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The traditional integer-order partial differential equation-based image denoising approaches often blur the edge and complex
texture detail; thus, their denoising effects for texture image are not very good. To solve the problem, a fractional partial differential
equation-based denoisingmodel for texture image is proposed, which applies a novel mathematical method—fractional calculus to
image processing from the view of system evolution.We know fromprevious studies that fractional-order calculus has some unique
properties comparing to integer-order differential calculus that it can nonlinearly enhance complex texture detail during the digital
image processing.Thegoal of the proposedmodel is to overcome the problemsmentioned above by using the properties of fractional
differential calculus. It extended traditional integer-order equation to a fractional order and proposed the fractional Green’s formula
and the fractional Euler-Lagrange formula for two-dimensional image processing, and then a fractional partial differential equation
based denoising model was proposed.The experimental results prove that the abilities of the proposed denoisingmodel to preserve
the high-frequency edge and complex texture information are obviously superior to those of traditional integral based algorithms,
especially for texture detail rich images.

1. Introduction

Fractional calculus has been an important branch of math-
ematical analysis over the last 300 years [1–4]; however, it
is still little known by many mathematicians and physical
scientists in both the domestic and overseas engineering
fields. Fractional calculus of theHausdorffmeasure is notwell
established after more than 90 years studies [5, 6], whereas
fractional calculus in the Euclidean measure seems more
completed. So, Euclidean measure is commonly required in
mathematics [5, 6]. In general, fractional calculus in the
Euclidean measure extends the integer step to a fractional
step. Random variable of physical process in the Euclidean
measure can be deemed to be the displacement of particles
by random movement; thus, fractional calculus can be used

for the analysis and processing of the physical states and
processes in principle [7–15]. Fractional calculus has one
obvious feature, that is, that most fractional calculus is based
on a power function and the rest is based on the addition or
production of a certain function and a power function [1–6].
It is possible that this feature indicates some changing law
of nature. Scientific research has proved that the fractional-
order or dimensional mathematical approach provides the
best description for many natural phenomena [16–19]. Frac-
tional calculus in the Euclidean measure has been used
in many fields, including diffusion process, viscoelasticity
theory, and random fractal dynamics. Methods to apply
fractional calculus to modern signal analysis and processing
[18–30], especially to digital image processing [31–38], are an
emerging branch to study, which has been seldom explored.
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Integer-order partial differential equation-based image
processing is an important branch in the field of image pro-
cessing. By exploring the essence of image and image process-
ing, people tend to reconstruct the traditional image process-
ing approaches through strictly mathematical theories, and
it will be a great challenge to practical-oriented traditional
image processing. Image denoising is a significant research
branch of integer-order partial differential equation-based
image processing, with two kinds of denoising approach: the
nonlinear diffusion-based method and the minimum energy
norm-based variational method [39–42]. They have two
corresponding models, which are the anisotropic diffusion
proposed by Perona and Malik [43] (Perona-Malik or PM)
and the total variation model proposed by Rudin et al. [44]
(Rudin-Osher-Fatemi or ROF). The PM model simulates
the denoising process by a thermal energy diffusion process
and the denoising result is the balanced state of thermal
diffusion, while the ROF model describes the same thermal
energy by a total variation. In further study, some researchers
have applied the PM model and the ROF model to color
images [45, 46], discussed the selection of the parameters for
the models [47–51], and found the optimal stopping point
in iteration process [52, 53]. Rudin and his team proposed
a variable time step method to solve the Euler-Lagrange
equation [44]. Vogel and Oman proposed improving the
stability of ROF model by a fixed point iteration approach
[54]. Darbon and Sigelle decomposed the original problems
into independent optimal Markov random fields by using
level set methods and obtained globally optimal solution by
reconstruction [55–57]. Wohlberg and Rodriguez proposed
to solve the total variation by using an iterative weighted
norm to improve the computing efficiency [58]. Meanwhile,
Catté et al. proposed to perform a Gaussian smoothing
process in the initial stage to improve the suitability of the
PM model [59]. However, PM model and ROF model have
some obvious defects in image denoising; that is, they can
easily lose the contrast and texture details and can produce
staircase effects [39, 60, 61]. Some improved models have
been proposed to solve these problems. To maintain the
contrast and texture details, some scholars have proposed
to replace the 𝐿

2 norm with the 𝐿
1 norm [62–65], while

Osher et al. proposed an iterative regularizationmethod [66].
Gilboa et al. proposed a denoising method using a numerical
adaptive fidelity term that can change with the space [67].
Esedoglu andOsher proposed to decompose images using the
anisotropic ROFmodel and retaining certain edge directional
information [68]. To remove the staircase effects, Blomgren et
al. proposed to extend the total variation denoising model by
changing it with gradients [69, 70]. Some scholars introduced
high-order derivative to energy norm [71–76]. Lysaker et
al. integrated high-order deductive to original ROF model
[77, 78], while other scholars proposed a two-stage denoising
algorithm, which smoothes the corresponding vector field
first and then fits it by using the curve surface [79, 80].
The above methods have provided some improvements in
maintaining contrast and texture details and removing the
staircase effect, but they still have some drawbacks. First,
the improved algorithms have greatly increased calculation
complexity for real-time processing and excessive storage and

computational requirements will lead them to be impractical.
Second, the above algorithms are essentially integer-order
differential based algorithm, and thus they may cause the
edge field to be somewhat fuzzy and the texture-preservation
effect to be less effective than expected.

We therefore propose to introduce a new mathematical
method—fractional calculus to the denoising field for texture
image and implementing a fractional partial differential
equation to solve the above problems by the integer-order
partial differential equation-based denoising algorithms [23,
33–38]. Guidotti and Lambers [81] and Bai and Feng [82]
have pushed the classic anisotropic diffusion model to the
fractional field, extended gradient operator of the energy
norm from first-order to fractional-order, and numerically
implemented the fractional developmental equation in the
frequency domain, which has some effects on image denois-
ing. However, the algorithm still has certain drawbacks. First,
it simply took the gradient operator of the energy norm
from first order to fractional order and still cannot essentially
solve the problem of how to nonlinearly maintain the texture
details via the anisotropic diffusion. Therefore, the texture
information is not retained well after denoising. Second, the
algorithm does not include the effects of the fractional power
of the energy norm and the fractional extreme value on
nonlinearly maintaining texture details. Third, the method
does not deduce the corresponding fractional Euler-Lagrange
formula according to fractional calculus features and directly
replace it according to the complex conjugate transpose
features of the Hilbert adjoint operator. It greatly increased
the complex of the numerical implementation of the frac-
tional developmental equation in frequency field. Finally, the
transition function of fractional calculus in Fourier transform
domain is (𝑖𝜔)V. Its form looks simple, but the Fourier’s
inverse transform of (𝑖𝜔)V belongs to the first kind of Euler
integral, which is difficult to calculate theoretically. The
algorithm simply converted the first-order difference into the
fractional-order difference in the frequency domain form and
replaced the fractional differential operator, which has not
solved the computing problem of the Euler integral of the first
kind.

The properties of fractional differential are as follows [23,
24, 38]. First, the fractional differential of a constant is non-
zero, whereas it must be zero under integer-order differential.
Fractional calculus varies from a maximum at a singular
leaping point to zero in the smooth areas where the signal is
unchanged or not changed greatly; note that, by default, any
integer-order differential in a smooth area is approximated
to zero, which is the remarkable difference between the
fractional differential and integer-order differential. Second,
the fractional differential at the starting point of a gradient
of a signal phase or slope is nonzero, which nonlinearly
enhances the singularity of high-frequency components.
With the increasing fractional order, the strengthening of the
singularity of high-frequency components is also greater. For
example, when 0 < V < 1, the strengthening is less than
when V = 1. The integral differential is a special case of the
fractional calculus. Finally, the fractional calculus along the
slope is neither zero nor constant but is a nonlinear curve,
while integer-order differential along slope is the constant.
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From this discussion, we can see that fractional calculus can
nonlinearly enhance the complex texture details during the
digital image processing. Fractional calculus can nonlinearly
maintain the low-frequency contour features in smooth
area to the furthest degree, nonlinearly enhance the high-
frequency edge and texture details in those areas where
gray level changes frequently, and nonlinearly enhance high-
frequency texture details in those areas where gray level does
not change obviously [23, 33–38].

A fractional partial differential equation-based denoising
algorithm is proposed. The experimental results prove that
it can not only preserve the low-frequency contour feature
in the smooth area but also nonlinearly maintain the high-
frequency edge and texture details both in the areas where
gray level did not change obviously or change frequently. As
for texture-rich images, the abilities for preserving the high-
frequency edge and complex texture details of the proposed
fractional based denoising model are obviously superior to
the traditional integral based algorithms. The outline of the
paper is as follows. First, it introduces three common-used
definitions of fractional calculus, that is, Grümwald-Letnikov,
Riemann-Liouville, and Caputo, which are the premise of the
fractional developmental equation-based model. Second, we
obtain fractional Green’s formula for two-dimensional image
by extending the classical integer-order to a fractional-order
and also fractional Euler-Lagrange formula. On the basis, a
fractional partial differential equation is proposed. Finally,
we show the denoising capabilities of the proposed model
by comparing with Gaussian denoising, fourth-order TV
denoising, bilateral filtering denoising, contourlet denoising,
wavelet denoising, nonlocal means noise filtering (NLMF)
denoising, and fractional-order anisotropic diffusion denois-
ing.

2. Related Work

The common-used definitions of fractional calculus in
the Euclidean measure are Grümwald-Letnikov definition,
Riemann-Liouville definition, and Caputo definition [1–6].

Grümwald-Letnikov defined that V-order differential of
signal 𝑠(𝑥) can be expressed by

𝐷
V
𝐺-𝐿𝑠 (𝑥) =

𝑑
V

[𝑑 (𝑥 − 𝑎)]
V 𝑠 (𝑥)

𝐺-𝐿

= lim
𝑁→∞

{
((𝑥 − 𝑎) /𝑁)

−V

Γ (−V)

×

𝑁−1

∑

𝑘=0

Γ (𝑘 − V)

Γ (𝑘 + 1)
𝑠 (𝑥 − 𝑘 (

𝑥 − 𝑎

𝑁
))} ,

(1)

where the duration of 𝑠(𝑥) is [𝑎, 𝑥] and V is any real num-
ber (fraction included). 𝐷V

𝐺-𝐿 denotes Grümwald-Letnikov
defined fractional-order differential operator, and Γ is
Gamma function. Equation (1) shows that Grümwald-
Letnikov definition in the Euclidean measure extends the
step from integer to fractional, and thus it extends the order

from integer differential to fractional differential. Grümwald-
Letnikov defined fractional calculus is easily calculated,
which only relates to the discrete sampling value of 𝑠(𝑥−𝑘((𝑥−
𝑎)/𝑁)) that correlates to 𝑠(𝑥) and irrelates to the derivative or
the integral value.

Riemann-Liouville defined the V-order integral when V <
0 is shown as

𝐷
V
𝑅-𝐿𝑠 (𝑥) =

𝑑
V

[𝑑 (𝑥 − 𝑎)]
V 𝑠 (𝑥)

𝑅-𝐿

=
1

Γ (−V)
∫

𝑥

𝑎

(𝑥 − 𝜂)
−V−1

𝑠 (𝜂) 𝑑𝜂

=
−1

Γ (−V)
∫

𝑥

𝑎

𝑠 (𝜂) 𝑑(𝑥 − 𝜂)
−V
, V ≺ 0,

(2)

where 𝐷V
𝑅-𝐿 represents the Riemann-Liouville defined frac-

tional differential operator. As for V-order differential when
V ≥ 0, 𝑛 satisfies 𝑛 − 1 < V ≤ 𝑛. Riemann-Liouville defined
V-order differential can be given by

𝐷
V
𝑅-𝐿𝑠 (𝑥) =

𝑑
V

[𝑑 (𝑥 − 𝑎)]
V 𝑠 (𝑥)

𝑅-𝐿

=
𝑑

𝑛

𝑑𝑥𝑛

𝑑
V−𝑛

[𝑑(𝑥 − 𝑎]
V−𝑛

𝑠 (𝑥)

𝑅-𝐿

=

𝑛−1

∑

𝑘=0

(𝑥 − 𝑎)
𝑘−V
𝑠
(𝑘)
(𝑎)

Γ (𝑘 − V + 1)

+
1

Γ (𝑛 − V)
∫

𝑥

𝑎

𝑠
(𝑛)
(𝜂)

(𝑥 − 𝜂)
V−𝑛+1

𝑑𝜂, 0 ≤ V ≺ 𝑛.

(3)

Fourier transform of the 𝑠(𝑥) is expressed as

FT [𝐷V
𝑠 (𝑥)] = (𝑖𝜔)

VFT [𝑠 (𝑥)] −
𝑛−1

∑

𝑘=0

(𝑖𝜔)
𝑘 𝑑

V−1−𝑘

𝑑𝑥V−1−𝑘
𝑠 (0) ,

(4)

where 𝑖 denotes imaginary unit and 𝜔 represents digital
frequency. If 𝑠(𝑥) is causal signal, (4) can be simplified to read

FT [𝐷V
𝑠 (𝑥)] = (𝑖𝜔)

VFT [𝑠 (𝑥)] . (5)

3. Theoretical Analysis for Fractional Partial
Differential Equation: Fractional Total
Variation and Fractional Steepest Descent
Approach Based Multiscale Denoising
Model for Texture Image

3.1. The Fractional Green Formula for Two-Dimensional
Image. The premise of implementing Euler-Lagrange for-
mula is to obtain the proper Green’s formula [83]. We
therefore extend the order ofGreen’s formula from the integer
to a fractional first in order to implement fractional Euler-
Lagrange formula of two-dimensional image.

Consider Ω to be simply connected plane region, taking
the piecewise smooth curve 𝐶 as a boundary; then the differ-
integrable functions𝑃(𝑥, 𝑦) and𝑄(𝑥, 𝑦) [1–6] are continuous
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Figure 1: Simply connected spaceΩ and its smooth boundary curve
𝐶.

in Ω and 𝐶, and the fractional continuous partial derivatives
for 𝑥 and 𝑦 exist. If we consider 𝐷1 to represent the first-
order differential operator, then 𝐷

V represents the V-order
fractional differential operator, 𝐼1 = 𝐷

−1 denotes the first-
order integral operator, and 𝐼

V
= 𝐷

−V represents V-order
fractional integral operator when V > 0. Note that (𝐼V

𝑥
𝐼
V
𝑦
)
Ω

represents the V-order integral operator of curve surface in
the Ω plane. 𝐼V

𝐶(𝐴𝐶
1
𝐵)

is the V-order integral operator in the

𝐴𝐶
1
𝐵 section of curve 𝐶 along the direction of

→

𝐴𝐶
1
𝐵. 𝐼V

𝐶−

is V-order fractional integral operator in the closed curve 𝐶
along counter-clockwise direction. Consider that boundary
𝐶 is circled by two curves 𝑦 = 𝜙

1
(𝑥), 𝑦 = 𝜙

2
(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏 or

𝑥 = 𝜓
1
(𝑦), 𝑥 = 𝜓

2
(𝑦), 𝑐 ≤ 𝑦 ≤ 𝑑, as shown in Figure 1.

As for differintegrable function 𝑃(𝑥, 𝑦) [1–6], when 𝑃 −

𝐷
−V
1𝐷

V
1𝑃 ̸= 0, it follows that 𝐷

V
1𝐷

V
2𝑃 = 𝐷

V
1
+V
2𝑃 −

𝐷
V
1
+V
2(𝑃 − 𝐷

−V
1𝐷

V
1𝑃). Thus, when 𝐼

V
2

𝑥
𝐼
V
2

𝑦
𝐷

V
1

𝑦
𝑃(𝑥, 𝑦) =

𝐼
V
2

𝑥
{𝐷

V
1
−V
2

𝑦
𝑃(𝑥, 𝑦) − 𝐷

V
1
−V
2

𝑦
[𝑃(𝑥, 𝑦)−𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃(𝑥, 𝑦)]}, it has

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)

=
𝑏

𝑎
𝐼
V
2

𝑥

𝜙
2(𝑥)

𝜙
1(𝑥)

𝐼
V
2

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)

=
𝑏

𝑎
𝐼
V
2

𝑥
{𝐷

V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃(𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃(𝑥, 𝑦)]}



𝜙
2
(𝑥)

𝜙
1
(𝑥)

= − 𝐼
V
2

𝑥

𝐶(𝐵𝐶
2
𝐴)

{𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃 (𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)]}

− 𝐼
V
2

𝑥

𝐶(𝐴𝐶
1
𝐵)

{𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃 (𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)]}

= −𝐼
V
2

𝑥

𝐶−

{𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃 (𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)]} .

(6)

Similarly, it has

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦)

= 𝐼
V
2

𝑦

𝐶−

{𝐷
V
1
−V
2

𝑥
𝑄 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑥
[𝑄 (𝑥, 𝑦) − 𝐷

−V
1

𝑥
𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦)]} .

(7)

Fractional Green’s formula of two-dimensional image can be
expressed by

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
(𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦) − 𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦))

= 𝐼
V
2

𝑥

𝐶−

{𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃 (𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)]}

+ 𝐼
V
2

𝑦

𝐶−

{𝐷
V
1
−V
2

𝑥
𝑄 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑥
[𝑄 (𝑥, 𝑦) − 𝐷

−V
1

𝑥
𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦)]} .

(8)

When𝐷V
1 and𝐷−V

1 are reciprocal, that is, 𝜑 −𝐷−V
1𝐷

V
1𝜑 = 0,

it follows that𝐷V
1𝐷

V
2𝜑 = 𝐷

V
1
+V
2𝜑.Then, (8) can be simplified

to read

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
(𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦) − 𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦))

= 𝐼
V
2

𝑥

𝐶−

𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦) + 𝐼

V
2

𝑦

𝐶−

𝐷
V
1
−V
2

𝑥
𝑄 (𝑥, 𝑦) .

(9)

We know from (9) the following. First, when V
1
= V

2
= V,

(9) can be simplied as (𝐼V
𝑥
𝐼
V
𝑦
)
Ω
(𝐷

V
𝑥
𝑄(𝑥, 𝑦) − 𝐷

V
𝑦
𝑃(𝑥, 𝑦)) =

(𝐼
V
𝑥
)
𝐶−
𝑃(𝑥, 𝑦) + (𝐼

V
𝑦
)
𝐶−
𝑄(𝑥, 𝑦), which is the expression of

fractional Green’s formula in reference [84]. Second, when
V
1

= V
2

= 1, it follows that (𝐼
1

𝑥
𝐼
1

𝑦
)
Ω
(𝐷

1

𝑥
𝑄(𝑥, 𝑦) −

𝐷
1

𝑦
𝑃(𝑥, 𝑦)) = (𝐼

1

𝑥
)
𝐶−
𝑃(𝑥, 𝑦) + (𝐼

1

𝑦
)
𝐶−
𝑄(𝑥, 𝑦). The classical

integer-order Green’s formula is the special case of fractional
Green formula.

3.2. The Fractional Euler-Lagrange Formula for Two-Dimen-
sional Image. To implement a fractional partial differential
equation-based denoising model, we must obtain the frac-
tional Euler-Lagrange formula first, and thus we furtherly
deduce the fractional Euler-Lagrange formula for two-
dimensional image based on the above fractional Green’s
formula.

Consider the differintegrable numerical function in two-
dimensional space to be 𝑢(𝑥, 𝑦) and the differintegrable
vector function to be �⃗�(𝑥, 𝑦) = 𝑖𝜑

𝑥
+ 𝑗𝜑

𝑦
[1–6]; the V-order

fractional differential operator is 𝐷V
= 𝑖(𝜕

V
/𝜕𝑥

V
) + 𝑗(𝜕

V/
𝜕𝑦

V
) = 𝑖𝐷

V
𝑥
+ 𝑗𝐷

V
𝑦

= (𝐷
V
𝑥
, 𝐷

V
𝑦
). Here, 𝐷V is a type of

linear operator. When V = 0, then 𝐷0 represents an equality
operator, which is neither differential nor integral, where 𝑖
and 𝑗, respectively, represent the unit vectors in the 𝑥- and 𝑦-
directions. In general, the two-dimensional image regionΩ is
a rectangular simply connected space, and thus the piecewise
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y

x

C3(x0, y1) C2(x1, y1)

C1(x1, y0)C0(x0, y0)

Ω

0

Figure 2: The two-dimensional simply connected space Ω and its
piecewise smooth boundary curve 𝐶.

smooth boundary 𝐶 is also a rectangular closed curve, as
shown in Figure 2.

Referring to (2), it follows that 𝐼
V
𝑥
𝑠(𝑥, 𝑦) = (1/

Γ(V)) ∫
𝑥

𝑎
𝑥

(𝑥 − 𝜂)
V−1
𝑠(𝜂, 𝑦)𝑑𝜂, 𝐼V

𝑦
𝑠(𝑥, 𝑦) = (1/Γ(V)) ∫

𝑦

𝑎
𝑦

(𝑦 −

𝜁)
V−1
𝑠(𝑥, 𝜁)𝑑𝜁 and 𝐼

V
𝑥
𝐼
V
𝑦
𝑠(𝑥, 𝑦) = (1/Γ

2
(V)) ∫

𝑥

𝑎
𝑥

∫
𝑦

𝑎
𝑦

(𝑥 −

𝜂)
V−1
(𝑦 − 𝜁)

V−1
𝑠 (𝜂, 𝜁)𝑑𝜂 𝑑𝜁. From the fractional Green

formula (8) and Figure 2, we can derive

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
(𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦) − 𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦))

= 𝐼
V
2

𝑥

𝐶−

{𝐷
V
1
−V
2

𝑦
𝑃 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑦
[𝑃 (𝑥, 𝑦) − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃 (𝑥, 𝑦)]}

+ 𝐼
V
2

𝑦

𝐶−

{𝐷
V
1
−V
2

𝑥
𝑄 (𝑥, 𝑦)

−𝐷
V
1
−V
2

𝑥
[𝑄 (𝑥, 𝑦) − 𝐷

−V
1

𝑥
𝐷

V
1

𝑥
𝑄 (𝑥, 𝑦)]}

=
𝑥
1

𝑥
0

𝐼
V
2

𝑥
{𝐷

V
1
−V
2

𝑦
𝑃 − 𝐷

V
1
−V
2

𝑦
[𝑃 − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃]}

+
𝑥
0

𝑥
1

𝐼
V
2

𝑥
{𝐷

V
1
−V
2

𝑦
𝑃 − 𝐷

V
1
−V
2

𝑦
[𝑃 − 𝐷

−V
1

𝑦
𝐷

V
1

𝑦
𝑃]}

+
𝑦
1

𝑦
0

𝐼
V
2

𝑦
{𝐷

V
1
−V
2

𝑥
𝑄 − 𝐷

V
1
−V
2

𝑥
[𝑄 − 𝐷

−V
1

𝑥
𝐷

V
1

𝑥
𝑄]}

+
𝑦
0

𝑦
1

𝐼
V
2

𝑦
{𝐷

V
1
−V
2

𝑥
𝑄 − 𝐷

V
1
−V
2

𝑥
[𝑄 − 𝐷

−V
1

𝑥
𝐷

V
1

𝑥
𝑄]} ≡ 0.

(10)

Since ∑∞

𝑚=0
∑

𝑚

𝑛=0
≡ ∑

∞

𝑛=0
∑

∞

𝑚=𝑛
and ( V

𝑟+𝑛 ) (
𝑟+𝑛

𝑛
) ≡ (

V
𝑛 ) (

V−𝑛

𝑟
),

we have

𝐷
V
𝑥−𝑎

(𝑓𝑔) =

∞

∑

𝑛=0

[(
V
𝑛
) (𝐷

V−𝑛

𝑥−𝑎
𝑓)𝐷

𝑛

𝑥−𝑎
𝑔] . (11)

Referring to the homogeneous properties of fractional cal-
culus and (10), we can derive that (𝐼V2

𝑥
𝐼
V
2

𝑦
)
Ω
[𝐷

V
1

𝑥
(𝑢𝜑

𝑥
) +

𝐷
V
1

𝑦
(𝑢𝜑

𝑦
)] = (𝐼

V
2

𝑥
𝐼
V
2

𝑦
)
Ω
[𝐷

V
1

𝑥
(𝑢𝜑

𝑥
) − 𝐷

V
1

𝑦
(−𝑢𝜑

𝑦
)] = 0. Then, we

have

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1𝑢 ∙ �⃗�

= (𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
[(𝐷

V
1

𝑥
𝑢) 𝜑

𝑥
+ (𝐷

V
1

𝑦
𝑢) 𝜑

𝑦
]

= −(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω

∞

∑

𝑛=1

(
V
1

𝑛
) [(𝐷

V
1
−𝑛

𝑥
𝑢)𝐷

𝑛

𝑥
𝜑

𝑥
+ (𝐷

V
1
−𝑛

𝑦
𝑢)𝐷

𝑛

𝑦
𝜑

𝑦
] ,

(12)

where the sign ∙ denotes the inner product. Similar to the
definition of fractional-order divergence operator divV�⃗� =

𝐷
V
∙ �⃗� = 𝐷

V
𝑥
𝜑

𝑥
+ 𝐷

V
𝑦
𝜑

𝑦
, we consider the V-order fractional

differential operator to be 𝑃V
= ∑

∞

𝑛=1
(
V
𝑛 ) [𝑖((𝐷

V−𝑛

𝑥
𝑢)/𝑢)𝐷

𝑛

𝑥
+

𝑗((𝐷
V−𝑛

𝑦
𝑢)/𝑢)𝐷

𝑛

𝑦
] and the V-order fractional divergence oper-

ator to be div𝑃V
�⃗� = 𝑃

V
∙ �⃗� = 𝑃

V
𝑥
𝜑

𝑥
+ 𝑃

V
𝑦
𝜑

𝑦
, where both div𝑃V

and 𝑃
Vare the linear operators. In light of Hilbert adjoint

operator theory [85] and (12), we can derive

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1𝑢 ∙ �⃗� = ⟨𝐷

V
1𝑢, �⃗�⟩

V
2

= ⟨𝑢, (𝐷
V
1)

∗

�⃗�⟩
V
2

= (𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝑢 ((𝐷

V
1)

∗

�⃗�)

= −(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝑢 (𝑃

V
1 ∙ �⃗�)

= −(𝐼
V
1

𝑥
𝐼
V
2

𝑦
)
Ω
𝑢 (div𝑃V

1 �⃗�) ,

(13)

where ⟨ , ⟩
V
2 denotes the integral form of the V

2
-order

fractional inner product. (𝐷V
)
∗ is V-order fractional Hilbert

adjoint operator of𝐷V. Then, it follows that

(𝐷
V
)
∗

= −div𝑃V
, (14)

where (𝐷V
)
∗ is a fractional Hilbert adjoint operator. When

V
1
= V

2
= 1, (12) becomes

(𝐼
1

𝑥
𝐼
1

𝑦
)
Ω
𝐷

1
𝑢 ∙ �⃗� = ⟨𝐷

1
𝑢, �⃗�⟩

1

= ⟨𝑢, (𝐷
1
)
∗

�⃗�⟩

1

= (𝐼
1

𝑥
𝐼
1

𝑦
)
Ω
𝑢 ((𝐷

1
)
∗

�⃗�) = −𝐼
1

𝑥
𝐼
1

𝑦

Ω

𝑢 (div1
�⃗�) ,

(15)

where ⟨ , ⟩
1 denotes the integral form of the first-order

inner product, div1
�⃗� = 𝐷

1
∙ �⃗� = 𝐷

1

𝑥
𝜑

𝑥
+ 𝐷

1

𝑦
𝜑

𝑦
represents

the first-order divergence operator, and (𝐷
1
)
∗ represents

the first-order Hilbert adjoint operator of 𝐷1. As for digital
image, we find that

(𝐷
1
)
∗

= −div1
. (16)
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Equations (14) and (16) have shown that the first-order
Hilbert adjoint operator is the special case of that of fractional
order. When (𝐼V2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1𝑢 ∙ �⃗� = 0, (14) becomes

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1𝑢 ∙ �⃗�

= −(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω

∞

∑

𝑛=1

(
V
1

𝑛
) [(𝐷

V
1
−𝑛

𝑥
𝑢)𝐷

𝑛

𝑥
𝜑

𝑥
+ (𝐷

V
1
−𝑛

𝑦
𝑢)𝐷

𝑛

𝑦
𝜑

𝑦
]

= 0.

(17)
Since the 𝑥 line and 𝑦 line meet at right angle, it has
(𝐷

V
1
−𝑛

𝑥
𝑢)𝐷

𝑛

𝑥
𝜑

𝑥
+ (𝐷

V
1
−𝑛

𝑦
𝑢)𝐷

𝑛

𝑦
𝜑

𝑦
= (𝐷

V
1
−𝑛

𝑥
𝑢,𝐷

V
1
−𝑛

𝑦
𝑢) ∙ (𝐷

𝑛

𝑥
𝜑

𝑥
,

𝐷
𝑛

𝑦
𝜑

𝑦
). As for any two-dimensional function 𝑢, the

corresponding 𝐷
V
1
−𝑛

𝑥
𝑢 and 𝐷

V
1
−𝑛

𝑦
𝑢 are randomly chosen.

According to the fundamental lemmaof calculus of variations
[83], we know that (𝐷𝑛

𝑥
𝜑

𝑥
, 𝐷

𝑛

𝑦
𝜑

𝑦
) = (0, 0) is required

to make (17) established. Since 𝑛 is the positive
integer belonging to 1 → ∞, we only need (𝐷

1

𝑥
𝜑

𝑥
,

𝐷
1

𝑦
𝜑

𝑦
) = (0, 0) to make (𝐷

𝑛

𝑥
𝜑

𝑥
, 𝐷

𝑛

𝑦
𝜑

𝑦
) = (0, 0) estab-

lished. Equation (17) can be rewritten as
−(𝐼

V
2

𝑥
𝐼
V
2

𝑦
)
Ω
(
V
1

1
) [(𝐷

V
1
−1

𝑥
𝑢)𝐷

1

𝑥
𝜑

𝑥
+ (𝐷

V
1
−1

𝑦
𝑢)𝐷

1

𝑦
𝜑

𝑦
] =

−(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
(
V
1

1
) (𝐷

V
1
−1

𝑥
𝑢,𝐷

V
1
−1

𝑦
𝑢) ∙ (𝐷

1

𝑥
𝜑

𝑥
, 𝐷

1

𝑦
𝜑

𝑦
) = 0.

When and only when the below equation is satisfied, (17) is
established:

−(
V
1

1
) [𝐷

1

𝑥
𝜑

𝑥
+ 𝐷

1

𝑦
𝜑

𝑦
] =

Γ (1 − V
1
)

Γ (−V
1
)
[𝐷

1

𝑥
𝜑

𝑥
+ 𝐷

1

𝑦
𝜑

𝑦
] = 0.

(18)
Equation (18) is the fractional Euler-Lagrange formula, which
corresponds to (𝐼V2

𝑥
𝐼
V
2

𝑦
)
Ω
𝐷

V
1𝑢 ∙ �⃗� = 0.

Also, if one considersΦ
1
(𝐷

V
1𝑢) to be the numerical func-

tion of vector function 𝐷V
1𝑢 and Φ

2
(�⃗�) to be the numerical

function of differintegrable vector function �⃗�(𝑥, 𝑦) = 𝑖𝜑
𝑥
+

𝑗𝜑
𝑦
[1–6], similarly, when (𝐼V2

𝑥
𝐼
V
2

𝑦
)
Ω
Φ

1
(𝐷

V
1𝑢)Φ

2
(�⃗�)𝐷

V
1𝑢 ∙ �⃗� =

0, (14) can be written as

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
Φ

1
(𝐷

V
1𝑢)Φ

2
(�⃗�)𝐷

V
1𝑢 ∙ �⃗�

= (𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
Φ

1
(𝐷

V
1𝑢)𝐷

V
1𝑢 ∙ (Φ

2
(�⃗�) �⃗�)

= −(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω

∞

∑

𝑛=1

(
V
1

𝑛
) [ (Φ

1
(𝐷

V
1𝑢)𝐷

V
1
−𝑛

𝑥
𝑢)

× 𝐷
𝑛

𝑥
(Φ

2
(�⃗�) 𝜑

𝑥
)

+ (Φ
1
(𝐷

V
1𝑢)𝐷

V
1
−𝑛

𝑦
𝑢)

×𝐷
𝑛

𝑦
(Φ

2
(�⃗�) 𝜑

𝑦
)] = 0.

(19)

Equation (19) is established, when and only when

− (
V
1

1
) [𝐷

1

𝑥
(Φ

2
(�⃗�) 𝜑

𝑥
) + 𝐷

1

𝑦
(Φ

2
(�⃗�) 𝜑

𝑦
)]

=
Γ (1 − V

1
)

Γ (−V
1
)
[𝐷

1

𝑥
(Φ

2
(�⃗�) 𝜑

𝑥
)

+𝐷
1

𝑦
(Φ

2
(�⃗�) 𝜑

𝑦
)] = 0.

(20)

Equation (20) is the fractional Euler-Lagrange formula cor-
responding to (𝐼V2

𝑥
𝐼
V
2

𝑦
)
Ω
Φ

1
(𝐷

V
1𝑢)Φ

2
(�⃗�)𝐷

V
1𝑢 ∙ �⃗� = 0.

Since it has 𝐷V
𝑥−𝑎

[0] ≡ 0 no matter what V is, we know
that the fractional Euler-Lagrange formulas (18) and (20) are
irrelevant to the integral order V

2
of fractional surface integral

(𝐼
V
2

𝑥
𝐼
V
2

𝑦
)
Ω
. We therefore only adopt the first-order surface

integral (𝐼V
𝑥
𝐼
V
𝑦
)
Ω

instead of that of fractional order, when
we discuss the energy norm of fractional partial differential
equation-based model for texture denoising below.

3.3. The Fractional Partial Differential Equation-Based
Denoising Approach for Texture Image. Based on the
fractional Euler-Lagrange formula for two-dimensional
image, we can implement a fractional partial differential
equation-based denoising model for texture image.

𝑠(𝑥, 𝑦) represents the gray value of the pixel (𝑥, 𝑦), where
Ω ⊂ 𝑅

2 is the image region, that is, (𝑥, 𝑦) ∈ Ω. Consider
𝑠(𝑥, 𝑦) to be the noised image and 𝑠

0
(𝑥, 𝑦) to represent the

desired clean image. Since the noise can be converted to
additive noise by log processing when it is multiplicative
noise and to additive noise by frequency transform and log
processing when it is convolutive noise, we assume that
𝑛(𝑥, 𝑦) is additive noise, that is, 𝑠(𝑥, 𝑦) = 𝑠

0
(𝑥, 𝑦) + 𝑛(𝑥, 𝑦)

without loss of generality. Consider 𝑛(𝑥, 𝑦) to represent the
additive noise, that is, 𝑠(𝑥, 𝑦) = 𝑠

0
(𝑥, 𝑦) + 𝑛(𝑥, 𝑦); we

adopted the fractional extreme to form the energy norm.
Similar to the fractional 𝛿-cover in the Hausdorff measure
[96, 97], we consider the fractional total variation of image

𝑠 to be |𝐷V
1𝑠|

V
2
= (√(𝐷

V
1

𝑥 𝑠)
2

+ (𝐷
V
1

𝑦 𝑠)
2

)

V
2

, where V
2
is any

real number including fractional number and |𝐷
V
1𝑠|

V
2 is

the hypercube measure. We assume the fractional variation-
based fractional total variation as

𝐸FTV (𝑠) = (𝐼
1

𝑥
𝐼
1

𝑦
)
Ω
[𝑓 (

𝐷
V
1𝑠


V
2

)] = ∬
Ω

𝑓 (
𝐷

V
1𝑠


V
2

) 𝑑𝑥 𝑑𝑦.

(21)

Consider 𝑠 to be the V
3
-order extremal surface of 𝐸FTV,

the test function is the admitting curve surface close to the
extremal surface, that is, 𝜉(𝑥, 𝑦) ∈ 𝐶∞

0
(Ω), we then correlate

andmerge 𝑠 and 𝜉 by 𝑠+(𝛽−1)𝜉.When𝛽 = 1, it is the V
3
-order

extremal surface 𝑠. Assume that Ψ
1
(𝛽) = 𝐸FTV[𝑠 + (𝛽 − 1)𝜉]

and Ψ
2
(𝛽) = ∬

Ω
𝜆[𝑠 + (𝛽 − 1)𝜉 − 𝑠

0
]𝑠

0
𝑑𝑥 𝑑𝑦, where Ψ

2
(𝛽)

is the cross energy of the noise and clean signal s
0
, that is,

[𝑠+(𝛽−1)𝜉−𝑠
0
], and it also themeasurement of the similarity

between [𝑠 + (𝛽 − 1)𝜉 − 𝑠
0
] and 𝑠

0
. We therefore can explain

the anisotropic diffusion as energy dissipation process for
solving the V

3
-order minimum of fractional energy norm

𝐸FTV, that is, the process for solving minimum of Ψ
2
(𝛽) is

to obtain the minimum similarity between the noise and the
clean signal. Here, Ψ

2
(𝛽) plays the role of nonlinear fidelity

during denoising, and 𝜆 is regularized parameter. Fractional
total variation-based fractional energy norm in surface family
𝑠 + (𝛽 − 1)𝜉 can be expressed by

Ψ (𝛽) = Ψ
1
(𝛽) + Ψ

2
(𝛽)

= (𝐼
1

𝑥
𝐼
1

𝑦
)
Ω
[𝑓 (

𝐷
V
1𝑠 + (𝛽 − 1)𝐷

V
1𝜉


V
2

)

+ 𝜆 [𝑠 + (𝛽 − 1) 𝜉 − 𝑠
0
] 𝑠

0
]



Abstract and Applied Analysis 7

= ∬
Ω

[𝑓 (
𝐷

V
1𝑠 + (𝛽 − 1)𝐷

V
1𝜉


V
2

)

+𝜆 [𝑠 + (𝛽 − 1) 𝜉 − 𝑠
0
] 𝑠

0
] 𝑑𝑥 𝑑𝑦.

(22)

As for Ψ
1
(𝛽), if V

3
-order fractional derivative of

𝑓(|𝐷
V
1𝑠 + (𝛽 − 1)𝐷

V
1𝜉|

V
2
) exists, Ψ

1
(𝛽) has the V

3
-order

fractional minimum or stationary point when 𝛽 = 1.
Referring to the linear properties of fractional differential
operator, we have

𝐷
V
3

𝛽
Ψ

1
(𝛽)

𝛽=1

=
𝜕
V
3

𝜕𝛽V3
∬

Ω

𝑓 (
�⃗�


V
2

) 𝑑𝑥 𝑑𝑦

𝛽=1

= ∬
Ω

𝜕
V
3

𝜕𝛽V3
𝑓 (

�⃗�


V
2

) 𝑑𝑥 𝑑𝑦

𝛽=1

= 0,

(23)

where it has �⃗�2
= |�⃗�|

2
= [√(�⃗�)

2
]

2

= �⃗�∙�⃗� as for the vector �⃗� =
𝐷

V
1𝑠+(𝛽−1)𝐷

V
1𝜉, and the signal ∙ denotes the inner product.

Unlike the traditional first-order variation, (23) is the V
3
-

order fractional extreme of Ψ
1
(𝛽), which aims to nonlinearly

preserve the complex texture details as much as possible
when denoising by using the special properties of fractional
calculus that it can nonlinearly maintain the low-frequency
contour feature in the smooth area to the furthest degree and
nonlinearly enhance the high-frequency edge information
in those areas where gray level changes frequently and also
nonlinearly enhance the high-frequency texture details in
those areas where gray level does not change obviously [33–
38].

Provided that V is a fractional number, when 𝑛 > V, it has
(
V
𝑛 ) = (−1)

𝑛
Γ(𝑛 − V)/Γ(−V)Γ(𝑛 + 1) ̸= 0. Referring to (11) and

Faà deBruno formula [95], we canderive the rule of fractional
calculus of composite function as

𝐷
V
𝛽−𝑎

𝑓 [𝑔 (𝛽)] =
(𝛽 − 𝑎)

−V

Γ (1 − V)
𝑓

+

∞

∑

𝑛=1

(
V
𝑛
)

(𝛽 − 𝑎)
𝑛−V

Γ (𝑛 − V + 1)
𝑛!

×

𝑛

∑

𝑚=1

𝐷
𝑚

𝑔
𝑓∑

𝑛

∏

𝑘=1

1

𝑃
𝑘
!

[

[

𝐷
𝑘

𝛽−𝑎
𝑔

𝑘!

]

]

𝑃
𝑘

,

(24)

where 𝑔(𝛽) = |�⃗�|
V
2 and 𝑎 is the constant. 𝑛 = 0 is separated

from summation item. From (24), we know that the fractional
derivative of composite function is the summation of infinite
items. Here, 𝑃

𝑘
satisfies

𝑛

∑

𝑘=1

𝑘𝑃
𝑘
= 𝑛,

𝑛

∑

𝑘=1

𝑃
𝑘
= 𝑚. (25)

The third signal ∑ in (25) denotes the summation of
{∏

𝑛

𝑘=1
(1/𝑃

𝑘
!)[𝐷

𝑘

𝛽−𝑎
𝑔/𝑘!]

𝑃
𝑘

}|
𝑚=1→𝑛

of the combination of

𝑃
𝑘
|
𝑚=1→𝑛

that satisfied (25). Recalling (23), (24) and the
property of Gamma function, we can derive

∬
Ω

𝜕
V
3

𝜕𝛽V3
𝑓 (

�⃗�


V
2

) 𝑑𝑥 𝑑𝑦

𝛽=1

= ∬
Ω

𝛽
−V
3𝑓 (

�⃗�


V
2

)

Γ (1 − V
3
)

+

∞

∑

𝑛=1

(
V
3

𝑛
)

𝛽
𝑛−V
3

Γ (𝑛 − V
3
+ 1)

𝑛!

×

𝑛

∑

𝑚=1

𝐷
𝑚

|�⃗� |
V2𝑓∑

𝑛

∏

𝑘=1

1

𝑃
𝑘
!

[

[

𝐷
𝑘

𝛽
(
�⃗�


V
2

)

𝑘!

]

]

𝑃
𝑘

𝑑𝑥 𝑑𝑦

𝛽=1

= ∬
Ω

𝑓 (
𝐷

V
1𝑠


V
2

)

Γ (1 − V
3
)

+

∞

∑

𝑛=1

(−1)
𝑛
Γ (𝑛 − V

3
)

Γ (−V
3
) Γ (𝑛 − V

3
+ 1)

×

𝑛

∑

𝑚=1

𝐷
𝑚

|�⃗� |
V2𝑓

𝛽=1

∑

𝑛

∏

𝑘=1

1

𝑃
𝑘
!

[

[

𝐷
𝑘

𝛽
(
�⃗�


V
2

)
𝛽=1

𝑘!

]

]

𝑃
𝑘

× 𝑑𝑥𝑑𝑦 = 0.

(26)

Without loss of the generality, we consider 𝑓(𝜂) = 𝜂 for
simple calculation; it then has𝐷1

𝜂
𝑓(𝜂) = 1 and𝐷𝑚

𝜂
𝑓(𝜂)

𝑚≥2

= 0;
thus (26) can be reduced as

∬
Ω

𝐷
V
1𝑠


V
2

Γ (1 − V
3
)
+

∞

∑

𝑛=1

(−1)
𝑛
Γ (𝑛 − V

3
)

Γ (−V
3
) Γ (𝑛 − V

3
+ 1)

×

{{

{{

{

𝑛

∏

𝑘=1

1

𝑃
𝑘
!

[

[

𝐷
𝑘

𝛽
(
�⃗�


V
2

)
𝛽=1

𝑘!

]

]

𝑃
𝑘

}}

}}

}𝑚=1

𝑑𝑥 𝑑𝑦 = 0.

(27)

We know from (25), when 𝑚 = 1, 𝑃
𝑘
satisfies 𝑃

𝑛
= 1 and

𝑃
1
= 𝑃

2
= ⋅ ⋅ ⋅ = 𝑃

𝑛−1
= 0; then it can be furtherly reduced as

∬
Ω

𝐷
V
1𝑠


V
2

Γ (1 − V
3
)
+

∞

∑

𝑛=1

(−1)
𝑛
Γ (𝑛 − V

3
)

Γ (−V
3
) Γ (𝑛 − V

3
+ 1)

×

𝐷
𝑛

𝛽
(
�⃗�


V
2

)
𝛽=1

𝑛!
𝑑𝑥 𝑑𝑦 = 0.

(28)

When 𝑛 takes odd number (𝑛 = 2𝑘 + 1, 𝑘 = 0, 1, 2, 3, . . .)
and even number (𝑛 = 2𝑘, 𝑘 = 1, 2, 3, . . .), respectively, the
expressions of𝐷𝑛

𝛽
(|�⃗�|

V
2)|

𝛽=1
are also different:

𝐷
𝑛

𝛽
(
�⃗�


V
2

)


𝑛=2𝑘+1

𝛽=1
=

𝑛

∏

𝜏=1

(V
2
− 𝜏 + 1)

𝐷
V
1𝑠


V
2
−𝑛−1

×
𝐷

V
1𝜉


𝑛−1

(𝐷
V
1𝜉) ∙ (𝐷

V
1𝑠) ,

𝐷
𝑛

𝛽
(
�⃗�


V
2

)


𝑛=2𝑘

𝛽=1
=

𝑛

∏

𝜏=1

(V
2
− 𝜏 + 1)

𝐷
V
1𝑠


V
2
−𝑛𝐷

V
1𝜉


𝑛

.

(29)
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Put (29) into (28), then it becomes

∬
Ω

∞

∑

𝑘=0

∏
2𝑘

𝜏=1
(V

2
− 𝜏 + 1)

𝐷
V
1𝑠


V
2
−2𝑘−2𝐷

V
1𝜉


2𝑘

Γ (−V
3
) (2𝑘)!

(𝐷
V
1𝑠)

∙ 𝐷
V
1 [

Γ (2𝑘 − V
3
)

Γ (2𝑘 − V
3
+ 1)

𝑠 −
(V

2
− 2𝑘) Γ (2𝑘 − V

3
+ 1)

(2𝑘 + 1) Γ (2𝑘 − V
3
+ 2)

𝜉]

× 𝑑𝑥 𝑑𝑦 = 0.

(30)

We consider that ∏𝑛

𝜏=1
(V

2
− 𝜏 + 1)

𝑛=0

= 1. Since the corre-
sponding 𝐷V

1𝜉 is randomly chosen for any two-dimensional
numerical function 𝜉,𝐷V

1[(Γ(2𝑘−V
3
)/Γ(2𝑘−V

3
+1))𝑠 − ((V

2
−

2𝑘)Γ(2𝑘−V
3
+1)/(2𝑘+1)Γ(2𝑘−V

3
+2)𝜉)] is random. Referring

to (20), the corresponding fractional Euler-Lagrange formula
of (30) is

Γ (1 − V
1
)

Γ (−V
1
) Γ (−V

3
)

∞

∑

𝑘=0

∏
2𝑘

𝜏=1
(V

2
− 𝜏 + 1)

(2𝑘)!

× [𝐷
1

𝑥
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑥
𝑠) + 𝐷

1

𝑦
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑦
𝑠)] = 0,

(31)

where it has ∏𝑛

𝜏=1
(V

2
− 𝜏 + 1)

𝑛=0

= 1. It is the corresponding
fractional Euler-Lagrange formula of (23).

As for Ψ
2
(𝛽), it has

𝐷
V
3

𝛽
Ψ

2
(𝛽)

𝛽=1

= 𝐷
V
3

𝛽
(𝐼

1

𝑥
𝐼
1

𝑦
)
Ω
𝜆 [𝑠 + (𝛽 − 1) 𝜉 − 𝑠

0
] 𝑠

0

𝛽=1

= ∬
Ω

𝜆𝑠
0

Γ (1 − V
3
) Γ (2 − V

3
)

× [Γ (2 − V
3
) (𝑠 − 𝑠

0
− 𝜉) + Γ (1 − V

3
) 𝜉] 𝑑𝑥 𝑑𝑦 = 0.

(32)

Since the test function 𝜉 is randomly chosen, Γ(2−V
3
)(𝑠−𝑠

0
−

𝜉) + Γ(1 − V
3
)𝜉 is also random. According to the fundamental

lemma of calculus of variations [83], we know that to make
(32) established, it must have

𝜆𝑠
0

Γ (1 − V
3
) Γ (2 − V

3
)
= 0. (33)

Equations (23) and (32), respectively, are the V
3
-order mini-

mal value ofΨ
1
(𝛽) andΨ

1
(𝛽). Thus, when we take V = V

3
̸= 1,

2, and 3, the V
3
-order minimal value of (22) can be expressed

by

𝜕
V
3𝑠

𝜕𝑡V3
=

−Γ (1 − V
1
)

Γ (−V
1
) Γ (−V

3
)

×

∞

∑

𝑘=0

∏
2𝑘

𝜏=1
(V

2
− 𝜏 + 1)

(2𝑘)!

× [𝐷
1

𝑥
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑥
𝑠)

+𝐷
1

𝑦
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑦
𝑠)]

−
𝜆𝑠

0

Γ (1 − V
3
) Γ (2 − V

3
)
,

(34)

where it has ∏
𝑛

𝜏=1
(V

2
− 𝜏 + 1)

𝑛=0

= 1. 𝜕V3𝑠/𝜕𝑡V3 is cal-
culated by the approach of fractional difference. We must
compute 𝜆(t). If image noise 𝑛(𝑥, 𝑦) is the white noise, it has
∬

Ω
𝑛(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 = ∬

Ω
(𝑠−𝑠

0
)𝑑𝑥 𝑑𝑦 = 0.When 𝜕V3𝑠/𝜕𝑡V3 = 0,

it converges to a stable state.Then, wemerelymultiply (𝑠−𝑠
0
)
2

at both sides of (34) and integrate by parts overΩ and the left
side of (34) vanishes:

𝜆 (𝑡) =
−Γ (1 − V

1
) Γ (1 − V

3
) Γ (2 − V

3
)

𝜎2Γ (−V
1
) Γ (−V

3
) 𝑠

0

×∬
Ω

∞

∑

𝑘=0

∏
2𝑘

𝜏=1
(V

2
− 𝜏 + 1)

(2𝑘)!

× [𝐷
1

𝑥
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑥
𝑠)

+𝐷
1

𝑦
(
𝐷

V
1𝑠


V
2
−2𝑘−2

𝐷
V
1

𝑦
𝑠)]

× (𝑠 − 𝑠
0
)
2

𝑑𝑥 𝑑𝑦.

(35)

Here, we simply note the fractional partial differential
equation-based denoising model as FDM (a fractional devel-
opmental mathematics-based approach for texture image
denoising). When numerical iterating, we need to perform
low-pass filtering to completely remove the faint noise in very
low-frequency and direct current. We know from (34) and
(35) that FDM enhances the nonlinear regulation effects of
order V

2
by continually multiplying function∏2𝑘

𝜏=1
(V

2
−𝜏+1)

and power V
2
− 2𝑘 − 2 of |𝐷V

1𝑠| and enhance the nonlinear
regulation effects of order V

3
by increasing Γ(−V

3
) in the

denominator. Also, we know from (34) that FDM is the tradi-
tional potential equation or elliptic equation when V

3
= 0, the

traditional heat conduction equation or parabolic equation
when V

3
= 1, and the traditional wave equation or hyperbolic

equation when V
3
= 2. FDM is the continuous interpolation

of traditional potential equation and heat conduction equa-
tion when 0 < V

3
< 1 and the continuous interpolation

of traditional heat conduction equation and wave equation
when 1 < V

3
< 2. FDM has pushed the traditional integer-

order partial differential equation-based image processing
approach from the anisotropic diffusion of integer-order heat
conduction equation to that of fractional partial differential
equation in the mathematical and physical sense.

4. Experiments and Theoretical Analyzing

4.1. Numerical Implementation of the Fractional Partial
Differential Equation-Based Denoising Model for Texture
Image. We know from (34) and (35) that we should obtain
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Figure 3: Fractional differential masks𝐷V, respectively, on the eight directions. (a) Fractional differential operator on 𝑥-coordinate negative
direction, noted as 𝐷V

𝑥−
. (b) Fractional differential operator on 𝑦-coordinate negative direction, noted as 𝐷V

𝑦−
. (c) Fractional differential

operator on 𝑥-coordinate positive direction, noted as 𝐷V
𝑥+
. (d) Fractional differential operator on 𝑦-coordinate positive direction, noted

as 𝐷V
𝑦+
. (e) Fractional differential operator on left downward diagonal, noted as 𝐷V

ldd. (f) Fractional differential operator on right upward
diagonal, noted as 𝐷V

rud. (g) Fractional differential operator on left upward diagonal, noted as 𝐷V
lud. (h) Fractional differential operator on

right downward diagonal, noted as𝐷V
rdd.

the fractional differential operator of two-dimensional dig-
ital image before implementing FDM. As for Grümwald-
Letnikov definition of fractional calculus in (1), itmay remove
the limit symbol when𝑁 is large enough; we then introduce
the signal value at nonnode to the definition improving the
convergence rate and accuracy, that is, (𝑑V/𝑑𝑥V)𝑠(𝑥)|

𝐺-𝐿 ≅

(𝑥
−V
𝑁

V
/Γ(−V)) ∑𝑁−1

𝑘=0
(Γ(𝑘 − V)/Γ(𝑘 + 1))𝑠(𝑥 + (V𝑥/2𝑁) −

(𝑘𝑥/𝑁)). Using Lagrange 3-point interpolation equation
to perform fractional interpolation when V ̸= 1, we can
obtain the fractional differential operators of YiFeiPU-2,
respectively, on the eight symmetric directions [35, 38], which
is shown in Figure 3.

In Figure 3, 𝐶
𝑠
−1

is the coefficient of operator 𝑠
−1
= 𝑠(𝑥 +

𝑥/𝑁) at noncausal pixel, and 𝐶
𝑠
0

is the coefficient of operator
at pixel of interest 𝑠

0
= 𝑠(𝑥). 𝑛 is often taken odd number.

When 𝑘 → 𝑛 = 2𝑚 − 1, we can implement fractional
differential operator of (2𝑚+1)×(2𝑚+1), whose coefficients
of the operator, respectively, are𝐶

𝑠
−1

= (V/4)+(V2/8),𝐶
𝑠
0

=

1 − (V2/2) − (V3/8), 𝐶
𝑠
1

= −(5V/4) + (5V3/16) + (V4/16), . . .,
𝐶

𝑠
𝑘

= (1/Γ(−V))[(Γ(𝑘−V+1)/(𝑘+1)!)⋅ ((V/4)+(V2/8))+(Γ(𝑘−
V)/𝑘!)⋅(1−(V2/4))+(Γ(𝑘−V−1)/(𝑘−1)!)⋅(−(V/4)+(V2/8))], . . .,
𝐶

𝑠
𝑛−2

= (1/Γ(−V))[(Γ(𝑛 − V − 1)/(𝑛 − 1)!) ⋅ ((V/4) + (V2/8)) +
(Γ(𝑛 − V − 2)/(𝑛 − 2)!) ⋅ (1 − (V2/4)) + (Γ(𝑛 − V − 3)/(𝑛 − 3)!) ⋅
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(−(V/4) + (V2/8))], 𝐶
𝑠
𝑛−1

= (Γ(𝑛 − V − 1)/(𝑛 − 1)!Γ(−V)) ⋅

(1 − (V2/4)) + (Γ(𝑛 − V − 2)/(𝑛 − 2)!Γ(−V)) ⋅ (−(V/4) + (V2/8)),
and 𝐶

𝑠
𝑛

= (Γ(𝑛 − V − 1)/(𝑛 − 1)!Γ(−V)) ⋅ (−(V/4) + (V2/8))
[35, 38]. Spatial filtering of convolution operator is adopted
as the numerical algorithm of fractional differential operator.
We take the maximum value of fractional partial differential
on the above 8 directions as the pixel’s fractional calculus. As
for fractional differential operator 𝐷V

= 𝑖
1
𝐷

V
𝑥−

+ 𝑖
2
𝐷

V
𝑦−

+

𝑖
3
𝐷

V
𝑥+

+ 𝑖
4
𝐷

V
𝑦+

+ 𝑖
5
𝐷

V
ldd + 𝑖

6
𝐷

V
rud + 𝑖

7
𝐷

V
lud + 𝑖

8
𝐷

V
rdd in (34)

and (35), when V ̸= 1 𝐷
V
𝑥−
, 𝐷V

𝑦−
, 𝐷V

𝑥+
, 𝐷V

𝑦+
, 𝐷V

ldd, 𝐷
V
rud, 𝐷

V
lud,

𝐷
V
rdd can perform numerical computing referring to Figure 3

and their concerning coefficients [35, 38], and when V =

1, we take a special difference as the approximate of first-
order differential to maintain calculation stability, that is,
𝐷

1

𝑥
𝑠(𝑥, 𝑦) = (2[𝑠(𝑥 + 1, 𝑦) − 𝑠(𝑥 − 1, 𝑦)] + 𝑠(𝑥 + 1, 𝑦 +

1) − 𝑠(𝑥 − 1, 𝑦 + 1) + 𝑠(𝑥 + 1, 𝑦 − 1) − 𝑠(𝑥 − 1, 𝑦 − 1))/4,
𝐷

1

𝑦
𝑠(𝑥, 𝑦) = (2[𝑠(𝑥, 𝑦 + 1) − 𝑠(𝑥, 𝑦 − 1)] + 𝑠(𝑥 + 1, 𝑦 + 1) −

𝑠(𝑥 + 1, 𝑦 − 1) + 𝑠(𝑥 − 1, 𝑦 + 1) − 𝑠(𝑥 − 1, 𝑦 − 1))/4.
If time equal interval is Δ𝑡, time 𝑛 is noted as 𝑡

𝑛
= 𝑛Δ𝑡

when 𝑛 = 0, 1, . . .. 𝑡
0
= 0 represents the initial time. The

digital image at time 𝑛 is 𝑠𝑛
𝑥,𝑦

= 𝑠(𝑥, 𝑦, 𝑡
𝑛
). Thus, we have

𝑠
0

𝑥,𝑦
= 𝑠

0
(𝑥, 𝑦, 𝑡

0
) + 𝑛(𝑥, 𝑦, 𝑡

0
), where 𝑠

0

𝑥,𝑦
is the original

image and 𝑠
0
is the desired clean image that is a constant,

that is, 𝑠
0
(𝑥, 𝑦, 𝑡

0
) = 𝑠

0
(𝑥, 𝑦, 𝑡

𝑛
). We can derive the numerical

implementation of fractional calculus about time from (1) as

𝜕
V
𝑠

𝜕𝑡V
= Δ𝑡

−V
[𝑠

𝑛+1

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
+

2𝜇𝜂

Γ (3 − V)
(𝑠

𝑛

𝑥,𝑦
− 𝑠

V∗
𝑥,𝑦
)
2

(𝑠
𝑛

𝑥,𝑦
)
−V
] ,

when V ̸= 1,

(36)

where 𝜇 and 𝜂 are the factors for ensuring iterative conver-
gence. Also, the desired clean image 𝑠

0
(𝑥, 𝑦, 𝑡

0
) is unknown,

but the intermediate denoising results is an approximate to
the desired clean image, that is, 𝑠𝑛

𝑥,𝑦
→ 𝑠

0
(𝑥, 𝑦, 𝑡

0
) =

𝑠
0
(𝑥, 𝑦, 𝑡

𝑛
). We consider that (𝑠 − 𝑠

0
)
𝑥,𝑦

≅ 𝑠
0

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
for

making 𝑠 close to 𝑠
0
as much as possible. We should compute

the fractional calculus on the 8 directions simultaneously in
practice in order to improve the calculation accuracy and
antirotation capability.

The best image 𝑠
V∗
𝑥,𝑦

in (36) is unknown in numerical
iteration, but the intermediate result 𝑠𝑛

𝑥,𝑦
is an approximate

to 𝑠
V∗
𝑥,𝑦

, that is, 𝑠𝑛
𝑥,𝑦

→ 𝑠
V∗
𝑥,𝑦

. We consider that (𝑠𝑛
𝑥,𝑦

−

𝑠
V∗
𝑥,𝑦
)
2
≅ (𝑠

𝑛−1

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
)
2 to make the iterative result approximate

(𝑠
𝑛

𝑥,𝑦
− 𝑠

V∗
𝑥,𝑦
)
2 as much as possible. Take 𝜂 = 1 in (36) and

𝑘 = 0, 1 in (34) and (35), then we can derive the numerical
implementation of (34) and (35) as

𝑠
𝑛+1

𝑥,𝑦
= 𝑃 (𝑠

𝑛

𝑥,𝑦
) Δ𝑡

V
3 −

𝜆
𝑛
Δ𝑡

V
3

Γ (1 − V
3
) Γ (2 − V

3
)
𝑠
𝑛

𝑥,𝑦

+ 𝑠
𝑛

𝑥,𝑦
−

2𝜇

Γ (3 − V
3
)
(𝑠

𝑛−1

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
)
2

(𝑠
𝑛

𝑥,𝑦
)
−V
3

,

when V
3
̸= 1, 2 and 3,

(37)

𝜆
𝑛
=
Γ (1 − V

3
) Γ (2 − V

3
)

𝜎𝑛
2

𝑠𝑛
𝑥,𝑦

∑

𝑥,𝑦

𝑃 (𝑠
𝑛

𝑥,𝑦
) (𝑠

0

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
)
2

, (38)

where ∏𝑛

𝜏=1
(V

2
− 𝜏 + 1)

𝑛=0

= 1, 𝜎𝑛
2

= ∑
𝑥,𝑦

(𝑠
0

𝑥,𝑦
− 𝑠

𝑛

𝑥,𝑦
)
2,

𝑃(𝑠
𝑛

𝑥,𝑦
) = (−Γ(1 − V

1
)/Γ(−V

1
)Γ(−V

3
)) ∑

1

𝑘=0
(∏

2𝑘

𝜏=1
(V

2
−

𝜏+1)/(2𝑘)!)[𝐷1

𝑥
(|𝐷

V
1𝑠

𝑛

𝑥,𝑦
|
V
2
−2𝑘−2

𝐷
V
1

𝑥
𝑠
𝑛

𝑥,𝑦
)+𝐷

1

𝑦
(|𝐷

V
1𝑠

𝑛

𝑥,𝑦
|
V
2
−2𝑘−2

⋅𝐷
V
1

𝑦
𝑠
𝑛

𝑥,𝑦
)].

We should pay attention to the following when perform-
ing numerical iterative implementation. First, 𝜇 is a small
number in (37) to ensure convergence, and here we take
𝜇 = 0.005. Second, we do not need to know or estimate
the variance of noise, but we need to assume 𝜎12 to be a
small positive number in the first iteration. We therefore
assume that 𝜎12

= 0.01 in the experiment below. We take
𝜎

12 to (38) and perform numerical iteration. Each iterative
result 𝜎𝑛

2

may be different, but it is the approximate to the
variance of noise. Third, it is possible that |𝐷V

1𝑠
𝑛

𝑥,𝑦
| = 0 in

numerical iterative calculation, so we take |𝐷V
1𝑠

𝑛

𝑥,𝑦
| = 0.0689

when |𝐷
V
1𝑠

𝑛

𝑥,𝑦
| ≤ 0.0689 to ensure that (37) and (38) are

meaningful. Fourth, we take 𝑠𝑛
𝑥,𝑦

= 0.00001 when 𝑠
𝑛

𝑥,𝑦
= 0

to make (𝑠𝑛
𝑥,𝑦
)
−V
3 have meaning. Fifth, to completely denoise

faint noise in very low-frequency and direct current, FDM
takes the simple way by reducing the convex in the area
where gradient is not changed obviously.We therefore need to
perform low-pass filtering for very low-frequency and direct
current in numerical iterating. The practices of (37) and (38)
are as follows. For one-dimensional signal, we consider that
𝑠
𝑛+1

𝑥
= (𝑠

𝑛+1

𝑥−1
+2𝑠

𝑛+1

𝑥
+𝑠

𝑛+1

𝑥+1
)/4when |𝐷V

1𝑠
𝑛

𝑥
| ≺ 𝛼

𝐴
and𝛼

𝑁𝐴
≺ 𝛼

𝐴

and if the noise is not severe in order to ensuring denoising
effect, and in the rest conditions we consider that 𝑠𝑛+1

𝑥
=

𝑠
𝑛+1

𝑥
, where 𝛼

𝐴
= (1/𝑁

𝑥
) ∑

𝑁
𝑥

𝑥
|𝐷

V
1𝑠

𝑛

𝑥
|, 𝛼

𝑁𝐴
= (|𝐷

V
1𝑠

𝑛

𝑥−1
| +

2|𝐷
V
1𝑠

𝑛

𝑥
| + |𝐷

V
1𝑠

𝑛

𝑥+1
|)/4, and if the noise is very strong, we

consider that 𝑠𝑛+1

𝑥
= (𝑠

𝑛+1

𝑥−1
+ 2𝑠

𝑛+1

𝑥
+ 𝑠

𝑛+1

𝑥+1
)/4 to accelerate

the denoising speed. For two-dimensional signal, we consider
𝑠
𝑛+1

𝑥,𝑦
= (

𝑥
𝑠
𝑛+1

𝑥,𝑦
+

𝑦
𝑠
𝑛+1

𝑥,𝑦
+

𝑟
𝑠
𝑛+1

𝑥,𝑦
+

𝑙
𝑠
𝑛+1

𝑥,𝑦
)/4. When 𝛼

𝑥

𝑁𝐴
=

min(𝛼𝑥

𝑁𝐴
, 𝛼

𝑦

𝑁𝐴
, 𝛼

𝑟

𝑁𝐴
, 𝛼

𝑙

𝑁𝐴
), they are 𝑥

𝑠
𝑛+1

𝑥,𝑦
= (𝑠

𝑛+1

𝑥−1,𝑦
+ 2𝑠

𝑛+1

𝑥,𝑦
+

𝑠
𝑛+1

𝑥+1,𝑦
)/4 and 𝑦

𝑠
𝑛+1

𝑥,𝑦
=

𝑟
𝑠
𝑛+1

𝑥,𝑦
=

𝑙
𝑠
𝑛+1

𝑥,𝑦
= 𝑠

𝑛+1

𝑥,𝑦
, when 𝛼𝑦

𝑁𝐴
=

min(𝛼𝑥

𝑁𝐴
, 𝛼

𝑦

𝑁𝐴
, 𝛼

𝑟

𝑁𝐴
, 𝛼

𝑙

𝑁𝐴
) they are 𝑦

𝑠
𝑛+1

𝑥,𝑦
= (𝑠

𝑛+1

𝑥,𝑦−1
+ 2𝑠

𝑛+1

𝑥,𝑦
+

𝑠
𝑛+1

𝑥,𝑦+1
)/4 and 𝑥

𝑠
𝑛+1

𝑥,𝑦
=

𝑟
𝑠
𝑛+1

𝑥,𝑦
=

𝑙
𝑠
𝑛+1

𝑥,𝑦
= 𝑠

𝑛+1

𝑥,𝑦
, when 𝛼𝑟

𝑁𝐴
=

min(𝛼𝑥

𝑁𝐴
, 𝛼

𝑦

𝑁𝐴
, 𝛼

𝑟

𝑁𝐴
, 𝛼

𝑙

𝑁𝐴
) they are 𝑟

𝑠
𝑛+1

𝑥,𝑦
= (𝑠

𝑛+1

𝑥−1,𝑦+1
+ 2𝑠

𝑛+1

𝑥,𝑦
+

𝑠
𝑛+1

𝑥+1,𝑦−1
)/4 and 𝑥

𝑠
𝑛+1

𝑥,𝑦
=

𝑦
𝑠
𝑛+1

𝑥,𝑦
=

𝑙
𝑠
𝑛+1

𝑥,𝑦
= 𝑠

𝑛+1

𝑥,𝑦
, and in the

rest occasions, it has 𝑥
𝑠
𝑛+1

𝑥,𝑦
=

𝑦
𝑠
𝑛+1

𝑥,𝑦
=

𝑟
𝑠
𝑛+1

𝑥,𝑦
=

𝑙
𝑠
𝑛+1

𝑥,𝑦
=

𝑠
𝑛+1

𝑥,𝑦
, where 𝛼𝑥

𝑁𝐴
= (|𝐷

V
1𝑠

𝑛

𝑥−1,𝑦
| + 2|𝐷

V
1𝑠

𝑛

𝑥,𝑦
| + |𝐷

V
1𝑠

𝑛

𝑥+1,𝑦
|)/4,

𝛼
𝑦

𝑁𝐴
= (|𝐷

V
1𝑠

𝑛

𝑥,𝑦−1
| + 2|𝐷

V
1𝑠

𝑛

𝑥,𝑦
| + |𝐷

V
1𝑠

𝑛

𝑥,𝑦+1
|)/4, and

𝛼
𝑟

𝑁𝐴
= (|𝐷

V
1𝑠

𝑛

𝑥−1,𝑦+1
| + 2|𝐷

V
1𝑠

𝑛

𝑥,𝑦
| + |𝐷

V
1𝑠

𝑛

𝑥+1,𝑦−1
|)/4, 𝛼𝑙

𝑁𝐴
=

(|𝐷
V
1𝑠

𝑛

𝑥−1,𝑦−1
| + 2|𝐷

V
1𝑠

𝑛

𝑥,𝑦
| + |𝐷

V
1𝑠

𝑛

𝑥+1,𝑦+1
|)/4. Here, 𝑥 denotes

𝑥-coordinate direction, 𝑦 denotes 𝑦-coordinate direction, 𝑟
denotes right diagonal direction, and 𝑙 denotes left diagonal
direction. Sixth, we expand the edge of the image for better
denoising edge pixels. Seventh, since we perform low-pass
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Figure 4: Denoising for integrated one-dimensional signal comprising rectangle wave, sine wave, and sawtooth wave. (a) Original clean
signal and noisy signal (adds white Gaussian noise to the original clean signal, peak signal-to-noise ratio (PSNR) = 25.2486), (b) Gaussian
denoising, (c) fourth-order TV denoising [71–73], (d) bilateral filtering denoising [86–88], (e) contourlet denoising [89, 90], (f) wavelet
denoising [88, 91], (g) nonlocal means noise filtering (NLMF) denoising [92, 93], (h) fractional-order anisotropic diffusion denoising [82],
and (i) FDM denoising (V

1
= 1.025, V

2
= 2.25, V

3
= 1.05, Δ𝑡 = 0.0296).

filtering in (37) and (38), in order to remove the possible
divergence point in numerical iteration, we consider that
𝑠
𝑛+1

𝑥
= 𝑠

𝑛

𝑥
when |𝑠𝑛+1

𝑥
| ≻ 6|𝑠

𝑛

𝑥
| for one-dimensional signal, and

we consider that 𝑠𝑛+1

𝑥,𝑦
= 𝑠

𝑛

𝑥,𝑦
when |𝑠

𝑛+1

𝑥,𝑦
| ≻ 6|𝑠

𝑛

𝑥,𝑦
| for two-

dimensional signal.

4.2. Denoising Capabilities Analysis of the Fractional Par-
tial Differential Equation-Based Denoising Model for Texture
Image. To analyze and explain the denoising capabilities
of fractional partial differential equation-based denoising
model for texture image, we perform the comparative experi-
ments using the composite one-dimensional signal combined
by the rectangle wave, the sine wave and the sawtooth wave.
The numerical iteration will stop at the point where the

peak signal-to-noise ratio (PSNR) is the highest, as shown in
Figure 4.

From subjective visual effect we know the following from
Figure 4. First, the denoising effect of Gaussian denoising
and fourth-order TV denoising is comparatively worse than
others, and the high-frequency singularity component has
been greatly diffused and smoothed.We can see from Figures
4(b) and 4(c) that the convexes of high-frequency edge of
rectangle wave and sawtooth wave are remarkably smoothed
and their energy of high-frequency singularity is obviously
diffused in neighboring. Second, the denoising capability
of fractional-order anisotropic diffusion denoising is in the
middle; that is, the capability of maintaining high-frequency
singularity is better than that of Gaussian denoising, fourth-
order TV denoising, and contourlet denoising but less than
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bilateral filtering denoising, wavelet and NLMF denoising.
Also, the denoising is not completed. We can see from
Figure 4(h) that the convexes of high-frequency edge of the
rectangle wave and the sawtooth wave are weakly smoothed,
and their energy is weakly diffused in neighboring. Also, the
denoised signal has tiny burr.Third, the denoising capabilities
of bilateral filtering denoising, contourlet denoising, wavelet
denoising, and NLMF denoising are better, which can well
maintain the high-frequency singularity but the denoising
is still uncomplete. We can see from Figures 4(d)–4(g) that
the convexes of high-frequency edge of rectangle wave and
sawtooth wave are well retained, but the denoised signal still
has many small burrs. Finally, the denoising capability of
FDM is the best, which is not only well maintains the high-
frequency edge of rectangle wave and sawtooth wave but also
denoises completely. We can see from Figure 4(i) that the
high-frequency edge singularity of rectangle and sawtooth
wave is well maintained and little burr is left.

From the viewpoint of quantitative analysis, we take
PSNR and correlation coefficients between noisy signal or
denoised signal and original clean signal to measure the
denoising effect of the above algorithms, as shown in Table 1.

We know from Table 1 as follows. First, PSNR of Gaus-
sian denoising, fourth-order TV denoising, and contourlet
denoising are relatively small among the above approaches
with 26.9611 ≤ PSNR ≤ 28.2945 and their correlation coeffi-
cients are also small with 0.9953 ≤ correlation coefficients ≤
0.9959, which indicates that their denoising capability is
worse and the similarity between denoised signal and original
clean signal is also low. Second, PSNR of fractional-order
anisotropic diffusion denoising is in the middle with PSNR =

29.8692, and its correlation coefficients are in the middle
with correlation coefficients = 0.9975, which shows that
its denoising capability and the similarity between denoised
signal and original clean signal is also in the middle. Third,
PSNR of bilateral filtering denoising, wavelet denoising,
NLMF denoising, and FDM denoising is relatively big with
33.3088 ≤ PSNR ≤ 39.0434, and its correlation coefficients
are also big with 0.9975 ≤ correlation coefficients ≤ 0.9996,
which shows that their denoising capabilities are better and
the similarity between denoised signal and original clean
signal is also high. PSNR and correlation coefficients of FDM
denoising is the highest, which shows that its denoising
capability is the best and the similarity between denoised
signal and original clean signal is also the highest.

From the subjective visual of Figure 4 and quanli-
tative analysis of Table 1, we know the following. First,
FDM has the best denoising capability no matter in high-
frequency, middle-frequency, and low-frequency compo-
nents, the denoised signal fits for the edge of high-frequency
and the outline of middle-frequency component, and also
the noise in low-frequency component is removed clearly
and little blur is left. Second, the high-frequency edge
singularity of rectangle signal and sawtooth wave signal
in Figure 4 has strong high-frequency component which
corresponds to high-frequency edge and texture details of
two-dimensional signal, while the high-frequency singularity
is small and the middle-frequency components are big in the
slope of sine wave and sawtooth signal which corresponds to

Table 1: Denoising effect for composite one-dimensional signal that
combined rectangle wave, sine wave, and sawtooth wave.

Denoising algorithm Denoising effect
PSNR correlation Coefficients

Noisy signal 25.2486 0.9951
Gaussian denoising 26.9611 0.9953
Fourth-order TV denoising 28.2589 0.9959
Bilateral filtering denoising 35.0247 0.9990
Contourlet denoising 28.2945 0.9959
Wavelet denoising 32.1565 0.9975
NLMF denoising 33.3088 0.9976
Fractional-order anisotropic
Diffusion denoising 29.8692 0.9975

FDM denoising 39.0434 0.9996

middle-frequency of two-dimensional signal. The constant
direct current of regulation signal corresponds to low-
frequency and direct current components and backgrounds.

To analyze and explain the good denoising capability
of FDM, we choose the better models, including bilateral
filtering denoising, wavelet denoising, NLMF denoising,
and FDM denoising to perform the contrast experiments
for texture-rich metallographic images of an iron ball. The
numerical iterative process will stop at the point where the
PSNR is the highest, as shown in Figure 5.

From a subjective view of the visual effect, we know the
following from Figure 5. First, the denoising capabilities of
bilateral filtering and wavelet denoising are worse than the
other methods, because they obviously diffuse and smooth
the high-frequency edge and texture details. We can see that
the edge and texture details are clear from Figures 5(e) and
5(h); that is, the denoised noise by bilateral filtering and
wavelet denoising may not be the same as the added noise.
And we can see from Figures 5(f) and 5(i) that the denoised
image is blurry.The denoising is not completed in Figure 5(i),
which shows that their capabilities for preserving edge and
texture details areworse. Second, the capability for preserving
edge and texture details of NLMF denoising is better, but
its denoising capability for edge and texture neighboring is
worse. From Figure 5(k), we know that though the edge and
texture details of denoised image are weaker than those in
Figures 5(e) and 5(h), but they still can be seen, the denoised
noise by NLMF denoising is close to the added noise. In
Figure 5(l), the edge and texture details are small blurred,
that is, NLMF denoising can well preserve the edge and
texture details. Also, the neighboring of edge and texture
details is smooth in Figure 5(k), while the residual noise
in the edge and texture neighboring is stronger than other
parts in Figure 5(l), that is, the denoising capability of NLMF
denoising is worse at the edge and texture neighboring.Third,
the denoising capabilities of FDM denoising are the best,
which preserve the high-frequency edge and texture details
well and also denoise comparatively completed. We can see
indistinctly the edge and texture detail from Figures 5(n) and
5(q), which shows that the denoised noise by FDM denoising
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Figure 5: Denoising effects of texture-rich metallographic image of iron ball. (a) Original clean image, (b) noisy image (adds white Gaussian
noise to the original clean image, PSNR = 13.6872), (c) partial enlarged details of 1/4 party of (a) red box, (d) denoised image of bilateral
filtering denoising [88, 89, 93], (e) residual plot of bilateral filtering denoising, (f) partial enlarged details of 1/4 party of (d) red box, (g)
denoised image of wavelet denoising [92, 93], (h) residual plot of wavelet denoising, (i) partial enlarged details of 1/4 party of (g) red box,
(j) denoised image of NLMF denoising [94, 95], (k) residual plot of NLMF denoising, (l) partial enlarged details of 1/4 party of (j) red box,
(m) denoised image of FDM denoising (V
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= 2.25, V
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= 1.05, Δ𝑡 = 10

−10), (n) residual plot of FDM denoising, (o) partial enlarged
details of 1/4 party of (m) red box, (p) denoised Image of FDM denoising (V

1
= 2.25, V

2
= 2.5, V

3
= 1.25, Δ𝑡 = 10

−10), (q) residual plot of
FDM denoising, (r) partial enlarged details of 1/4 party of (p) red box.

Table 2: Comprehensive denoising effects results for texture-rich metallographic images of an iron ball.

Denoising algorithm Denoising effect
PSNR Correlation coefficients Contrast Correlation Energy Homogeneity

Noisy image 13.6872 0.9991 5.9118 0.2491 0.0197 0.4580
Bilateral filtering denoising 20.4845 0.9995 1.1200 0.8038 0.0787 0.7092
Wavelet denoising 16.5708 0.9994 2.1387 0.3910 0.0473 0.5833
NLMF denoising 21.0494 0.9996 1.2524 0.7150 0.0728 0.6822
FDM denoising 21.4826 0.9996 1.4365 0.6876 0.0688 0.6646
FDM denoising 21.5482 0.9997 1.4371 0.6646 0.0688 0.6608

is the most close to the added noise; the edge and texture
details are the smallest blurred and the noise is the clearest
removed in Figures 5(o) and 5(r), that is, the capabilities for
preserving the edge and texture details of FDM are the best.

From the viewpoint of quantitative analysis, we take the
PSNR, the correlation coefficients between the noisy image
or the denoised image and the original clean image [94], and
the average gray level concurrencematrix to comprehensively
estimate the denoised effect. We calculate the gray level
concurrence matrix coefficient in 5 pixel distance in Figure 5
and export the typical coefficients: contrast, correlation,
energy, and homogeneity taking four directions of 0∘, 45∘, 90∘,
and 135

∘. Here, 0∘ represents the projection in the positive

𝑦-coordinate direction, and 90∘ represents the projection in
the 𝑥-coordinate direction.We then average the above values,
as seen in Table 2.

We know the denoising capabilities of the above algo-
rithms are as follows from Table 2. First, the denoising
capabilities of bilateral filtering and wavelet denoising are
worse than the other methods and their PSNR values and
correlation coefficients are relatively small. This shows that
the high-frequency edge and texture details are greatly
diffused and smoothed and the noise is not completely
removed.The similarity between denoised image and original
clean image is small. Also, the contrast of average gray level
concurrence matrix for bilateral filtering denoising is small,



14 Abstract and Applied Analysis

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Denoising effects of abdomen MRI of texture-rich internal organ, when Gaussian noise is very strong. (a) Original clean MRI,
(b) noisy image (adds white Gaussian noise to the original clean MRI, PSNR = 5.4389), (c) denoised image of bilateral filtering denoising
[88, 89, 93], (d) partial enlarged details of 1/4 party of (c) red box, (e) denoised image of wavelet denoising [88, 91], (f) partial enlarged details
of 1/4 party of (e) red box, (g) denoised image of NLMF denoising [94, 95], (h) partial enlarged details, 1/4 party of (g) red box, (i) denoised
image of FDM denoising (V
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−6), (j) partial enlarged details of 1/4 party of (i) red box, (k) denoised
image of FDM denoising (V

1
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2
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3
= 1.25, Δ𝑡 = 5 × 10−6), and (l) partial enlarged details of 1/4 party of (k) red box.

which shows that fewer pixels have great contrast and that
the texture depth is light and seems fuzzy.The contrast of the
average gray level concurrence matrix of wavelet denoising
is the largest. This shows that there are more pixels with
great contrast, but we cannot say that the texture depth is
deeper and the visual effects are clearer because the denoising
is incomplete. Second, the denoising capabilities of NLMF
and FDM denoising are better. Their PSNR and correlation
coefficients are comparatively higher, which indicates that
the high-frequency edge and texture details of the denoised
image arewell preserved, that the denoising is completed, and
that the similarity between the denoised image and original
clean image is also great. PSNR and correlation coefficients
of FDM denoising are the highest, that is, the denoising
is most completed and the similarity is also the greatest.
The contrast of the average gray level concurrence matrix
of FDM denoising is the highest. This shows that there are
more pixels with great contrast, that the texture depth is the
deepest, and that the image looks clearer. The correlation
is small, which shows that the partial gray correlation is
weak and that the texture details are obvious. The energy is
rather smaller, which shows that the texture changing is not

uniform and regular, and thus the texture details are obvious.
The homogeneity is also small, which indicates the regional
changing is dramatic and that the texture details are obvious.
Therefore, we can conclude that FDM denoising is the best
denoising algorithm.

To consider a scenario where the Gaussian noise is very
strong, and especially when the original clean signal is com-
pletely drowned in noises, we perform comparison experi-
ments using the well-performed algorithms discussed above,
including bilateral filtering denoising, wavelet denoising,
NLMF denoising, and FDM denoising for further analysis
of the denoising capability of FMD for robust noise. The
numerical iterative process will also stop at the point where
peak signal-to-noise ratio is the highest, as seen in Figure 6.

From the viewpoint of visual effects, we know the follow-
ing from Figure 6, when noise is very strong, especially when
MRI is drawn completely. First, the denoising capabilities of
bilateral filtering and wavelet denoising are worse than the
other methods. We can see indistinctly that the contour and
the texture details of inner organ can hardly be recognized
from Figures 6(c)–6(f). Second, the denoising capability of
NLMF is better because we see that the contour is clearer, but
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Table 3: Denoising effects of abdomen MRI of texture-rich internal organ, when Gaussian noise is very strong.

Denoising algorithm Denoising Effect
PSNR Correlation coefficients Contrast Correlation Energy Homogeneity

Noisy Image 5.4389 0.9857 21.2697 0.0013 0.0844 0.4811
Bilateral filtering Denoising 11.4039 0.9894 1.1790 0.1796 0.1113 0.6562
Wavelet denoising 9.9246 0.9892 1.8443 0.0175 0.0806 0.5941
NLMF denoising 12.5855 0.9921 1.1795 0.1247 0.1083 0.6406
FDM denoising 17.4317 0.9975 1.1847 0.0836 0.0913 0.5737
FDM denoising 17.4572 0.9976 1.1853 0.0830 0.0893 0.5715

the edge and texture details are still blurry as in Figures 6(g)
and 6(h). Finally, the denoising capabilities of FDMdenoising
are the best because we can see from Figures 6(i)–6(l) that
the contour is clearest and the edge and texture details can be
recognized also.

For quantitative analysis, we measure the denoising
effects in terms of the PSNR, the correlation coefficients
between the noisy image or the denoised image and the orig-
inal clean MRI [94], and the average gray level concurrence
matrix, as seen in Table 3.

From Table 3, we know that the denoising capabilities of
the above algorithms are as follows, when noise is very strong,
especially when MRI is completely drowned by the noise.
First, the denoising capabilities of bilateral filtering denoising
and wavelet denoising are rather poor, and their PSNR
and correlation coefficients are relatively small. This shows
that the noise cannot be clearly denoised and the similarity
between the denoised image and the original clean MRI is
small. Also, the contrast of average gray level concurrence
matrix of wavelet algorithm is the greatest, which indicates
greater pixels with greater contrast but we cannot say that
the texture depth is deeper and that the visual effects are
clearer because the denoising is incomplete. Second, the
denoising capabilities of NLMF denoising and FDM denois-
ing are better and their PSNR and correlation coefficients are
comparatively higher, which shows that the noise is denoised
completely and the similarity between denoised image and
original clean MRI is great. The PSNR and the correlation
coefficients of FDM denoising is the highest and its contrast
of average gray level concurrence matrix is the greatest. Also,
its correlation, energy, and homogeneity are smaller. We
therefore can conclude that FDM denoising is the best model
of the above models.

When the noise is very strong and especially when
original clean signal is completely drowned in noises, we take
a texture-richmeteorite crater remote sensing image ofmoon
satellite to perform further comparison experiments using
the above well-performed algorithms, including bilateral
filtering denoising, wavelet denoising, NLMF denoising, and
FDM denosing to test the denoising capability of FDM
for robust noise. The added noise is the composite noise
combined bywhiteGaussian noise, salt and pepper noise, and
speckle noise. Also, the numerical iterative process will stop
at the point where peak signal-to-noise ratio is the highest, as
shown in Figure 7.

From view of visual effects, we know from Figure 7
the following; when the composite noise is added by white

Gaussian noise, salt and pepper noise, and speckle together,
especially when texture-rich meteorite crater remote sensing
image of moon satellite is completely drown in noises. First,
the denoising capabilities of bilateral filtering andwavelet and
NLMF denoising are comparatively worse. We can see from
Figures 7(c)–7(h) that the contour may be seen indistinctly
and the edge and texture details can hardly be recognized.
Second, the denoising capability of FDMdenoising is the best.
We can see from Figures 7(i)–7(l) that the contour is not only
the clearest and also the edge and texture details can be clearly
recognized.

For quantitative analysis, we measure the denoising
effects in terms of the PSNR, correlation coefficients between
noisy image or denoised image and original clean remote
sensing image [94], and average gray level concurrence
matrix, as seen in Table 4.

We know denoising capabilities of the above algorithms
from Table 4 are as follows, when composite noise added
by white Gaussian noise, salt and pepper noise, and speckle
noise, especially when the original image is completely
drowned in noises. First, the denoising capabilities of bilateral
filtering, wavelet, and NLMF denoising are poor, and their
PSNR and correlation coefficients are relatively small. This
shows that the added noise cannot be denoised completely
and the similarities between denoised image and original
clean MRI are small. Also, the contrasts of average gray level
concurrence matrices of NLMF algorithm are the greatest,
which indicates that there are more pixels with great contrast,
but we cannot say that the texture depth is deeper and the
visual effect is clearer because the denoising is uncompleted.
Second, the denoising capability of FDMdenoising is the best.
Its PSNR and correlation coefficients are comparatively high,
which shows that the noise is completely denoised and the
similarity between denoised image and original clean MRI is
the greatest. Also, the PSNR and the correlation coefficients of
FDM denoising are the highest. The contrast of average gray
level concurrence matrix of FDM denoising is high, while its
correlation, energy, and homogeneity are small. We therefore
can say that FDM denoising is the best denoising model of
the above models.

By comparing the visual effects of Figures 5, 6, and 7
and quantitative analysis in Figures 1, 2, and 3, we find
the following. First, the denoising capability of FDM is the
best, irrespective of the strength and type of added noise.
Its PSNR and correlation coefficients are the highest and the
denoising is relatively completed. The similarity between the
denoised image and the original image is the highest. Second,
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Figure 7: Denoising effects of meteorite crater texture-richmoon satellite remote sensing image, when white Gaussian noise, salt, and pepper
noise and speckle noise are added together. (a)Original clean image, (b) noisy image (addswhite Gaussian noise (its standard variance is 0.02),
salt and pepper noise (its noise density is 0.2), and speckle noise (its standard variance is 0.1) to the original clean image, PSNR = 8.8564),
(c) denoised image of bilateral filtering denoising [88, 89, 93], (d) partial enlarged details of 1/4 party of (c) red box, (e) denoised image of
wavelet denoising [92, 93], (f) partial enlarged details of 1/4 party of (e) red box, (g) denoised image of NLMF denoising [94, 95], (h) partial
enlarged details of 1/4 party of (g) red box, (i) denoised image of FDM denoising (V
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−10), and (l)
Partial enlarged details of 1/4 party of (k) red box.

Table 4: Denoising effects on texture-rich meteorite crater remote sensing image of moon satellite, when white Gaussian noise, salt and
pepper noise and speckle noise are added together.

Denoising algorithm Denoising effect
PSNR Correlation coefficients Contrast Correlation Energy Homogeneity

Noisy image 8.8564 0.9968 12.5054 0.0159 0.0230 0.3930
Bilateral filtering denoising 19.3530 0.9991 0.4934 0.6371 0.1601 0.7841
Wavelet denoising 18.3278 0.9990 0.5736 0.7302 0.2348 0.7765
NLMF denoising 19.9585 0.9989 1.0104 0.4319 0.0999 0.6797
FDM denoising 21.1448 0.9995 0.61033 0.5881 0.1476 0.7598
FDM denoising 21.1455 0.9996 0.6609 0.5809 0.1363 0.7495

FDM denoising can nonlinearly preserve the low-frequency
contour feature in the smooth area to the furthest degree,
nonlinearly enhance high-frequency edge information in
those areas where gray level changes obviously, nonlinearly
enhance the high-frequency edge and texture details, and
also nonlinearly maintain the fractional multiscale denoising
capability in those areas where gray level does not change
obviously.

5. Conclusions

We propose the introduction of a new mathematical
method—fractional calculus to the field of image processing
and the implementation of fractional partial differential
equation. First, it presents three common-used definitions of
Grümwald-Letnikov, Riemann-Liouville, and Caputo, which
is the premise of fractional partial differential equation-based
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denoising model. Second, we derive fractional Green’s for-
mula for two-dimensional image processing by extending
classical integer order to fractional order and then derive
fractional Euler-Lagrange formula. Based on the above frac-
tional formulas, a fractional partial differential equation is
proposed. Finally, we show the denoising capability of the
proposed model by comparing Gaussian denoising, fourth-
order TV denoising, bilateral filtering denoising, contourlet
denoising, wavelet Denoising, nonlocal means noise filtering
(NLMF) denoising, and fractional-order anisotropic diffu-
sion denoising.The experimental results prove that FDM can
preserve the low-frequency contour feature in the smooth
area, nonlinearly maintain the high-frequency edge and
texture details in those areas where gray level change greatly
and also nonlinearly retain the texture details in those areas
where gray level has little changed. As for texture-rich images,
the denoising capability of the proposed FDM denoising
model is obviously superior to traditional integral based
algorithm when denoising.
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