1

𝑓 (𝑠) 𝑑𝑠,

𝑛 = [𝛿] + 1,

(2)

Provided that the right hand side is pointwise defined on
(0,∞) and [𝛿] is the integer part of 𝛿.

Definition 2 (see [4]). The Riemann-Liouville fractional inte-
gral of order 𝛿 for a function 𝑓 is defined as

𝐼
𝛿

𝑓 (𝑡) =
1

Γ (𝛿)
∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠) 𝑑𝑠, 𝛿 > 0, (3)

provided that such integral exists.

Theorem 3 (see [27] (Leray-Schauder nonlinear alterna-
tive)). Let 𝐶 be a convex subset of a Banach space, and let 𝑈
be an open subset of 𝐶 with 0 ∈ 𝑈. Then every completely con-
tinuous map 𝑁 : 𝑈 → 𝐶 has at least one of the following two
properties:

(1) 𝑁 has a fixed point in 𝑈;
(2) there is an 𝑥 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑥 = 𝜆𝑁𝑥.

Theorem 4 (see [28]). Let 𝑈 ⊂ 𝑋 be a bounded set. Then 𝑈 is
relatively compact in𝑋 if the following conditions hold:

(i) for any 𝑢(𝑡) ∈ 𝑈, 𝑢(𝑡)/(1 + 𝑡
𝛼−1

) is equicontinuous on
any compact interval of 𝐽;

(ii) for any 𝜀 > 0, there exists a constant 𝑇 = 𝑇(𝜀) > 0 such
that



𝑢 (𝑡
1
)

1 + 𝑡
𝛼−1

1

−
𝑢 (𝑡
2
)

1 + 𝑡
𝛼−1

2



< 𝜀 (4)

for any 𝑡
1
, 𝑡
2
≥ 𝑇 and 𝑢 ∈ 𝑈.

Now we list the assumptions needed in the sequel.

(𝐻
1
): Γ(2𝛼 − 1) > 𝜆𝜂

2𝛼−2.
(𝐻
2
): there exist nonnegative functions 𝑎(𝑡), 𝑏(𝑡) defined on

[0,∞) and a constant 𝜌 > 0 such that

𝑓 (𝑡, 𝑢 (𝑡))
 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢 (𝑡)|

𝜌

,

∫

+∞

0

𝑎 (𝑡) 𝑑𝑡 = 𝑎
∗

< +∞,

∫

+∞

0

𝑏 (𝑡) (1 + 𝑡
𝛼−1

)
𝜌

𝑑𝑡 = 𝑏
∗

< +∞.

(5)

3. Some Lemmas

This section contains some preliminary works that we need
to establish the main result for problem (1).

Lemma 5. Let 𝜎(𝑡) ∈ 𝐶([0, +∞)) with ∫
∞

0

𝜎(𝑠)𝑑𝑠 < ∞. For
Γ(2𝛼 − 1) ̸= 𝜆𝜂

2𝛼−2, the associated linear fractional boundary
value problem,

𝐷
𝛼

𝑢 (𝑡) + 𝜎 (𝑡) = 0, 1 < 𝛼 ≤ 2,

𝐼
2−𝛼

𝑢 (0) = 0,

𝐷
𝛼−1

𝑢 (+∞) = 𝜆𝐼
𝛼−1

𝑢 (𝜂) ,

(6)

has a unique solution given by

𝑢 (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠, (7)

where

𝐺 (𝑡, 𝑠)

=
1

Δ

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−(Γ (2𝛼 − 1)−𝜆𝜂
2𝛼−2

) (𝑡−𝑠)
𝛼−1

+ (Γ (2𝛼−1)−𝜆(𝜂−𝑠)
2𝛼−2

) 𝑡
𝛼−1

,
𝑠≤𝑡, 𝑠≤𝜂,

(Γ (2𝛼−1)−𝜆(𝜂−𝑠)
2𝛼−2

) 𝑡
𝛼−1

, 0≤𝑡≤𝑠≤𝜂,

− (Γ (2𝛼−1)−𝜆𝜂
2𝛼−2

) (𝑡−𝑠)
𝛼−1

+Γ (2𝛼−1) 𝑡
𝛼−1

,
0≤𝜂≤𝑠≤𝑡,

Γ (2𝛼−1) 𝑡
𝛼−1

, 𝑠≥𝑡, 𝑠≥𝜂,

(8)

Δ = Γ (𝛼) (Γ (2𝛼 − 1) − 𝜆𝜂
2𝛼−2

) . (9)

Proof. It is well known that the fractional equation in (6) is
equivalent to the integral equation:

𝑢 (𝑡) = −𝐼
𝛼

𝜎 (𝑡) + 𝑐
1
𝑡
𝛼−1

+ 𝑐
0
𝑡
𝛼−2

, (10)

where 𝑐
0
, 𝑐
1
∈ R are arbitrary constants. From (10), we have

𝐷
𝛼−1

𝑢 (𝑡) = −𝐼
1

𝜎 (𝑡) + 𝑐
1
Γ (𝛼) = 𝑐

1
Γ (𝛼) − ∫

𝑡

0

𝜎 (𝑠) 𝑑𝑠,

𝐷
𝛼−2

𝑢 (𝑡) = −𝐼
2

𝜎 (𝑡) + 𝑐
1
Γ (𝛼 − 1) 𝑡 + 𝑐

0
Γ (𝛼 − 1) .

(11)

Using the given boundary conditions in (10), we find that
𝑐
0
= 0 and

𝑐
1
=

1

Γ (𝛼) − 𝐴
∫

∞

0

𝜎 (𝑠) 𝑑𝑠 −
𝜆

Γ (𝛼) − 𝐴

× ∫

𝜂

0

(𝜂 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
[∫

𝑠

0

(𝑠 − 𝑥)
𝛼−1

Γ (𝛼)
𝜎 (𝑥) 𝑑𝑥] 𝑑𝑠

=
1

Γ (𝛼) − 𝐴
∫

∞

0

𝜎 (𝑠) 𝑑𝑠 −
𝜆

Γ (𝛼) − 𝐴
𝐼
2𝛼−1

𝜎 (𝜂) ,

(12)

where

𝐴 = 𝜆∫

𝜂

0

𝑠
𝛼−1

(𝜂 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
𝑑𝑠 =

𝜆Γ (𝛼) 𝜂
2𝛼−2

Γ (2𝛼 − 1)
. (13)
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Substituting the values of 𝑐
1
, 𝑐
2
into (10) gives

𝑢 (𝑡) = −∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝜎 (𝑠) 𝑑𝑠 −

𝜆𝑡
𝛼−1

Γ (𝛼) − 𝐴
𝐼
2𝛼−1

𝜎 (𝜂)

+
𝑡
𝛼−1

Γ (𝛼) − 𝐴
∫

∞

0

𝜎 (𝑠) 𝑑𝑠

= −∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝜎 (𝑠) 𝑑𝑠 −

Γ (2𝛼 − 1) 𝜆𝑡
𝛼−1

Γ (𝛼) (Γ (2𝛼 − 1) − 𝜆𝜂2𝛼−2)

× ∫

𝜂

0

(𝜂 − 𝑠)
2𝛼−2

Γ (2𝛼 − 1)
𝜎 (𝑠) 𝑑𝑠 +

Γ (2𝛼 − 1) 𝑡
𝛼−1

Γ (𝛼) (Γ (2𝛼 − 1) − 𝜆𝜂2𝛼−2)

× ∫

∞

0

𝜎 (𝑠) 𝑑𝑠

= ∫

∞

0

𝐺 (𝑡, 𝑠) 𝜎 (𝑠) 𝑑𝑠,

(14)

where 𝐺(𝑡, 𝑠) is defined by (8).

Remark 6. In view of the assumption (𝐻
1
), Green’s function

𝐺(𝑡, 𝑠) satisfies the properties:

(1) 𝐺(𝑡, 𝑠) ≥ 0,

(2)

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
≤

Γ (2𝛼 − 1)

Γ (𝛼) [Γ (2𝛼 − 1) − 𝜆𝜂2𝛼−2]
≜ 𝐿. (15)

For the forthcoming analysis, we introduce a space

𝑋 = {𝑢 ∈ 𝐶 (𝐽,R) : sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
< +∞} , (16)

equipped with the norm

‖𝑢‖
𝑋

= sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
. (17)

Notice that𝑋 is a Banach space.
Define an operator 𝑇 : 𝑋 → 𝑋 as follows:

𝑇𝑢 (𝑡) = ∫

∞

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (18)

Observe that problem (1) has a solution only if the opera-
tor 𝑇 has a fixed point.

Lemma 7. If (𝐻
1
), (𝐻
2
) hold, then the operator 𝑇 : 𝑋 → 𝑋

is completely continuous.

Proof. We divide the proof into several steps.

(i) The operator 𝑇 : 𝑋 → 𝑋 is uniformly bounded. Let
Ω be any bounded subset of𝑋; then there exists a constant 𝐿

1

such that ‖𝑢‖
𝑋

≤ 𝐿
1
. By (𝐻

2
), we have

‖𝑇𝑢‖
𝑋

= sup
𝑡∈𝐽

∫

∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤ 𝐿∫

∞

0

[𝑎 (𝑠) + 𝑏 (𝑠) (1 + 𝑠
𝛼−1

)
𝜌 |𝑢 (𝑠)|

𝜌

(1 + 𝑠𝛼−1)
𝜌
]𝑑𝑠

≤ 𝐿 (𝑎
∗

+ 𝑏
∗

𝐿
𝜌

1
)

< ∞.

(19)

This shows that 𝑇Ω is uniformly bounded.
(ii) 𝑇 : 𝑋 → 𝑋 is continuous. Take 𝑢

𝑛
, 𝑢 ∈ 𝑋 such that

‖𝑢
𝑛
‖
𝑋

< ∞, ‖𝑢‖
𝑋

< ∞, and 𝑢
𝑛

→ 𝑢 as 𝑛 → ∞. Then, by
(𝐻
2
), we have

∫

∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
𝑓 (𝑠, 𝑢

𝑛
(𝑠)) 𝑑𝑠 ≤ 𝐿∫

∞

0

[𝑎 (𝑠) + 𝑏 (𝑠)
𝑢𝑛 (𝑠)



𝜌

] 𝑑𝑠

≤ 𝐿𝑎
∗

+ 𝐿𝑏
∗𝑢𝑛



𝜌

𝑋
< ∞,

(20)

where 𝐿 is defined by (15).
By the Lebesgue dominated convergence theorem and

continuity of 𝑓, we obtain

lim
𝑛→∞

∫

∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
𝑓 (𝑠, 𝑢

𝑛
(𝑠)) 𝑑𝑠 = ∫

∞

0

𝐺 (𝑡, 𝑠)

1+𝑡𝛼−1
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(21)

Taking the limit 𝑛 → ∞, we get

𝑇𝑢
𝑛
− 𝑇𝑢

𝑋
= sup
𝑡∈𝐽

∫

∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1

×
𝑓 (𝑠, 𝑢

𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠))

 𝑑𝑠 → 0.

(22)

Therefore, 𝑇 is continuous.
(iii) 𝑇 : 𝑋 → 𝑋 is equicontinuous. We consider two

cases.
(a) Let 𝐼 ⊂ 𝐽 be any compact interval, and let 𝑡

1
, 𝑡
2
∈ 𝐼 be

such that 𝑡
1
< 𝑡
2
. LetΩ be any bounded subset of𝑋; then for

any 𝑢 ∈ Ω, we have


𝑇𝑢 (𝑡
2
)

1 + 𝑡
𝛼−1

2

−
𝑇𝑢 (𝑡
1
)

1 + 𝑡
𝛼−1

1



=



∫

∞

0

(
𝐺 (𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2

−
𝐺 (𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

)𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



≤ ∫

∞

0



𝐺 (𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2

−
𝐺 (𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1



(𝑎 (𝑠)+𝑏 (𝑠)(1+𝑠
𝛼−1

)
𝜌

‖𝑢‖
𝜌

𝑋
) 𝑑𝑠.

(23)

Since 𝐺(𝑡, 𝑠) is continuous on 𝐽 × 𝐽, we have that 𝐺(𝑡, 𝑠)/(1 +

𝑡
𝛼−1

) is a uniformly continuous function on the compact set
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𝐼 × 𝐼. Moreover, for 𝑠 ≥ 𝑡, we have that this function only
depends on 𝑡; in consequence it is uniformly continuous on
𝐼 × (𝐽 \ 𝐼). So we have that for all 𝑠 ∈ 𝐽 and 𝑡

1
, 𝑡
2

∈ 𝐼, the
following property holds.

For all 𝜀 > 0 there is 𝛿(𝜀) > 0 such that if |𝑡
1
−𝑡
2
| < 𝛿, then

|𝐺(𝑡
2
, 𝑠)/(1 + 𝑡

𝛼−1

2
) − 𝐺(𝑡

1
, 𝑠)/(1 + 𝑡

𝛼−1

1
)| < 𝜀. By this, together

with (23), and the fact that

∫

∞

0

(𝑎 (𝑠) + 𝑏 (𝑠) (1 + 𝑠
𝛼−1

)
𝜌

𝐿
1
) 𝑑𝑠 < ∞, (24)

we can get that 𝑇Ω is equicontinuous on 𝐼.
(b) In fact, when 𝑡 → ∞, we have

lim
𝑡→∞

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
=

1

Δ
{
𝜆𝜂
2𝛼−2

− 𝜆(𝜂 − 𝑠)
2𝛼−2

, 𝑠 ≤ 𝜂,

𝜆𝜂
2𝛼−2

, 0 ≤ 𝜂 ≤ 𝑠.

(25)

From this, it is not difficult to verify that for any given
𝜀 > 0, there exists a constant 𝑇 = 𝑇



(𝜀) > 0 such that


𝐺 (𝑡
1
, 𝑠)

1 + 𝑡
𝛼−1

1

−
𝐺 (𝑡
2
, 𝑠)

1 + 𝑡
𝛼−1

2



< 𝜀 (26)

for any 𝑡
1
, 𝑡
2
≥ 𝑇
 and 𝑠 ∈ 𝐽. Hence, 𝑇 is equiconvergent at

∞.
Thus the conclusion of Theorem 4 applies that 𝑇 is rela-

tively compact on 𝐽. So, 𝑇 : 𝑋 → 𝑋 is completely contin-
uous. This completes the proof.

4. Main Results

Theorem 8. Assume that (𝐻
1
) and (𝐻

2
) with 𝜌 = 1 hold. If

there exists 𝑟 > 0 such that

𝑟 (1 − 𝐿𝑏
∗

) > 𝐿𝑎
∗ (27)

with 𝐿 given by (15), then problem (1) has a solution 𝑢(𝑡)

satisfying

0 ≤
𝑢 (𝑡)

1 + 𝑡𝛼−1
≤ 𝑟, for 𝑡 ∈ 𝐽. (28)

Proof. Let 𝑈 = {𝑢 ∈ 𝑋, ‖𝑢‖
𝑋

< 𝑟}. For 𝑢 ∈ 𝜕𝑈, if there exist
𝜐 ∈ (0, 1) such that 𝑢 = 𝜐𝑇𝑢, then we have

‖𝑢‖
𝑋

= sup
𝑡∈𝐽



𝜐 (𝑇𝑢) (𝑡)

1 + 𝑡𝛼−1



≤ sup
𝑡∈𝐽

∫

∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1

𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤ 𝐿∫

∞

0

|𝑎 (𝑠) + 𝑏 (𝑠) 𝑢 (𝑠)| 𝑑𝑠

≤ 𝐿𝑎
∗

+ 𝐿𝑏
∗

‖𝑢‖
𝑋
.

(29)

This implies that

𝑟 (1 − 𝐿𝑏
∗

) ≤ 𝐿𝑎
∗

, (30)

which contradicts (27). By Lemma 7 and Theorem 3, we
conclude that problem (1) has a solution 𝑢(𝑡) satisfying

0 ≤
𝑢 (𝑡)

1 + 𝑡𝛼−1
≤ 𝑟, 𝑡 ∈ 𝐽. (31)

This completes the proof.

In the next, we formulate existence results for the cases
0 < 𝜌 < 1 and 𝜌 > 1. We do not provide the proof of these
results as it is similar to that ofTheorem 8. For that, we denote
(𝐻
2
)with 0 < 𝜌 < 1 and 𝜌 > 1, respectively, by (𝐻

3
) and (𝐻

4
).

Theorem 9. Let the assumptions (𝐻
1
) and (𝐻

3
) hold. Then

problem (1) has a solution 𝑢(𝑡) satisfying

0 ≤
𝑢 (𝑡)

1 + 𝑡𝛼−1
≤ 𝑟, 𝑡 ∈ 𝐽, (32)

where 𝑟 > max{2𝐿𝑎∗, (2𝐿𝑏∗)1/(1−𝜌)} with 𝐿 given by (15).

Theorem 10. Suppose that (𝐻
1
) and (𝐻

4
) hold and that there

exists 2𝐿𝑎
∗

≤ 𝑟 ≤ (2𝐿𝑏
∗

)
1/(1−𝜌) with 𝐿 given by (15). Then

problem (1) has a solution 𝑢(𝑡) such that

0 ≤
𝑢 (𝑡)

1 + 𝑡𝛼−1
≤ 𝑟, 𝑡 ∈ 𝐽. (33)

5. Example

Example 1. With 𝛼 = 3/2, 𝜆 = 1/2, and 𝜂 = 1, we consider
the following boundary value problem:

𝐷
3/2

𝑢 (𝑡)+
|𝑢 (𝑡)| + sin 𝑢 (𝑡)

8 (1 + 𝑡1/2) (1 + 𝑡)
2
+

4

(𝑡 + 4)
2
=0, 𝑡 ∈ [0, +∞) ,

𝐼
1/2

𝑢 (0) = 0,

𝐷
1/2

𝑢 (+∞) =
1

2
𝐼
1/2

𝑢 (1) .

(34)

Clearly the condition (𝐻
1
) holds as Γ(2𝛼 − 1) = Γ(2) = 1,

𝜆𝜂
2𝛼−2

= 1/2. Letting 𝑎(𝑡) = 4/(𝑡+4)
2, 𝑏(𝑡) = 1/(4(1+𝑡

1/2

)(1+

𝑡)
2

), we find that

𝑓 (𝑡, 𝑢 (𝑡)) =
|𝑢 (𝑡)| + sin 𝑢 (𝑡)

8 (1 + 𝑡1/2) (1 + 𝑡)
2
+

4

(𝑡 + 4)
2

≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢 (𝑡)| ,

∫

+∞

0

𝑎 (𝑡) 𝑑𝑡 = 1 < +∞,

∫

+∞

0

(1 + 𝑡
𝛼−1

) 𝑏 (𝑡) 𝑑𝑡 =
1

4
< +∞.

(35)

This shows that (𝐻
2
) holds true. Finally, fixing 𝑟 > 1/(√𝜋 −

1), it can easily be verified that the condition (27) is satisfied.
Thus all the conditions of Theorem 8 are satisfied. Therefore,
by Theorem 8, problem (27) has a solution 𝑢(𝑡) such that

0 ≤
𝑢 (𝑡)

1 + 𝑡𝛼−1
≤ 𝑟. (36)
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