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We extend the application of the Galerkin method for treating the multiterm fractional differential equations (FDEs) subject to
initial conditions. A new shifted Legendre-Galerkin basis is constructed which satisfies exactly the homogeneous initial conditions
by expanding the unknownvariable using a newpolynomial basis of functionswhich is built upon the shiftedLegendre polynomials.
A new spectral collocation approximation based on the Gauss-Lobatto quadrature nodes of shifted Legendre polynomials is
investigated for solving the nonlinear multiterm FDEs.The main advantage of this approximation is that the solution is expanding
by a truncated series of Legendre-Galerkin basis functions. Illustrative examples are presented to ensure the high accuracy and
effectiveness of the proposed algorithms are discussed.

1. Introduction

Many practical problems arising in engineering, physical,
biological, and biomedical sciences require solving fractional
differential equations (FDEs), (see, e.g., [1–4]). For that rea-
son, accurate and efficient numerical approaches for solving
FDEs are needed. Several methods have also been proposed
in the literature to solve ordinary or partial fractional differ-
ential equations (see, for instance, [5–8]). In contrast, there
is a relatively small literature on spectral methods for direct
solution of such fractional-order problems, (see, for instance,
[9–11]).

The aim of this paper is to design some spectral techni-
ques based on the shifted Legendre-Galerkin (SLG) method
and shifted Legendre-Gauss-Lobatto collocation (SL-G-LC)
method in modal basis for the solution of linear and non-
linear multi-term FDEs, respectively. Indeed, this is the first
work concerning the spectral Galerkin method and pseudo-
spectral method in modal basis for solving such problems.

In the tau, Galerkin, or pseudo-spectral approximations,
the spectral solution is represented by a truncated series

of smooth global trial functions, in such a representation
the coefficients of the expansion are the unknown to be
determined. An explicit expression for the derivatives of an
infinitely differentiable function of any degree and for any
fractional order in terms of the function itself is needed for
tackling FDEs. In this direction, Doha et al. [9] have derived
such a formula in the case of the trial functions of truncated
expansion that are Chebyshev polynomials and implemented
such a relation for solving two classes of FDEs. Furthermore,
the fractional derivative of shifted Jacobi polynomials is
derived in [12]. Ahmadian et al. [13] proposed an accurate and
reliable computational scheme based Jacobi polynomials for
fuzzy linear FDEs.

The pseudo-spectral methods for the numerical approx-
imations of the solution of several types of FDEs have
been proposed and developed. Maleki et al. [14] proposed
an efficient and accurate pseudo-spectral method based on
shifted Legendre-Gauss quadrature nodes for solving a class
of FDEs with boundary conditions. The authors of [15] used
the spline functions methods for tackling the linear and
nonlinear FDEs. The authors of [16] proposed two types of
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spectral approximations based on shifted Legendre polyno-
mials for solving two classes of FDEs with multipoint bound-
ary conditions. Yüzbaşı [17] proposed the Bessel pseudo-
spectral method to introduce an approximate solution of
a class of FDEs. A collocation method based on Bernstein
polynomials has recently been proposed and analyzed for
solving fractional order Riccati differential equation in [18].
Moreover, the authors in [11] computed the fractional deriva-
tive of the new fractional Legendre functions (FLF), also
they developed an efficient spectral tau approximations based
on FLF to approximate the FDEs. Recently, Bhrawy et al.
[19] investigated the fractional integrals of modified general-
ized Laguerre operational matrix to implement a numerical
solution of the integrated form of the linear FDEs on semi-
infinite interval. Meanwhile, Baleanu et al. [20] proposed
and developed two efficient generalized Laguerre spectral
algorithms based on the operational matrix of derivative for
the solution of linear and nonlinear fractional initial value
problems. We refer also to the recent papers [21–27] where
several numerical methods are developed to approximate the
solution of various kinds of FDEs.

The fundamental goal of this paper is to develop a direct
solution technique to approximate linear FDEs subject to
homogeneous initial conditions, using the shifted Legendre
spectral Galerkin (SLG) approximations. We start by con-
structing a new appropriate shifted Legendre basis functions
which satisfy the homogeneous initial equations and then
are used for the approximation of the fractional differential
operators. We also present an explicit expression for the
derivatives of any fractional order for the shifted Legendre
basis functions in terms of the shifted Legendre polynomials.
Moreover, the matrices corresponding to shifted Legendre-
Galerkin approximation are clearly described, including the
modes required to impose nonhomogeneous initial condi-
tions.

Another goal of this paper is to treat the nonlinear FDEs
subject to nonhomogeneous initial conditions by imple-
menting a new pseudo-spectral approximation based on
Legendre polynomials. This approach is characterized by
the representation of the solution by a truncated series of
Legendre-Galerkin basis functions. The proposed technique
differs from the classical pseudo-spectral approximation in
that the homogeneous initial conditions are satisfied exactly.
Finally, the accuracy and effectiveness of the proposed
algorithms are demonstrated by some numerical exam-
ples.

The outline of the paper is as follows. Section 2 introduces
necessary definitions of fractional derivatives and shifted
Legendre polynomials. In Section 3, we construct an appro-
priate shifted Legendre basis function for initial FDEs and
prove a formula that gives the fractional derivatives of the
shifted Legendre basis function in terms of the shifted
Legendre polynomials. In Section 4, we present and develop
the Legendre-Gauss-Lobatto collocation algorithm in modal
basis for solving nonlinear FDEs. In Section 5, some numer-
ical results are discussed. Section 6 is devoted to concluding
remarks.

2. Preliminaries and Notations

We present recall and in this section recall some properties
of the fractional calculus (see, e.g., [1–4]) and Legendre
polynomials.

The Riemann-Liouville fractional integral operator is
given by

𝐽
𝜇
𝑓 (𝑥) =

1

Γ (𝜇)
∫

𝑥

0

(𝑥 − 𝑡)
𝜇−1

𝑓 (𝑡) 𝑑𝑡, 𝜇 > 0, 𝑥 > 0,

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(1)

The Caputo fractional derivatives operator is given by

𝐷
𝜇
𝑓 (𝑥) = 𝐽

𝑚−𝜇
𝐷
𝑚
𝑓 (𝑥)

=
1

Γ (𝑚 − 𝜇)
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−𝜇−1 𝑑

𝑚

𝑑𝑡𝑚
𝑓 (𝑡) 𝑑𝑡,

𝑚 − 1 < 𝜇 ≤ 𝑚, 𝑥 > 0,

(2)

where 𝐷
𝑚 is 𝑚th order differential operator.

The set of Legendre polynomials (𝐿 𝑖(𝑥)) forms a complete
𝐿
2
[−1, 1]-orthogonal system, and

𝐿 𝑖(𝑥)

2
= ℎ𝑖 =

2

2𝑖 + 1
. (3)

Let 𝐿 𝑡,𝑖(𝑥) = 𝐿 𝑖(2𝑥−1), 𝑥 ∈ [0, 1] be the shifted Legendre
polynomial of degree 𝑖, then it is given by

𝐿 𝑡,𝑖 (𝑥) =

𝑖

∑

𝑘=0

(−1)
𝑖+𝑘 (𝑖 + 𝑘)!𝑥

𝑘

(𝑖 − 𝑘)!(𝑘!)
2
. (4)

Next, let𝑤𝑡(𝑥) = 𝑤(𝑥) = 1, thenwe define theweighted space
𝐿
2

𝑤
𝑡

[0, 1] in the usual way, with the following inner product
and norm:

(𝑢, V)𝑤
𝑡

= ∫

1

0

𝑢 (𝑥) V (𝑥) 𝑤𝑡 (𝑥) 𝑑𝑥, ‖𝑢‖𝑤
𝑡

= (𝑢, 𝑢)
1/2

𝑤
𝑡

.

(5)

The set of shifted Legendre polynomials forms a complete
𝐿
2

𝑤
𝑡

[0, 1]-orthogonal system. According to (3), we have

𝐿 𝑡,𝑖(𝑥)

2

𝑤
𝑡

=
1

2
ℎ𝑖 = ℏ𝑖. (6)

The shifted Legendre expansion of a function𝑢(𝑥) ∈ 𝐿
2

𝑤
𝑡

[0, 1]

is

𝑢 (𝑥) =

∞

∑

𝑗=0

𝑎𝑗𝐿 𝑡,𝑗 (𝑥) , (7)

where 𝑎𝑗 are given by

𝑎𝑗 =
1

ℏ𝑗
∫

1

0

𝑢 (𝑥) 𝐿 𝑡,𝑗 (𝑥) 𝑑𝑥, 𝑗 = 0, 1, 2, . . . . (8)

In the following theorem, we state the Caputo fractional
derivative of order𝜇 for the shifted Legendre polynomials, for
more details, see [16].
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Theorem 1 (see [16]). The Caputo fractional derivative of
order 𝜇 of the shifted Legendre polynomials is given by

𝐷
𝜇
𝐿 𝑡,𝑖 (𝑥) =

∞

∑

𝑙=0

Π𝜇 (𝑖, 𝑙) 𝐿 𝑡,𝑙 (𝑥) , 𝑖 = ⌈𝜇⌉ , ⌈𝜇⌉ + 1, . . . , (9)

where

Π𝜇 (𝑖, 𝑙) =

𝑖

∑

𝑘=⌈𝜇⌉

(−1)
𝑖+𝑘

(2𝑙 + 1) (𝑖 + 𝑘)!(𝑘 − 𝑙 − 𝜇 + 1)
𝑙

(𝑖 − 𝑘)!𝑘!Γ (𝑘 − 𝜇 + 1) (𝑘 − 𝜇 + 1)
𝑙+1

, (10)

and ⌈𝜇⌉ is the ceiling function.

3. Legendre-Galerkin Method for
Fractional IVPs

In this section, we are interested in employing the SLG
method for solving the FDE:

𝐷
]
𝑢 (𝑥) +

𝑟−1

∑

𝜎=1

𝛾𝜎𝐷
𝛽
𝜎𝑢 (𝑥) + 𝛾𝑟𝑢 (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ 𝐼 = [0, 1] ,

(11)

subject to the homogeneous initial conditions

𝑢
(𝑞)

(0) = 0, 𝑞 = 0, . . . , 𝑚 − 1, (12)

where 𝛾𝜎 (𝜎 = 1, . . . , 𝑟) and 0 < 𝛽1 < 𝛽2 < ⋅ ⋅ ⋅ < 𝛽𝑟−1 <

], 𝑚 − 1 < ] ≤ 𝑚 are real constants, and 𝑓(𝑥) is a source
function.

Let us present some basic notations which will be used in
the sequel. We set

𝑆𝑁 = span {𝐿 𝑡,0 (𝑥) , 𝐿 𝑡,1 (𝑥) , . . . , 𝐿 𝑡,𝑁 (𝑥)} ,

𝑉𝑁 = {V ∈ 𝑆𝑁 : V(𝑗) (0) = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1} ,

(13)

where V(𝑗)(𝑥) is the 𝑗th-order derivative of V(𝑥).
The shifted Legendre-Galerkin approximation to (11) and

(12) is to find 𝑢𝑁 ∈ 𝑉𝑁 such that

(𝐷
]
𝑢𝑁, V (𝑥))𝑤

𝑡

+

𝑟−1

∑

𝜎=1

𝛾𝜎(𝐷
𝛽
𝜎𝑢𝑁, V (𝑥))𝑤

𝑡

+ 𝛾𝑟(𝑢𝑁, V (𝑥))𝑤
𝑡

= (𝑓, V (𝑥))
𝑤
𝑡
,𝑁

, ∀V ∈ 𝑉𝑁,

(14)

where (⋅, ⋅)𝑤
𝑡

, is defined in the space 𝐿
2

𝑤
𝑡

[0, 1] and (⋅, ⋅)𝑤
𝑡
,𝑁 is

the discrete inner product which will be defined later in (48).
The problem of approximating solutions of multi-term

fractional differential equations by shiftedLegendre-Galerkin
approximation involves the projection onto the span of some
appropriate sets of shifted Legendre basis function. The
members of the basis may satisfy automatically the given
initial conditions imposed on the multi-term FDEs (11). The
following lemma provides a shifted Legendre basis function
which satisfies the homogeneous initial conditions (12).

Lemma 2. Let one defines

𝜂𝑖,𝑚 (𝑘) =
(2𝑖 + 1 + 2𝑘)

𝑖! (𝑖 + 1 + 2𝑘)

𝑖

∏

𝑛=1

(𝑚 − 𝑛 + 1) (2𝑘 + 𝑛 + 1)

(2𝑘 + 𝑚 + 𝑛 + 1)
(15)

with 𝜂0,𝑚(𝑘) = 1, then a linear combination of shifted Legendre
polynomials

𝜙𝑘 (𝑥) = 𝐿 𝑡,𝑘 (𝑥)

+

𝑚

∑

𝑖=1

𝜂𝑖,𝑚 (𝑘) 𝐿 𝑡,𝑘+𝑖 (𝑥) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚
(16)

satisfies the homogeneous initial conditions (12).

Proof. As a general rule, for fractional-order differential
equations with𝑚 initial conditions, onemay choose the basis
function 𝜙𝑘(𝑥), in the form (see, [28, 29])

𝜙𝑘 (𝑥) = 𝐿 𝑡,𝑘 (𝑥)

+

𝑚

∑

𝑖=1

𝜂𝑖,𝑚 (𝑘) 𝐿 𝑡,𝑘+𝑖 (𝑥) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚.
(17)

The coefficients {𝜂𝑖,𝑚(𝑘)} may be chosen such that 𝜙𝑘(𝑥)

exactly satisfy the homogeneous initial conditions (12). In
virtue of 𝐿 𝑡,𝑘(0) = (−1)

𝑘 and

𝐷
𝑞
𝐿 𝑡,𝑘 (0) =

(−1)
𝑘+𝑞

Γ (1 + 𝑘 + 𝑞)

Γ (1 + 𝑘 − 𝑞) Γ (1 + 𝑞)
, 𝑘 ≥ 𝑞, 𝑞 = 1, 2, . . . ,

(18)

then the initial conditions (12) are reduced to the following
system for {𝜂𝑖,𝑚(𝑘)}:

𝑚

∑

𝑖=1

(−1)
𝑖
𝜂𝑖,𝑚 (𝑘) = −1,

𝑚

∑

𝑖=1

(−1)
𝑖
𝜂𝑖,𝑚 (𝑘)

(𝑘 + 𝑞 + 1)
𝑖

(𝑘 − 𝑞 + 1)
𝑖

= −1,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(19)

The determinant of the previous system is different from zero,
hence {𝜂𝑖,𝑚(𝑘)} can be uniquely determined to give

𝜂𝑖,𝑚 (𝑘) =
(2𝑖 + 1 + 2𝑘)

𝑖! (𝑖 + 1 + 2𝑘)

𝑖

∏

𝑛=1

(𝑚 − 𝑛 + 1) (2𝑘 + 𝑛 + 1)

(2𝑘 + 𝑚 + 𝑛 + 1)
. (20)

Remark 3. The computation of the exact solution of the
linear system (19) for the unknown coefficients {𝜂𝑖,𝑚(𝑘)} is
extremely tedious by hand and we have resorted to the
symbolic computation software Mathematica 8.
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If we substitute (15) into (16) it gives

𝜙𝑘 (𝑥) = 𝐿 𝑡,𝑘 (𝑥) +

𝑚

∑

𝑖=1

(2𝑖 + 1 + 2𝑘)

𝑖! (𝑖 + 1 + 2𝑘)

×

𝑖

∏

𝑛=1

(𝑚 − 𝑛 + 1) (2𝑘 + 𝑛 + 1)

(2𝑘 + 𝑚 + 𝑛 + 1)
𝐿 𝑡,𝑘+𝑖 (𝑥) ,

𝑘 = 0, 1, 2, . . . , 𝑁 − 𝑚.

(21)

Now, it is clear that {𝜙𝑘(𝑥)} are linearly independent.
Therefore by dimension argument we get

𝑉𝑁 = span {𝜙𝑘 (𝑥) : 𝑘 = 0, 1, 2, . . . , 𝑁 − 𝑚} . (22)

In the following theorem, we introduce a formula
expanding explicitly the fractional derivatives of the basis
functions for any fractional-order in terms of shifted Legen-
dre polynomials.

Theorem 4. The Caputo fractional derivative for the shifted
Legendre basis functions is given by

𝐷
𝜇
𝜙𝑗 (𝑥) =

∞

∑

ℓ=0

Θ𝑚,𝜇 (𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥) , (23)

where

Θ𝑚,𝜇 (𝑗, ℓ) =

𝑚

∑

𝑖=0

𝜂𝑖,𝑚 (𝑗)Π𝜇 (𝑗 + 𝑖, ℓ) , (24)

and Π𝜇(𝑖, ℓ), 𝜂𝑖,𝑚(𝑗), are defined in (10), (15), respectively.

Proof. The proofs of the this theorem can be immediately
obtained on similar lines to that of Theorem 1 and Lemma 2.

Let us denote that

𝑓𝑘 = (𝑓 (𝑥) , 𝜙𝑘 (𝑥))𝑤
𝑡
,𝑁

, f = (𝑓0, 𝑓1, . . . , 𝑓𝑁−𝑚)
𝑇
,

𝑢𝑁 (𝑥) =

𝑁−𝑚

∑

ℓ=0

𝑎ℓ𝜙ℓ (𝑥) , a = (𝑎0, 𝑎1, . . . , 𝑎𝑁−𝑚)
𝑇
,

𝐴 = (𝑎𝑘𝑗)0≤𝑘,𝑗≤𝑁−𝑚
, 𝐵

𝜎
= (𝑏
𝜎

𝑘𝑗
)
0<𝑘,𝑗<𝑁−𝑚;𝜎=1,2,...,𝑟−1

,

𝐶 = (𝑐𝑘𝑗)0≤𝑘,𝑗≤𝑁−𝑚
.

(25)

Then, the variational formulation (14) can be written as

𝑁

∑

𝑗=0

𝑎𝑗 [(𝐷
]
𝜙𝑗 (𝑥) , 𝜙𝑘 (𝑥))𝑤

𝑡

+

𝑟−1

∑

𝜎=1

𝛾𝜎(𝐷
𝛽
𝜎𝜙𝑗 (𝑥) , 𝜙𝑘 (𝑥))𝑤

𝑡

+ 𝛾𝑟(𝜙𝑗 (𝑥) , 𝜙𝑘 (𝑥))𝑤
𝑡

]

= (𝑓, 𝜙𝑘 (𝑥))𝑤
𝑡
,𝑁

, 𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(26)

In view of (25), the Galerkin formulation (26) is equivalent
to the following linear system:

(𝐴 +

𝑟−1

∑

𝜎=1

𝛾𝜎𝐵
𝜎
+ 𝛾𝑟𝐶) a = f , (27)

where the nonzero elements of the matrices 𝐴, 𝐵
𝜎 for 𝜎 =

0, 1, . . . , 𝑟 − 1 and 𝐶 are given explicitly in the following
theorem.

Theorem 5. If one takes 𝜙𝑘(𝑥) as defined in (21), and if one
denotes 𝑎𝑘𝑗 = (𝐷

]
𝜙𝑗(𝑥), 𝜙𝑘(𝑥))𝑤

𝑡

, 𝑏𝜎
𝑘𝑗

= (𝐷
𝛽
𝜎𝜙𝑗(𝑥), 𝜙𝑘(𝑥))𝑤

𝑡

,
and 𝑐𝑘𝑗 = (𝜙𝑗(𝑥), 𝜙𝑘(𝑥))𝑤

𝑡

, then

𝑉𝑁 = span {𝜙0 (𝑥) , 𝜙1 (𝑥) , . . . , 𝜙𝑁−𝑚 (𝑥)} , (28)

and the elements 𝑎𝑘𝑗, 𝑏𝜎𝑘𝑗, 𝑐𝑘𝑗 for 0 ≤ 𝑘, 𝑗 ≤ 𝑁 −𝑚 are given by

𝑎𝑘𝑗 = Θ𝑚,] (𝑗, 𝑘) ℎ𝑘 +

𝑚

∑

𝑙=𝑙

𝜂𝑙,𝑚 (𝑘)Θ𝑚,] (𝑗, 𝑘 + 𝑙) ℏ𝑘+𝑙,

𝑏
𝜎

𝑘𝑗
= Θ𝑚,𝛽

𝜎

(𝑗, 𝑘) ℎ𝑘 +

𝑚

∑

𝑙=𝑙

𝜂𝑙,𝑚 (𝑘)Θ𝑚,𝛽
𝜎

(𝑗, 𝑘 + 𝑙) ℏ𝑘+𝑙,

𝑐𝑘+𝑝,𝑘 = 𝑐𝑘,𝑘+𝑝

=

𝑚−𝑝

∑

𝑖=0

((16(1 + 𝑘)
2
(3 + 2𝑘)

2
(1 + 2𝑖 + 2𝑘))

× ((1 + 𝑖 + 2𝑘)3(1 + 𝑖 + 2𝑘 + 𝑝)
3

× (4 − 𝑖)!𝑖!Γ (3 − 𝑖 − 𝑝)

×Γ (1 + 𝑖 + 𝑝) (2𝑘 + 2𝑖 + 2𝑝 + 1))
−1

) ,

0 ≤ 𝑝 ≤ 𝑚.

(29)

Proof. Thebasis functions 𝜙𝑘(𝑥) are chosen such that 𝜙𝑘(𝑥) ∈

𝑉𝑁 for 𝑘 = 0, 1, . . . , 𝑁 − 𝑚, and the dimension of 𝑉𝑁 is equal
to 𝑁 − 𝑚 + 1. Hence,

𝑉𝑁 = span {𝜙0 (𝑥) , 𝜙1 (𝑥) , . . . , 𝜙𝑁−𝑚 (𝑥)} . (30)

To obtain the elements 𝑎𝑘𝑗 for 0 ≤ 𝑘, 𝑗 ≤ 𝑁 − 𝑚, we set
𝜇 = ] in Theorem 4 to get, for 𝑗 ≥ ⌈]⌉,

𝐷
]
𝜙𝑗 (𝑥) =

∞

∑

𝑠=0

Θ𝑚,] (𝑗, 𝑠) 𝐿 𝑡,𝑠 (𝑥) , (31)

where Θ𝑚,](𝑗, 𝑠) is defined by relation (24). Due to (21) and
(31), 𝑎𝑘𝑗 takes the form

𝑎𝑘𝑗 = (

∞

∑

𝑠=0

Θ𝑚,] (𝑗, 𝑠) 𝐿 𝑡,𝑠 (𝑥) , 𝐿 𝑡,𝑘 (𝑥))

𝑤
𝑡

+

𝑚

∑

ℓ=1

𝜂ℓ,𝑚 (𝑘) (

∞

∑

𝑠=0

Θ𝑚,] (𝑗, 𝑠) 𝐿 𝑡,𝑠 (𝑥) , 𝐿 𝑡,𝑘+ℓ (𝑥))

𝑤
𝑡

.

(32)
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Making use of the orthogonality relation (6), we obtain

𝑎𝑘𝑗 = Θ𝑚,] (𝑗, 𝑘) ℏ𝑘 +

𝑚

∑

ℓ=1

𝜂ℓ,𝑚 (𝑘)Θ𝑚,] (𝑗, 𝑘 + ℓ) ℏ𝑘+ℓ, (33)

this proves the first part of Theorem 5. To prove the second
part, we make use of relations (21) and (31), to obtain

𝑏
𝜎

𝑘𝑗
= (

∞

∑

𝑠=0

Θ𝑚,𝛽
𝜎

(𝑗, 𝑠) 𝐿 𝑡,𝑠 (𝑥) , 𝐿 𝑡,𝑘 (𝑥))

𝑤
𝑡

+

𝑚

∑

ℓ=1

𝜂ℓ,𝑚 (𝑘) (

∞

∑

𝑠=0

Θ𝑚,𝛽
𝜎

(𝑗, 𝑠) 𝐿 𝑡,𝑠 (𝑥) , 𝐿 𝑡,𝑘+ℓ (𝑥))

𝑤
𝑡

,

(34)

then, it can be easily shown that

𝑏
𝜎

𝑘𝑗
= Θ𝑚,𝛽

𝜎

(𝑗, 𝑘) ℏ𝑘 +

𝑚

∑

ℓ=1

𝜂ℓ,𝑚 (𝑘)Θ𝑚,𝛽
𝜎

(𝑗, 𝑘 + ℓ) ℏ𝑘+ℓ, (35)

which proves the second part of Theorem 5. It can be shown,
by using (21) and with the aid of (6), and after performing
some manipulations, that the nonzero elements of 𝑐𝑘𝑗 are
given as in the following formula

𝑐𝑘+𝑝,𝑘 = 𝑐𝑘,𝑘+𝑝

=

𝑚−𝑝

∑

𝑖=0

𝜂𝑖+𝑝,𝑚 (𝑘) 𝜂𝑖,𝑚 (𝑘 + 𝑝) ℏ𝑘+𝑖+𝑝, 0 ≤ 𝑝 ≤ 𝑚,

(36)

and this proves the last part of the theorem and completes its
proof.

Now, we will transform FDEs with nonhomogeneous
initial conditions to other ones with homogeneous initial
conditions. Consider the multi-term fractional differential
equation (11) subject to the nonhomogeneous initial condi-
tions

𝑢
(𝑗)

(0) = 𝑏𝑗, 𝑗 = 0, 1, . . . , 𝑚 − 1. (37)

Let us present the following transformation:

𝑉 (𝑥) = 𝑢 (𝑥) +

𝑚−1

∑

𝑖=0

𝐸𝑖𝑥
𝑖
, (38)

where

𝐸𝑖 =
−𝑏𝑖

𝑖!
, 𝑖 = 0, 1, . . . , 𝑚 − 1. (39)

The transformation (38) turns the nonhomogeneous
initial conditions (37) into the conditions

𝑉
(𝑗)

(0) = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1. (40)

Hence, it suffices to solve the following modified multi-term
fractional differential equation:

𝐷
]
𝑉 (𝑥) +

𝑟−1

∑

𝜎=1

𝛾𝜎𝐷
𝛽
𝜎𝑉 (𝑥) + 𝛾𝑟𝑉 (𝑥) = 𝑓

∗
(𝑥) , 𝑥 ∈ 𝐼,

(41)

subject to the homogeneous initial conditions (40), and

𝑓
∗
(𝑥) = 𝑓 (𝑥) + 𝛾𝑟

𝑚−1

∑

𝑖=0

𝐸𝑖𝑥
𝑖
+

𝑟−1

∑

𝜎=1

𝛾𝜎𝐷
𝛽
𝜎 (

𝑚−1

∑

𝑖=0

𝐸𝑖𝑥
𝑖
) . (42)

If we employ the shifted Legendre-Galerkin approxima-
tion to themodified problem (41), based on the basis function
𝜙𝑘(𝑥) which given in (21), we obtain the following system of
linear algebraic equations:

(𝐴 +

𝑟−1

∑

𝜎=1

𝛾𝜎𝐵
𝜎
+ 𝛾𝑟𝐶) a = F∗, (43)

where F∗ = (𝑓
∗

0
, 𝑓
∗

1
, . . . , 𝑓

∗

𝑁−𝑚
)
𝑇
; 𝑓
∗

𝑘
= (𝑓
∗
, 𝜙𝑘(𝑥))𝑤

𝑡
,𝑁 and

the elements of 𝐴, 𝐵
𝜎 for 𝜎 = 0, 1, . . . , 𝑟 − 1 and 𝐶 are given

inTheorem 5.

4. Shifted Legendre Pseudospectral
Approximation in Modal Basis

The main advantage of pseudo-spectral approximation in
solving differential equations [30, 31] lies in its high accuracy
for a given number of unknowns. In the proposed shifted
Legendre-Gauss-Lobatto collocation method in modal basis,
there are two successive steps for obtaining the approximate
solution of nonlinear fractional initial value problem. First,
an appropriate finite set of shifted Legendre basis functions
must be chosen for the representation of the truncated
solution, and then the nonlinear FDE may be collocated by
the well known shifted Legendre-Gauss-Lobatto quadrature
nodes. Consequently, The nonlinear FDE is reduced to a sys-
tem of algebraic equations. In the second step, we implement
any standard numerical solver for solving such system of
nonlinear algebraic equations.

In this section, we employ the shifted Legendre pseudo-
spectral approximation in modal basis for the numerical
solution the nonlinear fractional initial value problem:

𝐷
]
𝑢 (𝑥) = 𝐹 (𝑥, 𝑢 (𝑥) , 𝐷

𝛽
1𝑢 (𝑥) , . . . , 𝐷

𝛽
𝑟𝑢 (𝑥)) , 𝑥 ∈ 𝐼,

(44)

subject to the initial conditions (12), where 𝑚 − 1 < ] ≤ 𝑚,
0 < 𝛽1 < 𝛽2 < ⋅ ⋅ ⋅ < 𝛽𝑟 < ]. It is to be noted here that 𝐹 can
be nonlinear in general.

If we denote by 𝑥𝑁,𝑗(𝑥𝑡,𝑁,𝑗), 0 ⩽ 𝑗 ⩽ 𝑁, and 𝜛𝑁,𝑗(𝜛𝑡,𝑁,𝑗),
0 ≤ 𝑗 ≤ 𝑁, the zeros and the weights of the stan-
dard (resp., shifted) Legendre-Gauss-Lobatto quadratures on
[−1, 1] (resp., [0, 1]), then we may deduce that

𝑥𝑡,𝑁,𝑗 =
1

2
(𝑥𝑁,𝑗 + 1) ,

𝜛𝑡,𝑁,𝑗 =
1

2
𝜛𝑁,𝑗,

0 ≤ 𝑗 ≤ 𝑁,

(45)
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and if ̀𝑆𝑁[0, 1] denotes the set of all polynomials of degree
⩽ 𝑁, then for any 𝜓 ∈ ̀𝑆2𝑁−1[0, 1], we get

∫

1

0

𝑤𝑡 (𝑥) 𝜓 (𝑥) 𝑑𝑥 =
1

2
∫

1

−1

𝑤 (𝑥) 𝜓 (
1

2
(𝑥 + 1)) 𝑑𝑥

=
1

2

𝑁

∑

𝑗=0

𝜛𝑁,𝑗𝜓(
1

2
(𝑥𝑁,𝑗 + 1))

=

𝑁

∑

𝑗=0

𝜛𝑡,𝑁,𝑗𝜓 (𝑥𝑡,𝑁,𝑗) ,

(46)

where 𝑥𝑁,𝑗 are the zeros of (1 − 𝑥
2
)𝜕𝑥𝐿𝑁, and

𝜛𝑁,𝑗 =
2

𝑁 (𝑁 + 1)

1

(𝐿𝑁 (𝑥𝑁,𝑗))
2
, 0 ≤ 𝑗 ≤ 𝑁. (47)

In fact, the discrete inner product and norm as are defined by

(𝑢, V)𝑤
𝑡
,𝑁 =

𝑁

∑

𝑘=0

𝑢 (𝑥𝑡,𝑁,𝑘) V (𝑥𝑡,𝑁,𝑘) 𝜛𝑡,𝑁,𝑘,

‖𝑢‖𝑤
𝑡
,𝑁 = √(𝑢, 𝑢)𝑤

𝑡
,𝑁.

(48)

Recalling

𝑆𝑁 = span {𝐿 𝑡,0 (𝑥) , 𝐿 𝑡,1 (𝑥) , . . . , 𝐿 𝑡,𝑁 (𝑥)} ,

𝑉𝑁 = {V ∈ 𝑆𝑁 : V(𝑗) (0) = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1} ,

(49)

then the shifted Legendre-Gauss-Lobatto collocationmethod
for solving (44)-(12) is to seek 𝑢𝑁(𝑥) ∈ 𝑉𝑁, such that

𝐷
]
𝑢 (𝑥𝑡,𝑁−𝑚,𝑘)

= 𝐹 (𝑥𝑡,𝑁−𝑚,𝑘, 𝑢 (𝑥𝑡,𝑁−𝑚,𝑘) ,

𝐷
𝛽
1𝑢 (𝑥𝑡,𝑁−𝑚,𝑘) , . . . , 𝐷

𝛽
𝑟𝑢 (𝑥𝑡,𝑁−𝑚,𝑘)) ,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

(50)

where 𝑥𝑡,𝑁−𝑚,𝑘 (𝑘 = 0, 1, . . . , 𝑁 − 𝑚) are the nodes of the
shifted Legendre-Gauss-Lobatto quadratures on the interval
[0, 1].

We now derive the algorithm for solving (44)–(12). To do
this, let

𝑢𝑁 (𝑥) =

𝑁−𝑚

∑

𝑗=0

𝑎𝑗𝜙𝑗 (𝑥) , a = (𝑎0, 𝑎1, . . . , 𝑎𝑁−𝑚)
𝑇
, (51)

where 𝜙𝑗(𝑥) are the shifted Legendre basis of functions
defined in (16). The members of the basis may satisfy

automatically the given initial conditions (12), imposed on the
nonlinear FDEs. Then, by virtue of (51), we deduce that

𝑁−𝑚

∑

𝑗=0

𝑎𝑗𝐷
]
𝜙𝑗 (𝑥)

= 𝐹(𝑥,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗𝜙𝑗 (𝑥) ,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗𝐷
𝛽
1𝜙𝑗 (𝑥) , . . . ,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗𝐷
𝛽
𝑟𝜙𝑗 (𝑥)) .

(52)

Making use of (16) andTheorem 4 (relation (23)) for approx-
imating 𝐷

]
𝜙𝑗(𝑥), 𝐷

𝛽
1𝜙𝑗(𝑥), . . . , 𝐷

𝛽
𝑟𝜙𝑗(𝑥) in terms of the

shifted Legendre polynomials. By substituting these approxi-
mations in (52), it yields

𝑁−𝑚

∑

𝑗=0

𝑎𝑗(

𝑁

∑

ℓ=0

Θ𝑚,𝜇 (𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥))

= 𝐹(𝑥,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗(

𝑚

∑

ℓ=0

𝜂ℓ,𝑚 (𝑗) 𝐿 𝑡,𝑗+ℓ (𝑥)) ,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗(

𝑁

∑

ℓ=0

Θ𝑚,𝛽
1

(𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥)) , . . . ,

𝑁−𝑚

∑

𝑗=0

𝑎𝑗(

𝑁

∑

ℓ=0

Θ𝑚,𝛽
𝑟

(𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥))) .

(53)

To find the solution 𝑢𝑁(𝑥), we collocate (53) at the Gauss-
Lobatto collocation points 𝑥𝑡,𝑁−𝑚,𝑘, 𝑘 = 0, 1, . . . , 𝑁−𝑚, yields

𝑁−𝑚

∑

𝑗=0

(

𝑁

∑

ℓ=0

Θ𝑚,𝜇 (𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥𝑡,𝑁−𝑚,𝑘)) 𝑎𝑗

= 𝐹(𝑥𝑡,𝑁−𝑚,𝑘,

𝑁−𝑚

∑

𝑗=0

(

𝑚

∑

ℓ=0

𝜂ℓ,𝑚 (𝑗) 𝐿 𝑡,𝑗+ℓ (𝑥𝑡,𝑁−𝑚,𝑘)) 𝑎𝑗,

𝑁−𝑚

∑

𝑗=0

(

𝑁

∑

ℓ=0

Θ𝑚,𝛽
1

(𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥𝑡,𝑁−𝑚,𝑘)) 𝑎𝑗, . . . ,

𝑁−𝑚

∑

𝑗=0

(

𝑁

∑

ℓ=0

Θ𝑚,𝛽
𝑟

(𝑗, ℓ) 𝐿 𝑡,ℓ (𝑥𝑡,𝑁−𝑚,𝑘)) 𝑎𝑗) .

(54)

Equation (54) constitutes a system of 𝑁 − 𝑚 nonlinear
algebraic equations in the unknown expansion coefficients
𝑎𝑗; 𝑗 = 0, 1, . . . , 𝑁−𝑚whichmay be solved by using Newton’s
iteration method.

5. Numerical Examples

In this section, we implement several numerical examples to
demonstrate the accuracy and applicability of the proposed
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Table 1: Maximum absolute error with various choices of 𝑁, for
Example 1.

𝑁 − 6 ] SLG method ] SLG method ] SLG method
8

5.1
1.00 × 10

−3

5.5
2.30 × 10

−3

5.9
2.88 × 10

−3

16 1.19 × 10
−7

1.11 × 10
−6

1.47 × 10
−6

24 7.15 × 10
−10

1.08 × 10
−8

1.86 × 10
−8

spectral algorithms. Comparison of the results obtained by
our methods with shifted Jacobi pseudo-spectral approx-
imation [12] reveals that the present algorithms are very
convenient and produces high accurate solutions to multi-
term FDEs.

Example 1. Consider the linear FDE equation with homoge-
neous initial conditions

𝐷
]
𝑢 (𝑥) + 5𝐷

11/3
𝑢 (𝑥) + 3𝐷

11/5
𝑢 (𝑥)

− 4𝐷
11/7

𝑢 (𝑥) − 6𝐷
11/13

𝑢 (𝑥) = 𝑓 (𝑥) ,

5 < ] ≤ 6, 𝑢
(𝑗)

(0) = 0, 𝑗 = 0, 1, . . . , 5,

(55)

where

𝑓 (𝑥) =
31135104000𝑥

28/3

Γ [31/3]
+

18681062400𝑥
54/5

Γ [59/5]

−
24908083200𝑥

80/7

Γ [87/7]
−

37362124800𝑥
158/13

Γ [171/13]

+
6227020800𝑥

13−]

Γ [14 − ]]
.

(56)

The exact solution is given by 𝑢(𝑥) = 𝑥
13.

Table 1 lists themaximumabsolute error, using the shifted
Legendre-Galerkin (SLG) method with various choices of ]
and 𝑁.

Example 2. Consider the linear FDE equation

𝐷
2
𝑢 (𝑥) + 𝐷

3/2
𝑢 (𝑥) + 𝐷

1/2
𝑢 (𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 1, 𝑢

(0) = 0, 𝑥 ∈ [0, 1] ,

(57)

whose exact solution is given by 𝑢(𝑥) = cos(𝛾𝑥). The right-
hand side 𝑔(𝑥) can be obtained from the substitution of the
exact solution in (57).

Table 2 lists the maximum absolute error, using the SLG
method with various choices of 𝛾 and 𝑁. Moreover, the
approximate solution obtained by the SLG method at 𝛾 = 4𝜋

and𝑁 = 16 is shown in Figure 1 to make it easier to compare
with the analytic solution.

Table 2: Maximum absolute error with various choices of 𝑁, for
Example 2.

𝑁 − 2 ] SLG method ] SLG method ] SLG method
16

1

2.87 × 10
−4

𝜋

3.21 × 10
−3

2𝜋

3.99 × 10
−1

20 2.47 × 10
−5

2.43 × 10
−4

9.96 × 10
−4

24 6.05 × 10
−6

6.01 × 10
−5

2.55 × 10
−4

0 0.2 0.4 0.6 0.8 1

0.5

1

Approximate solution
Exact solution

0

−0.5

−1

x
u
(x
)

Figure 1: Comparison of 𝑢
𝑁
(𝑥), for ] = 4𝜋 and 𝑁 = 16, and 𝑢(𝑥),

for Example 2.

Example 3. Consider the nonlinear fractional initial value
problem [12]

𝐷
𝜁
𝑢 (𝑥) + 𝐷

𝜂
𝑢 (𝑥) ⋅ 𝐷

𝜃
𝑢 (𝑥) + 𝑢

2
(𝑥)

= 𝑥
6
+

6𝑥
3−𝜁

Γ (4 − 𝜁)
+

36𝑥
6−𝜂−𝜃

Γ (4 − 𝜂) Γ (4 − 𝜃)
,

𝜁 ∈ (2, 3) , 𝜂 ∈ (1, 2) , 𝜃 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = 𝑢


(0) = 0.

(58)

The exact solution is 𝑢(𝑥) = 𝑥
3.

In Table 3, we introduce maximum absolute error, using
SL-G-LC method for 𝜁 = 2.5, 𝜂 = 1.5, 𝜃 = 0.9 with various
choices of 𝑁.

This problem was solved in [12] using shifted Jacobi-
Gauss collocation (SJ-GC) method based on Jacobi opera-
tional matrix, the results provided by Doha et al. [12] have
been presented in the third, fourth, and fifth columns of
Table 3 for Jacobi parameters 𝛼 = 𝛽 = 0, 𝛼 = 𝛽 = 1/2,
and 𝛼 = 𝛽 = 1, respectively. Numerical results of this FDE
demonstrate that the SL-G-LCmethod is more accurate than
the SJ-GC method, see Table 5.7 in [12].
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Table 3: Maximum absolute error for 𝜁 = 2.5, 𝜂 = 1.5, and 𝜃 = 0.9 and different choices of 𝑁, for Example 3.

𝑁 SL-G-LC SJ-GC (𝛼 = 𝛽 = 0) SL-GLC (𝛼 = 𝛽 = 1/2) SL-GLC (𝛼 = 𝛽 = 1)

4 4.06 × 10
−4

3.91 × 10
−3

2.73 × 10
−3

1.84 × 10
−3

8 1.61 × 10
−4

1.42 × 10
−3

8.66 × 10
−4

5.40 × 10
−4

16 7.06 × 10
−5

1.24 × 10
−4

1.17 × 10
−4

1.03 × 10
−4

24 2.33 × 10
−5

3.37 × 10
−5

3.50 × 10
−5

3.39 × 10
−5

Table 4: Maximum absolute error with various choices of𝑁, 𝑚, 𝜁,
and 𝑝 = 4, for Example 4.

𝑁 − 𝑚 𝑚 𝜁 SL-G-LC 𝜁 SL-G-LC
4

3 2.5

9.29 × 10
−3

2.9

4.80 × 10
−3

8 3.29 × 10
−3

2.44 × 10
−3

16 1.34 × 10
−3

2.65 × 10
−4
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Figure 2: Approximated solution for 𝜁 = 4.1, 4.3, 4.5, 4.7, 4.9, 5, 𝑝 =

2 with 12 nodes, for Example 4.

Example 4. Consider the nonlinear fractional initial value
problem

𝐷
𝜁
𝑢 (𝑥) + 𝑒

𝑢(𝑥)
+ 𝑢
𝑝
(𝑥) = 𝑓 (𝑥) , 𝜁 ∈ (𝑚 − 1,𝑚) , 𝑚 ≤ 5,

𝑢
𝑗
(0) = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1,

(59)

where

𝑓 (𝑥) =
360𝑥
5−𝜁

Γ (6 − 𝜁)
−

1440𝑥
6−𝜁

Γ (7 − 𝜁)
− Γ (1 + 𝜁)

+ (−𝑥
𝜁
+ 3𝑥
5
− 2𝑥
6
)
𝑝

+ 𝑒
−𝑥
𝜁
+3𝑥
5
−2𝑥
6

.

(60)

The exact solution of this problem is 𝑢(𝑥) = −𝑥
𝜁
+ 3𝑥
5
− 2𝑥
6.
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Figure 3: Approximated solution for 4 < 𝜁 ≤ 5, 𝑝 = 2with 12 nodes,
for Example 4.
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Figure 4: Approximated solution for 𝜁 = 3.1, 3.3, 3.5, 3.7, 3.9, 5, 𝑝 =

3 with 12 nodes, for Example 4.

In Table 4, we introduce the maximum absolute error,
using the shifted Legendre collocation method based on
Gauss-Lobatto points, with various choices of 𝜁, 𝑚 and 𝑁 at
𝑝 = 4.

The approximated solutions are evaluated for 𝜁 =

4.1, 4.3, 4.5, 4.7, 4.9, 5with𝑚 = 5 and𝑝 = 2 and 12 nodes.The
results of the numerical simulations are plotted in Figure 2.
It is evident from Figure 2 that, as 𝜁 approaches close to 5,
the numerical solution by shifted Legendre-Gauss-Lobatto
collocation method for such FDE approaches to the solution
of integer order differential equation. In the case of 4 < 𝜁 ≤ 5,
𝑝 = 2 with 𝑚 = 5, and 12 nodes, the results of the numerical
simulations are shown in Figure 3. In Figure 4, we plotted
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Figure 5: Approximated solution for 3 < 𝜁 ≤ 4,𝑝 = 3with 12 nodes,
for Example 4.

the approximated solutions for different choices of 𝜁, 𝑚 = 4,
𝑝 = 3, and 12 nodes. Moreover, the approximate solutions
obtained by the present method at 3 < 𝜁 ≤ 4, 𝑝 = 3 with
𝑚 = 4, and 12 nodes are shown in Figure 5 to make it easier
to show that; as 𝜁 approaches to its integer value, the solution
of FDE approaches to the solution of integer order differential
equation.

6. Conclusion

We have extended the application of the shifted Legendre
spectral Galerkin approximation for treating fractional initial
value problems. In this approximation, the initial conditions
are satisfied exactly for each member of shifted Legendre
basis functions. In particular, any fractional-order Caputo
derivative of such basis functions is expanded in terms of the
shifted Legendre polynomials. In addition, we have proposed
an accurate direct solvers for the general multi-term FDEs
with nonhomogeneous initial conditions using the Legendre
spectral Galerkin approximation.

In this paper, we proposed a Legendre-Gauss-Lobatto
collocation algorithm in model basis for solving the non-
linear FDEs in which the numerical solution was approxi-
mated directly using the shifted Legendre basis functions.The
results from numerical examples demonstrate the accuracy
and stability of these spectral approximations for treating
linear and nonlinear FDEs. In the forthcoming works, we
hope that similar techniques can be applied to Chebyshev
polynomials or other Jacobi polynomials.
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