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Recently, several authors demonstrated the usefulness of fractional calculus operators in the derivation of particular solutions of
a considerably large number of linear ordinary and partial differential equations of the second and higher orders. By means of
fractional calculus techniques, we find explicit solutions of second-order linear ordinary differential equations.

1. Introduction, Definitions, and Preliminaries

The widely investigated subject of fractional calculus (i.e.,
calculus of derivatives and integrals of any arbitrary real
or complex order) has gained considerable importance and
popularity during the past three decades or so, due chiefly to
its demonstrated applications in numerous seemingly diverse
fields of science and engineering (see, for details, [1–6]). The
fractional calculus provides a set of axioms and methods to
extend the coordinate and corresponding derivative defini-
tions from integer 𝑛 to arbitrary order 𝛼, {𝑥𝑛, 𝜕𝑛/𝜕𝑥𝑛} →

{𝑥
𝛼

, 𝜕
𝛼

/𝜕𝑥
𝛼

} in a reasonable way. The first question was
already raised by Leibniz (1646–1716): can we define a deriva-
tive of the order 1/2, that is, so that a double action of that
derivative gives the ordinary one? We can mention that the
fractional differential equations are playing an important role
in fluid dynamics, traffic model with fractional derivative,
measurement of viscoelastic material properties, modeling
of viscoplasticity, control theory, economy, nuclear magnetic
resonance, geometric mechanics, mechanics, optics, signal
processing, and so on.

The differintegration operators and their generalizations
[7–16] have been used to solve some classes of differential
equations and fractional differential equations.

Some of most obvious formulations based on the funda-
mental definitions of Riemann-Liouville fractional integra-
tion and fractional differentiation are, respectively,

𝑎
𝐷
−𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

𝑓 (𝜏) (𝑡 − 𝜏)
𝛼−1

𝑑𝜏

(𝑡 > 𝑎, 𝛼 > 0) ,

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑘 − 𝛼)

(

𝑑

𝑑𝑡

)

𝑘

∫

𝑡

𝑎

𝑓 (𝜏) (𝑡 − 𝜏)
𝑘−𝛼−1

𝑑𝜏

(𝑘 − 1 ≤ 𝛼 < 𝑘) ,

(1)

where 𝑘 ∈ 𝑁,𝑁 being the set of positive integers and Γ stands
for Euler’s function gamma.

Definition 1 (cf. [10–14, 17]). If the function 𝑓(𝑧) is analytic
(regular) inside and on 𝐶, where 𝐶 = {𝐶

−

, 𝐶
+

}, 𝐶
− is a

contour along the cut joining the points 𝑧 and −∞ + 𝑖 Im(𝑧),
which starts from the point at −∞, encircles the point 𝑧 once
counter-clockwise, and returns to the point at −∞, and𝐶+ is
a contour along the cut joining the points 𝑧 and∞+ 𝑖 Im(𝑧),
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which starts from the point at ∞, encircles the point 𝑧 once
counter-clockwise, and returns to the point at∞,

𝑓
𝜇
(𝑧) = (𝑓 (𝑧))

𝜇

=

Γ (𝜇 + 1)

2𝜋𝑖

∫

𝐶

𝑓 (𝑡)

(𝑡 − 𝑧)
𝜇+1

𝑑𝑡 (𝜇 ̸= − 1, −2, . . .) ,

𝑓
−𝑛
(𝑧) = lim

𝜇→−𝑛

𝑓
𝜇
(𝑧) (𝑛 ∈ Z

+

) ,

(2)

where 𝑡 ̸= 𝑧,

−𝜋 ≤ arg (𝑡 − 𝑧) ≤ 𝜋 for 𝐶−,

0 ≤ arg (𝑡 − 𝑧) ≤ 2𝜋 for 𝐶+,
(3)

then 𝑓
𝜇
(𝑧) (𝜇 > 0) is said to be the fractional derivative of

𝑓(𝑧) of order 𝜇 and 𝑓
𝜇
(𝑧) (𝜇 < 0) is said to be the fractional

integral of 𝑓(𝑧) of order −𝜇, provided (in each case) that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝜇
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
< ∞ (𝜇 ∈ R) . (4)

We find it to be worthwhile to recall here the following
useful lemmas and properties associated with the fractional
differintegration which is defined above (cf., e.g., [10–14, 18]).

Lemma 2 (Linearity). Let 𝑓(𝑧) and 𝑔(𝑧) be analytic and
single-valued functions. If 𝑓

𝜇
and 𝑔

𝜇
exist, then

(i) (ℎ
1
𝑓 (𝑧))

𝜇
= ℎ
1
𝑓
𝜇
(𝑧)

(ii) (ℎ
1
𝑓 (𝑧) + ℎ

2
𝑔 (𝑧))

𝜇
= ℎ
1
𝑓
𝜇
(𝑧) + ℎ

2
𝑔
𝜇
(𝑧) ,

(5)

where ℎ
1
and ℎ

2
are constants and 𝜇 ∈ R; 𝑧 ∈ C.

Lemma 3 (Index Law). Let 𝑓(𝑧) be an analytic and single-
valued function. If (𝑓

𝜌
)
𝜇

and (𝑓
𝜇
)
𝜌

exist, then

(𝑓
𝜌
(𝑧))
𝜇

= 𝑓
𝜌+𝜇

(𝑧) = (𝑓
𝜇
(𝑧))
𝜌

, (6)

where 𝜌, 𝜇 ∈ R and 𝑧 ∈ C, and |Γ(𝜌+𝜇+1)/Γ(𝜌+1)Γ(𝜇+1)| <
∞.

Lemma 4 (Generalized Leibniz Rule). Let 𝑓(𝑧) and 𝑔(𝑧) be
analytic and single-valued functions. If 𝑓

𝜇
and 𝑔

𝜇
exist, then

(𝑓 (𝑧) ⋅ 𝑔 (𝑧))
𝜇

=

∞

∑

𝑛=0

Γ (𝜇 + 1)

Γ (𝜇 − 𝑛 + 1) Γ (𝑛 + 1)

𝑓
𝜇−𝑛

(𝑧) ⋅ 𝑔
𝑛
(𝑧) ,

(7)

where 𝜇 ∈ R; 𝑧 ∈ C and |Γ(𝜇 + 1)/Γ(𝜇 − 𝑛 + 1)Γ(𝑛 + 1)| < ∞.

Property 1. For a constant 𝜆,

(𝑒
𝜆𝑧

)
𝜇

= 𝜆
𝜇

𝑒
𝜆𝑧

(𝜆 ̸= 0; 𝜇 ∈ R; 𝑧 ∈ C) . (8)

Property 2. For a constant 𝜆,

(𝑒
−𝜆𝑧

)
𝜇

= 𝑒
−𝑖𝜋𝜇

𝜆
𝜇

𝑒
−𝜆𝑧

(𝜆 ̸= 0; 𝜇 ∈ R; 𝑧 ∈ C) . (9)

Property 3. For a constant 𝜆,

(𝑧
𝜆

)
𝜇

= 𝑒
−𝑖𝜋𝜇

Γ (𝜇 − 𝜆)

Γ (−𝜆)

𝑧
𝜆−𝜇

(𝜇 ∈ R; 𝑧 ∈ C;

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Γ (𝜇 − 𝜆)

Γ (−𝜆)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< ∞) .

(10)

Some of the most recent contributions on the subject of
particular solutions of linear ordinary and partial fractional
differintegral equations are those given by Tu et al. [19] who
presented unification and generalization of a significantly
large number of widely scattered results on this subject. We
begin by recalling here one of themain results of Tu et al. [19],
involving a family of linear ordinary fractional differintegral
equations, as Theorem 5 below.

Theorem 5 (Tu et al. [19, p. 295, Theorem 1; p. 296, Theorem
2]). Let 𝑃(𝑧; 𝑝) and 𝑄(𝑧; 𝑞) be polynomials in 𝑧 of degrees 𝑝
and 𝑞, respectively, defined by

𝑃 (𝑧; 𝑝) :=

𝑝

∑

𝑘=0

𝑎
𝑘
𝑧
𝑝−𝑘

= 𝑎
0

𝑝

∏

𝑗=1

(𝑧 − 𝑧
𝑗
) (𝑎

0
̸= 0, 𝑝 ∈ N) ,

𝑄 (𝑧; 𝑞) :=

𝑞

∑

𝑘=0

𝑏
𝑘
𝑧
𝑞−𝑘

(𝑏
0

̸= 0, 𝑞 ∈ N) .

(11)

Suppose also that 𝑓
−] ̸= 0 exists for a given function 𝑓.

Then, the nonhomogeneous linear ordinary fractional dif-
ferintegral equation

𝑃 (𝑧; 𝑝) 𝜙
𝜇
(𝑧) + [

𝑝

∑

𝑘=1

(

]
𝑘
)𝑃
𝑘
(𝑧; 𝑝) +

𝑞

∑

𝑘=1

(

]
𝑘 − 1

)𝑄
𝑘−1

(𝑧; 𝑞)]

× 𝜙
𝜇−𝑘

(𝑧) + (

]
𝑞
) 𝑞!𝑏
0
𝜙
𝜇−𝑞−1

(𝑧) = 𝑓 (𝑧)

(𝜇, ] ∈ R, 𝑝, 𝑞 ∈ N)

(12)

has a particular solution of the form

𝜙 (𝑧) = ((

𝑓
−] (𝑧)

𝑃(𝑧; 𝑝)

𝑒
𝐻(𝑧;𝑝,𝑞)

)

−1

𝑒
−𝐻(𝑧;𝑝,𝑞)

)

]−𝜇+1

(𝑧 ∈ C \ {𝑧
1
, . . . , 𝑧

𝑝
}) ,

(13)

where, for convenience,

𝐻(𝑧; 𝑝, 𝑞) := ∫

𝑧
𝑄 (𝜁; 𝑞)

𝑃 (𝜁; 𝑝)

𝑑𝜁 (𝑧 ∈ C \ {𝑧
1
, . . . , 𝑧

𝑝
}) , (14)

provided that the second member of (13) exists.
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Furthermore, the homogeneous linear ordinary fractional
differintegral equation

𝑃 (𝑧; 𝑝) 𝜙
𝜇
(𝑧) + [

𝑝

∑

𝑘=1

(

]
𝑘
)𝑃
𝑘
(𝑧; 𝑝) +

𝑞

∑

𝑘=1

(

]
𝑘 − 1

)𝑄
𝑘−1

(𝑧; 𝑞)]

× 𝜙
𝜇−𝑘

(𝑧) + (

]
𝑞
) 𝑞!𝑏
0
𝜙
𝜇−𝑞−1

(𝑧) = 0

(𝜇, ] ∈ R, 𝑝, 𝑞 ∈ N)

(15)

has solutions of the form

𝜙 (𝑧) = 𝐾(𝑒
−𝐻(𝑧;𝑝,𝑞)

)
]−𝜇+1

, (16)

where𝐾 is an arbitrary constant and𝐻(𝑧; 𝑝, 𝑞) is given by (14),
provided that the second member of (16) exists.

2. Schrödinger Equation

In this stud, the main aim is to investigate the Schrödinger
equation in a given 𝛼-dimensional fractional space with a
Coulomb potential depending on a parameter.

The Schrödinger equation to start with is given by

[−

ℎ
2

2𝑚𝑟
𝛼−1

𝜕

𝜕𝑟

(𝑟
𝛼−1

𝜕

𝜕𝑟

) +

ℓ
2

2𝑚𝑟
2
− 𝑒
2

𝜅

𝑟
𝛿−2

]𝜑 (𝑟, 𝜃)

= 𝐸𝜑 (𝑟, 𝜃) ,

(17)

where ℓ
2 corresponds to the angular momentum operator

given by

ℓ
2

𝜑 (𝑟, 𝜃) = [−

ℎ
2

sin𝛼−2
𝜕

𝜕𝜃

(sin𝛼−1 𝜕
𝜕𝜃

)]𝜑 (𝑟, 𝜃)

= ℓ (ℓ + 𝛼 − 2) 𝜑 (𝑟, 𝜃) ,

(18)

where 𝛼 is the dimension of a solid (1 ≤ 𝛼 ≤ 3) and the
radial distance 𝑟 (0 ≤ 𝑟 ≤ ∞) and related angle 𝜃 (0 ≤ 𝜃 ≤

𝜋) measured relative to an axis passing through the origin
are two coordinates describing 𝑟 in the 𝛼-dimensional (𝛼𝐷)
space. The constant 𝜅 has the value of 1/4𝜋𝜖

0
for 𝛿 = 3 and is

generally defined as [20]

𝜅 =

Γ (𝛿/2)

2𝜋
𝛿/2

(𝛿 − 2) 𝜖
0

(𝛿 > 2) . (19)

Looking for solutions of (17) in the form

𝜑 (𝑟, 𝜃) = 𝑅 (𝑟)Φ (𝜃) , (20)

we easily find that

𝑅
󸀠󸀠

(𝑟) +

𝛼 − 1

𝑟

𝑅
󸀠

(𝑟)

+ [

2𝑚

ℎ
2
(𝐸 + 𝑒

2
𝜅

𝑟
𝛿−2

) −

ℓ (ℓ − 𝛼 − 2)

𝑟
2

]𝑅 (𝑟) = 0,

Φ
󸀠󸀠

(𝜃) + (𝛼 − 2) cot 𝜃Φ󸀠 (𝜃) + ℓ (ℓ − 𝛼 − 2)Φ (𝜃) = 0.

(21)

The angular equation (18) has solutions in terms of Gegen-
bauer polynomials 𝐶𝛼/2−1

ℓ
(cos 𝜃) as follows:

Φ
ℓ
(𝜃) = 𝐻

ℓ
(𝛼) 𝐶
𝛼/2−1

ℓ
(cos 𝜃)

(ℓ = 0, 1, 2, . . . , 𝑛 − 1) ,

(22)

where𝐻
ℓ
is the normalization factor and is given by [21],

𝐻
ℓ
(𝛼) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

Γ(

𝛼

2

− 1) [

ℓ! (ℓ + 𝛼/2 − 1)

2
3−𝛼

𝜋Γ (ℓ + 𝛼 − 2)

]

1/2

(𝛼 ̸= 2) ,

1

(2𝜋)
1/2

(ℓ ̸= 0) or

1

2𝜋
1/2

(ℓ = 0) (𝛼 = 2) .

(23)

To solve the radial equation 𝑅(𝑟), let us use the substitutions

𝑅 (𝑟) = 𝑟
ℓ

𝑒
−𝑘𝑟

𝜙 (𝑟) , (24)

where 𝑘2 = −2𝑚𝐸/ℎ
2. We arrive at the following differential

equation:

𝑧𝜙
󸀠󸀠

(𝑧) + [(2ℓ + 𝛼 − 1) − 𝑧] 𝜙
󸀠

(𝑧)

+ [

𝑏

2
3−𝛿

𝑘
4−𝛿

𝑧
3−𝛿

−

2ℓ + 𝛼 − 1

2

] 𝜙 (𝑧) = 0,

(25)

where we use the substitutions

𝑧 = 2𝑘𝑟, 𝑏 =

𝑚𝑒
2

𝜅

ℎ
2

. (26)

It is worthwhile to mention that for 3𝐷 (𝛿 = 3), we arrive at
the special case as given in reference [21].

Consider the differential equation

𝑧

𝑑
2

𝜙

𝑑𝑧
2
+ (𝜏 − 𝑧)

𝑑𝜙

𝑑𝑧

+ (𝜎𝑧
3−𝛿

−

𝜏

2

) 𝜙 (𝑧) = 0, (27)

where

𝜏 = 2ℓ + 𝛼 − 1, 𝜎 =

𝑏

2
3−𝛿

𝑘
4−𝛿

. (28)

(i) Let 𝛿 = 2. For this 𝛿 (27) becomes the differential
equation

𝑧

𝑑
2

𝜙

𝑑𝑧
2
+ (𝜏 − 𝑧)

𝑑𝜙

𝑑𝑧

+ (𝜎𝑧 −

𝜏

2

) 𝜙 (𝑧) = 0. (29)

For (29), we use the substitution

𝜙 (𝑧) = 𝑒
𝑧/2

𝑧
−𝜏/2

𝑤 (𝑧) . (30)
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Thus, we have

𝑑𝜙

𝑑𝑧

= 𝑒
𝑧/2

𝑧
−𝜏/2−1

[𝑧

𝑑𝑤

𝑑𝑧

+

1

2

(𝑧 − 𝜏)𝑤 (𝑧)] , (31)

𝑑
2

𝜙

𝑑𝑧
2
(𝑧) = 𝑒

𝑧/2

𝑧
−𝜏/2−2

× {𝑧
2
𝑑
2

𝑤

𝑑𝑧
2
+ 𝑧 (𝑧 − 𝜏)

𝑑𝑤

𝑑𝑧

+

1

4

[(𝑧 − 𝜏)
2

+ 2𝜏]𝑤 (𝑧) } .

(32)

After substituting (30), (31), and (32) into (29) and
doing some simplifications, we obtain at the differen-
tial equation

𝑧
2
𝑑
2

𝑤

𝑑𝑧
2
+ [

2𝜏 − 𝜏
2

4

+ (𝜎 −

1

4

) 𝑧
2

]𝑤 (𝑧) = 0. (33)

The transformation

𝑤 (𝑧) = 𝑧
1/2

𝜑 (𝑧) (34)

has first and second derivative
𝑑𝑤

𝑑𝑧

= 𝑧
1/2

[

𝑑𝜑

𝑑𝑧

+

1

2𝑧

𝜑 (𝑧)] , (35)

𝑑
2

𝑤

𝑑𝑧
2
= 𝑧
1/2

[

𝑑
2

𝜑

𝑑𝑧
2
+

1

𝑧

𝑑𝜑

𝑑𝑧

−

1

4𝑧
2
𝜑 (𝑧)] . (36)

Finally, substituting (34) and (36) into (33) and doing
simplifications we arrived at the equation

𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝑧

𝑑𝜑

𝑑𝑧

+ [(

√4𝜎 − 1

2

𝑧)

2

− (

𝜏 − 1

2

)

2

]𝜑 (𝑧) = 0.

(37)

(ii) Let 𝛿 = 4. For this 𝛿 (27) becomes the following
differential equation:

𝑧

𝑑
2

𝜙

𝑑𝑧
2
+ (𝜏 − 𝑧)

𝑑𝜙

𝑑𝑧

+ (

𝜎

𝑧

−

𝜏

2

) 𝜙 (𝑧) = 0. (38)

For (38), we use the substitution

𝜙 (𝑧) = 𝑒
𝑧/2

𝑧
−𝜏/2

𝑢 (𝑧) . (39)

Therefore, we obtain

𝑑𝜙

𝑑𝑧

= 𝑒
𝑧/2

𝑧
−𝜏/2−1

[𝑧

𝑑𝑢

𝑑𝑧

+

1

2

(𝑧 − 𝜏) 𝑢 (𝑧)] ,

𝑑
2

𝜙

𝑑𝑧
2
= 𝑒
𝑧/2

𝑧
−𝜏/2−2

× {𝑧
2
𝑑
2

𝑢

𝑑𝑧
2
+ 𝑧 (𝑧 − 𝜏)

𝑑𝑢

𝑑𝑧

+

1

4

[(𝑧 − 𝜏)
2

+ 2𝜏] 𝑢 (𝑧) } .

(40)

After substituting (39) and (40) into (38) and doing
simplifications, we arrived at the equation

4𝑧
2
𝑑
2

𝑢

𝑑𝑧
2
+ [4𝜎 − 𝜏

2

+ 2𝜏 − 𝑧
2

] 𝑢 (𝑧) = 0. (41)

Similarly, for (41), we use the transformation

𝑢 (𝑧) = 𝑧
1/2

𝜑 (𝑧) . (42)

Thus, we have

𝑑𝑢

𝑑𝑧

= 𝑧
1/2

[

𝑑𝜑

𝑑𝑧

+

1

2𝑧

𝜑 (𝑧)] , (43)

𝑑
2

𝑢

𝑑𝑧
2
= 𝑧
1/2

[

𝑑
2

𝜑

𝑑𝑧
2
+

1

𝑧

𝑑𝜑

𝑑𝑧

−

1

4𝑧
2
𝜑 (𝑧)] . (44)

Finally, substitute (42) and (44) into (41) and do
simplifications to obtain the equation

𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝑧

𝑑𝜑

𝑑𝑧

−
[

[

[

(

𝑧

2

)

2

+(

√(𝜏 − 1)
2

− 4𝜎

2

)

2

]

]

]

𝜑 (𝑧) = 0.

(45)

Our aim is to obtain explicit solutions of (37) and (45), by
means of (27), according to different 𝛿.

3. Applications of Theorem 5 to a Class of
Ordinary Second-Order Equations

In order to applyTheorem 5 to the following class of ordinary
homogeneous differential equations:

𝐴𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ (𝐵𝑧 + 𝐶)

𝑑𝜑

𝑑𝑧

+ (𝐷𝑧
2

+ 𝐸𝑧 + 𝐹) 𝜑 (𝑧) = 0 (𝑧 ∈ C \ {0}) ,

(46)

If the first two lines and last lines of (47) substitute into (46)
(𝐴,𝐷 ̸= 0), (37) and (45) is obtained, respectively.

𝐴 = 𝐵 = 1, 𝐷 =

4𝜎 − 1

4

,

𝐶 = 𝐸 = 0, 𝐹 = −(

𝜏 − 1

2

)

2

(𝐴 = 𝐵 = 1,𝐷 =

−1

4

, 𝐶 = 𝐸 = 0,

𝐹 = 𝜎 − (

𝜏 − 1

2

)

2

) .

(47)

Indeed, by applying Theorem 5 in order to find explicit
solutions of the homogeneous differential equation (46), Lin
et al. [22] deduced the following result.
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Theorem 6 (see [22, Theorem 3, p. 39]). If the given function
𝑓 satisfies the constraint (4) and 𝑓

−] ̸= 0, then the nonhomoge-
neous linear ordinary differential equation

𝐴𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝐵𝑧

𝑑𝜑

𝑑𝑧

+ (𝐷𝑧
2

+ 𝐸𝑧 + 𝐹) 𝜑 (𝑧)

= 𝑓 (𝑧) (𝐴 ̸= 0, 𝐷 ̸= 0)

(48)

has a particular solution in the form

𝜑 (𝑧) = 𝑧
𝜌

𝑒
𝜆𝑧

[(𝐴
−1

𝑧
−]−1+(2𝐴𝜌+𝐵)/𝐴

𝑒
2𝜆𝑧

× (𝑧
−𝜌−1

𝑒
−𝜆𝑧

𝑓 (𝑧))
−]
)
−1

×𝑧
]−(2𝐴𝜌+𝐵)/𝐴

𝑒
−2𝜆𝑧

]
]−1

(𝐴 ̸= 0, 𝐷 ̸= 0, 𝑧 ∈ C \ {0}) ,

(49)

where 𝜌 and 𝜆 are given by

𝜌 =

𝐴 − 𝐵 ± √(𝐴 − 𝐵)
2

− 4𝐴𝐹

2𝐴

, 𝜆 = ±𝑖√
𝐷

𝐴

,
(50)

] =
(2𝐴𝜌 + 𝐵) 𝜆 + 𝐸

2𝐴𝜆

, (51)

provided that the second member of (49) exists.

Furthermore, the homogeneous linear ordinary differen-
tial equation

𝐴𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝐵𝑧

𝑑𝜑

𝑑𝑧

+ (𝐷𝑧
2

+ 𝐸𝑧 + 𝐹) 𝜑 (𝑧) = 0 (52)

has solutions of the form

𝜑 (𝑧) = 𝐾𝑧
𝜌

𝑒
𝜆𝑧

(𝑧
]−(2𝐴𝜌+𝐵)/𝐴

𝑒
−2𝜆𝑧

)
]−1

(𝐴 ̸= 0, 𝐷 ̸= 0, 𝑧 ∈ C \ {0}) ,

(53)

where 𝐾 is an arbitrary constant, 𝜌 and 𝜆 are given by (50),
and ] is given by (51), provided that the second member of
(53) exists.

Theorem 7. Under the hypotheses of Theorem 6, the homoge-
neous linear ordinary differential equation

𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝑧

𝑑𝜑

𝑑𝑧

+ [(

√4𝜎 − 1

2

𝑧)

2

− (

𝜏 − 1

2

)

2

]𝜑 (𝑧) = 0

(54)

has a particular solituon in the form

𝜑 (𝑧) = 𝑁𝑧
]−1/2

𝑒
𝜆𝑧

(𝑧
−]
𝑒
−2𝜆𝑧

)
]−1

(] ∈ R, 𝑧 ∈ C \ {0}) ,

(55)

where𝑁 is an arbitrary constant and 𝜌 and 𝜆 are given by

𝜌 =

± (𝜏 − 1)

2

, 𝜆 = ±𝑖

√4𝜎 − 1

2

,

] =
2𝜌 + 1

2

,

(56)

provided that the second member of (55) exists.

Theorem 8. Under the hypotheses of Theorem 6, the homoge-
neous linear ordinary differential equation

𝑧
2
𝑑
2

𝜑

𝑑𝑧
2
+ 𝑧

𝑑𝜑

𝑑𝑧

−
[

[

[

(

𝑧

2

)

2

+(

√(𝜏 − 1)
2

− 4𝜎

2

)

2

]

]

]

𝜑 (𝑧) = 0

(57)

has a particular solution of the form

𝜑 (𝑧) = 𝐻𝑧
]−1/2

𝑒
𝜆𝑧

(𝑧
−]
𝑒
−2𝜆𝑧

)
]−1

(] ∈ R, 𝑧 ∈ C \ {0}) ,

(58)

where𝐻 is an arbitrary constant and 𝜌 and 𝜆 are given by

𝜌 = ±√(

𝜏 − 1

2

)

2

− 𝜎, 𝜆 = ∓

1

2

,

] =
2𝜌 + 1

2

,

(59)

provided that the second member of (58) exists.
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