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We propose Jacobi-Gauss-Lobatto collocation approximation for the numerical solution of a class of fractional-in-space advection-
dispersion equation with variable coefficients based on Caputo derivative. This approach has the advantage of transforming the
problem into the solution of a system of ordinary differential equations in time this system is approximated through an implicit
iterative method. In addition, some of the known spectral collocation approximations can be derived as special cases from our
algorithm if we suitably choose the corresponding special cases of Jacobi parameters 𝛼 and 𝛽. Finally, numerical results are provided
to demonstrate the effectiveness of the proposed spectral algorithms.

1. Introduction

Spectral methods have emerged as powerful techniques used
in applied mathematics and scientific computing to numeri-
cally solve differential equations [1]. Also, they have became
increasingly popular for solving fractional differential equa-
tions (see, for instance, [2–6]). The main idea of spectral
methods is to put the solution of the problem as a sum of
certain basis functions and then to choose the coefficients
in the sum in order to minimize the difference between
the exact solution and approximate one as well as possible.
Spectral collocation method has an exponential convergence
rate, which is valuable in providing highly accurate solutions
to nonlinear differential equations even using a small number
of grids. Moreover, the choice of collocation points is very
useful for the convergence and efficiency of the collocation
approximation [7, 8].

In recent years, considerable interest in fractional par-
tial differential equations has been motivated because of
their growing applications in electromagnetics, acoustics,
viscoelasticity, electrochemistry, and material science [9,
10]. Several analytical algorithms have been investigated

for treating these equations analytically to obtain closed-
form solutions such as variational iteration method, Fourier
transform method, homotopy analysis method, the method
of separation of variables, Adomian decomposition method,
and Laplace transform method [9, 11–14]. However, there are
only few types of these equations in which the analytical
solutions are available. Therefore, numerical means have to
be used in general.

In numerous physical models, an equation commonly
used to describe transport diffusive problems is the classical
advection-diffusion (or -dispersion) equation which may be
generalized to the fractional ones to cover other very inter-
esting physical models. The advection-dispersion equation,
which is based on Fick’s law, is commonly used to simulate
contaminant transport in porous media [15]. The space, time
and time-space fractional advection-dispersion equations are
presented as a reliable model to simulate the transport of
passive tracers carried by fluid flow in a porous media and
are used in groundwater hydrology [13, 16]. Moreover, they
have been introduced to describe other important physical
phenomena (see [17–21]).
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In the last few years, theory and numerical analysis
of fractional partial differential equations have received an
increasing attention. In this direction, Rihan [22] proposed
the 𝜃-method for approximating time-fractional parabolic
partial differential equations in the Caputo sense. An explicit
Euler method, an implicit Euler method, and the fractional
Cranck-Nicholson method for solving fractional differential
equations are discussed in [23–26]. An explicit difference
approach for solving space fractional diffusion equation has
been proposed in [27]. Ding et al. [28] investigated a class
of weighted finite difference method for tackling a class of
time-dependent fractional differential equations based on
shifted Grünwald formula. K. Wang and H. Wang [29] and
Huang et al. [16] proposed a fast numerical scheme for frac-
tional time-dependent advection-diffusion and advection-
dispersion equations based on finite difference method,
respectively. Recently, the Sinc-Legendre spectral method
has been developed in [30] for the fractional convection-
diffusion. Jiang and Lin [31] proposed a new method for a
class of fractional advection-dispersion in the reproducing
kernel space. Furthermore, Liu et al. [32] proposed an
efficient implicit numerical method for a class of fractional
advection-dispersion models in which they discussed five
fractional models. In the area of numerical methods of
fractional partial differential equations, little work has been
done by spectral methods compared to finite difference and
finite element methods. This partially motivates our interest
in such methods.

The main purpose of the this paper is to construct
the solution of a class of space fractional advection-
dispersion equation with variable coefficients using Jacobi-
Gauss-Lobatto collocation (J-GL-C) approximation, based
on Jacobi-Gauss-Lobatto quadrature knots, combined with
an implicit iterative method for treating the time discretiza-
tion. More precisely, implementing the J-GL-C approxi-
mation to the spatial variable of the fractional advection-
dispersion equation and the corresponding boundary con-
ditions reduces the problem to the time integration of a
system of ordinary differential equations in respect to the
time variable. To the best of our knowledge, such algorithm
has not been implemented for solving space fractional initial-
boundary problems.

The plan of the paper is as follows. In the next section,
we introduce basic properties of Jacobi polynomials. In
Section 3, the way of constructing the Gauss-Lobatto collo-
cation technique for space fractional advection-dispersion
equation with variable coefficients is described using the
Jacobi polynomials, and in Section 4 the proposed method
is applied to two problems. Finally, some concluding remarks
are given in Section 5.

2. Preliminaries

In this section, we give some definitions and properties of
the fractional calculus (see, e.g., [9, 18, 33, 34]) and Jacobi
polynomials (see, e.g., [35–37]).

For 𝑚 to be the smallest integer that exceeds ], Caputo’s
fractional derivative operator of order ] > 0 is defined as

𝜕
]
𝑥
𝑓 (𝑥) = {

𝐽
𝑚−]

𝐷
𝑚

𝑓 (𝑥) , if 𝑚 − 1 < ] < 𝑚,

𝐷
𝑚

𝑓 (𝑥) , if ] = 𝑚, 𝑚 ∈ 𝑁,

(1)

where 𝐽] is theRiemann-Liouville fractional integral operator
of order ] (] ≥ 0) and is defined as

𝐽
]
𝑓 (𝑥) =

1

Γ (])
∫

𝑥

0

(𝑥 − 𝑡)
]−1
𝑓 (𝑡) 𝑑𝑡, ] > 0, 𝑥 > 0. (2)

Form (1), the Caputo fractional derivative of 𝑥𝛽 is given
by

𝜕
]
𝑥
𝑥
𝛽
=

{
{
{
{

{
{
{
{

{

0, for 𝛽 ∈ 𝑁
0
, 𝛽 < ⌈]⌉ ,

Γ (𝛽 + 1)

Γ (𝛽 + 1 − ])
𝑥
𝛽−]

, for 𝛽 ∈ 𝑁
0
, 𝛽 ≥ ⌈]⌉ ,

or 𝛽 ∉ 𝑁, 𝛽 > ⌊]⌋ ,
(3)

where ⌈]⌉ and ⌊]⌋ are ceiling and floor functions. Also, 𝑁 =

{1, 2, . . .} and𝑁
0
= {0, 1, 2, . . .}. Caputo’s fractional differenti-

ation is a linear operation; that is,

𝜕
]
𝑥
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆𝜕

]
𝑥
𝑓 (𝑥) + 𝜇𝜕

]
𝑥
𝑔 (𝑥) , (4)

where 𝜆 and 𝜇 are constants.
Let 𝛼 > −1, 𝛽 > −1, and 𝑃(𝛼,𝛽)

𝑘
(𝑥) be the standard Jacobi

polynomial of degree 𝑘. We have that

𝑃
(𝛼,𝛽)

𝑘
(−𝑥) = (−1)

𝑘

𝑃
(𝛼,𝛽)

𝑘
(𝑥) ,

𝑃
(𝛼,𝛽)

𝑘
(−1) =

(−1)
𝑘

Γ (𝑘 + 𝛽 + 1)

𝑘!Γ (𝛽 + 1)

.

(5)

For integer𝑚, the𝑚th-order derivative of Jacobi polyno-
mials is

𝐷
𝑚

𝑃
(𝛼,𝛽)

𝑘
(𝑥) = 2

−𝑚
Γ (𝑚 + 𝑘 + 𝛼 + 𝛽 + 1)

Γ (𝑘 + 𝛼 + 𝛽 + 1)

𝑃
(𝛼+𝑚,𝛽+𝑚)

𝑘−𝑚
(𝑥) .

(6)

Let𝑤(𝛼,𝛽)(𝑥) = (1 − 𝑥)
𝛼

(1 + 𝑥)
𝛽; then we define the weighted

space 𝐿
2

𝑤
(𝛼,𝛽)(−1, 1) as usual, equipped with the following

inner product and norm:

(𝑢, V)
𝑤
(𝛼,𝛽) = ∫

1

−1

𝑢 (𝑥) V (𝑥)𝑤(𝛼,𝛽) (𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼,𝛽) = (V, V)1/2

𝑤
(𝛼,𝛽) .

(7)

The set of Jacobi polynomials forms a complete 𝐿2
𝑤
𝛼,𝛽(−1, 1)-

orthogonal system, and







𝑃
(𝛼,𝛽)

𝑘








2

𝑤
(𝛼,𝛽)

= ℎ
(𝛼,𝛽)

𝑘

=

2
𝛼+𝛽+1

Γ (𝑘 + 𝛼 + 1) Γ (𝑘 + 𝛽 + 1)

(2𝑘 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 1) Γ (𝑘 + 𝛼 + 𝛽 + 1)

.

(8)
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Let 𝐿 > 0; then the shifted Jacobi polynomial of degree 𝑘
on the interval (0, 𝐿) is defined by 𝑃(𝛼,𝛽)

𝐿,𝑘
(𝑥) = 𝑃

(𝛼,𝛽)

𝑘
((2𝑥/𝐿) −

1).
With the aid of (5), we demonstrate that

𝑃
(𝛼,𝛽)

𝐿,𝑗
(0) = (−1)

𝑗
Γ (𝑗 + 𝛽 + 1)

Γ (𝛽 + 1) 𝑗!

. (9)

Next, let 𝑤(𝛼,𝛽)
𝐿

(𝑥) = (𝐿 − 𝑥)
𝛼

𝑥
𝛽; then we define the

weighted space 𝐿2
𝑤
(𝛼,𝛽)

𝐿

(0, 𝐿) in the usual way, with the follow-
ing inner product and norm:

(𝑢, V)
𝑤
(𝛼,𝛽)

𝐿

= ∫

𝐿

0

𝑢 (𝑥) V (𝑥) 𝑤(𝛼,𝛽)
𝐿

(𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼,𝛽)

𝐿

= (V, V)1/2
𝑤
(𝛼,𝛽)

𝐿

.

(10)

The set of shifted Jacobi polynomials is a complete
𝐿
2

𝑤
(𝛼,𝛽)

𝐿

(0, 𝐿)-orthogonal system.Moreover, due to (8), we have








𝑃
(𝛼,𝛽)

𝐿,𝑘








2

𝑤
(𝛼,𝛽)

𝐿

= (

𝐿

2

)

𝛼+𝛽+1

ℎ
(𝛼,𝛽)

𝑘
= ℎ
(𝛼,𝛽)

𝐿,𝑘
. (11)

3. Jacobi Spectral Collocation Method

Since the Jacobi spectral collocation method approximates
the initial-boundary problems in physical space and it is a
global method, it is very easy to implement and adapt to
various problems, including variable coefficient and nonlin-
ear problems (see, for instance, [7, 38]). In this section, a
new algorithm for solving time-dependent space fractional
advection-dispersion equation is proposed based on Jacobi-
Gauss-Lobatto spectral collocation approximation and an
implicit iterative method in finite space-time domain.

In this section, we consider the space fractional
advection-dispersion equations with space and time variable
coefficients [19, 23, 28, 39, 40]:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

+ 𝑎 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

− 𝑏 (𝑥, 𝑡)

𝜕
]
𝑢 (𝑥, 𝑡)

𝜕𝑥
] = 𝑞 (𝑥, 𝑡) ,

0 ≤ 𝑥 ≤ 𝐿, 0 < 𝑡 ≤ 𝑇, 1 < ] ≤ 2,

(12)

subject to the boundary conditions:

𝑢 (0, 𝑡) = 𝑔
0
(𝑥) , 0 < 𝑡 ≤ 𝑇,

𝑢 (𝐿, 𝑡) = 𝑔
1
(𝑥) , 0 < 𝑡 ≤ 𝑇,

(13)

and the initial value:

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 𝐿, (14)

where 𝑎 is the drift of the process, that is, the mean advective
velocity, 𝑏 ≥ 0 is the coefficient of dispersion, ] is the
fractional order in the Caputo sense, 1 < ] ≤ 2, and 𝑞 is a
source function. In particular, if ] = 2, (12) is the classical
convection-diffusion equation with a source term which has

commonly been used to describe the Brownian motion of
particles [41]. Moreover, if 𝑎 = 0, it reduces to the space
fractional diffusion equation (cf. [42–46]).

Now we introduce the Jacobi-Gauss-Lobatto quadratures
in two different intervals (−1, 1), and (0, 𝐿). Denote by
𝑥
(𝛼,𝛽)

𝑁,𝑗
(𝑥
(𝛼,𝛽)

𝐿,𝑁,𝑗
), 0 ⩽ 𝑗 ⩽ 𝑁, and 𝜛

(𝛼,𝛽)

𝑁,𝑗
(𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
), (0 ≤ 𝑖 ≤ 𝑁),

the nodes and Christoffel numbers of the standard (shifted)
Jacobi-Gauss-Lobatto quadratures on the intervals (−1, 1)
and (0, 𝐿), respectively. Then one can clearly deduce that

𝑥
(𝛼,𝛽)

𝐿,𝑁,𝑗
=

𝐿

2

(𝑥
(𝛼,𝛽)

𝑁,𝑗
+ 1) , 0 ≤ 𝑗 ≤ 𝑁,

𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
= (

𝐿

2

)

𝛼+𝛽+1

𝜛
(𝛼,𝛽)

𝑁,𝑗
, 0 ≤ 𝑗 ≤ 𝑁,

(15)

and if 𝑆
𝑁
(0, 𝐿) denotes the set of all polynomials of degree at

most𝑁, then it follows that, for any 𝜙 ∈ 𝑆
2𝑁+1

(0, 𝐿), we have

∫

𝐿

0

𝑤
(𝛼,𝛽)

𝐿
(𝑥) 𝜙 (𝑥) 𝑑𝑥

= (

𝐿

2

)

𝛼+𝛽+1

∫

1

−1

(1 − 𝑥)
𝛼

(1 + 𝑥)
𝛽

× 𝜙(

𝐿

2

(𝑥 + 1)) 𝑑𝑥

= (

𝐿

2

)

𝛼+𝛽+1 𝑁

∑

𝑗=0

𝜛
(𝛼,𝛽)

𝑁,𝑗
𝜙(

𝐿

2

(𝑥
(𝛼,𝛽)

𝑁,𝑗
+ 1))

=

𝑁

∑

𝑗=0

𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
𝜙 (𝑥
(𝛼,𝛽)

𝐿,𝑁,𝑗
) .

(16)

We define the discrete inner product and norm as follows:

(𝑢, V)
𝑤
𝛼,𝛽
,𝑁
=

𝑁

∑

𝑘=0

𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑘
) V (𝑥(𝛼,𝛽)
𝑁,𝑘

) 𝜛
(𝛼,𝛽)

𝑁,𝑘
,

‖𝑢‖
𝑤
𝛼,𝛽
,𝑁
= √(𝑢, 𝑢)

𝑤
𝛼,𝛽
,𝑁
.

(17)

Obviously,

(𝑢, V)
𝑤
𝛼,𝛽
,𝑁
= (𝑢, V)

𝑤
𝛼,𝛽 ∀𝑢V ∈ 𝑆

2𝑁−1
. (18)

Thus, for any 𝑢∈𝑆
𝑁
, the norms ‖𝑢‖

𝑤
𝛼,𝛽
,𝑁
and ‖𝑢‖

𝑤
𝛼,𝛽 coincide.

Associating with this quadrature rule, we denote by 𝐼𝑃
(𝛼,𝛽)

𝑁

the Jacobi-Gauss-Lobatto interpolation (cf. [47]):

𝐼
𝑃
(𝛼,𝛽)

𝑁
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑘
) = 𝑢 (𝑥

(𝛼,𝛽)

𝑁,𝑘
) , 0 ≤ 𝑗 ≤ 𝑁. (19)

We now derive an efficient algorithm for solving space-
fractional advection diffusion equation (12)–(14). We expand
the numerical approximation in terms of Jacobi polynomials:

𝑢
𝑁
(𝑥, 𝑡) =

𝑁

∑

𝑗=0

𝑎
𝑗
(𝑡) 𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥) . (20)
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If we make use of the orthogonality property of Jacobi
polynomials with respect to theweight functions𝑤𝛼,𝛽 and the
discrete inner product (17), then we get

𝑎
𝑗
(𝑡) =

1

ℎ
𝑗

𝑁

∑

𝑖=0

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
) 𝜛
(𝛼,𝛽)

𝑁,𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) , (21)

and accordingly, (20) takes the following form:

𝑢
𝑁
(𝑥, 𝑡) =

𝑁

∑

𝑗=0

(

1

ℎ
𝑗

𝑁

∑

𝑖=0

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

× 𝜛
(𝛼,𝛽)

𝑁,𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) )𝑃

(𝛼,𝛽)

𝐿,𝑗
(𝑥) ,

(22)

or equivalently

𝑢
𝑁
(𝑥, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

× 𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥) 𝜛
(𝛼,𝛽)

𝑁,𝑖
)𝑢 (𝑥

(𝛼,𝛽)

𝑁,𝑖
, 𝑡) .

(23)

The first order spatial derivative of the spectral solution
can be approximated by the J-GL-C points

𝑢
𝑥
(𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

× (𝑃
(𝛼,𝛽)

𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑛
))



𝜛
(𝛼,𝛽)

𝑁,𝑖
)

× 𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) , 𝑛 = 0, 1, . . . , 𝑁.

(24)

According to

𝐷𝑃
(𝛼,𝛽)

𝑗
(𝑥) =

Γ (𝑗 + 𝛼 + 𝛽 + 2)

2Γ (𝑗 + 𝛼 + 𝛽 + 1)

𝑃
(𝛼+1,𝛽+1)

𝑗−1
(𝑥) , (25)

equation (24) can be written in the following form:

𝑢
𝑥
(𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡)

=

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

Γ (𝑗 + 𝛼 + 𝛽 + 2)

2Γ (𝑗 + 𝛼 + 𝛽 + 1)

× 𝑃
(𝛼+1,𝛽+1)

𝑗−1
(𝑥
(𝛼,𝛽)

𝑁,𝑛
) 𝜛
(𝛼,𝛽)

𝑁,𝑖
)

× 𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) , 𝑛 = 0, 1, . . . , 𝑁,

(26)

where

𝐴
𝑛𝑖
=

𝑁

∑

𝑗=0

Γ (𝑗 + 𝛼 + 𝛽 + 2)

2Γ (𝑗 + 𝛼 + 𝛽 + 1) ℎ
𝑗

× 𝑃
(𝛼,𝛽)

𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
) 𝑃
(𝛼+1,𝛽+1)

𝑗−1
(𝑥
(𝛼,𝛽)

𝑁,𝑛
) 𝜛
(𝛼,𝛽)

𝑁,𝑖
.

(27)

The fractional derivative of order ] in the Caputo sense
for the Jacobi polynomials is given by

𝜕
]

𝜕𝑥
]𝑃
(𝛼,𝛽)

𝐿,𝑖
(𝑥) =

∞

∑

𝑗=0

𝑆] (𝑖, 𝑗, 𝛼, 𝛽) 𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥) ,

𝑖 = ⌈]⌉ , ⌈]⌉ + 1, . . . ,

(28)

where

𝑆] (𝑖, 𝑗, 𝛼, 𝛽) =

𝑖

∑

𝑘=⌈]⌉

(−1)
𝑖−𝑘

𝐿

𝛼+𝛽−]+1
Γ (𝑗 + 𝛽 + 1)

× Γ (𝑖 + 𝛽 + 1) Γ (𝑖 + 𝑘 + 𝛼 + 𝛽 + 1)

× (ℎ
𝑗
Γ (𝑗 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 𝛽 + 1)

× Γ (𝑖 + 𝛼 + 𝛽 + 1)

× Γ (𝑘 − ] + 1) (𝑖 − 𝑘)!)
−1

×

𝑗

∑

𝑙=0

(−1)
𝑗−𝑙

Γ (𝑗 + 𝑙 + 𝛼 + 𝛽 + 1)

× Γ (𝛼 + 1) Γ (𝑙 + 𝑘 + 𝛽 − ] + 1)

× (Γ (𝑙 + 𝛽 + 1)

× Γ (𝑙 + 𝑘 + 𝛼 + 𝛽 − ] + 2)

× (𝑗 − 𝑙)!𝑙!)
−1

.

(29)

The spatial partial fractional derivatives of order ] for the
spectral solution (20) can be evaluated at the J-GL-C points
{𝑥
(𝛼,𝛽)

𝑁,𝑛
; 𝑛 = 0, 1, . . . , 𝑁}. Hence, we have

𝜕
]

𝜕𝑥
] 𝑢𝑁 (𝑥

(𝛼,𝛽)

𝑁,𝑛
, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

×

𝜕
]

𝜕𝑥
] (𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑛
)) 𝜛
(𝛼,𝛽)

𝑁,𝑖
)

× 𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) , 𝑛 = 0, 1, . . . , 𝑁,

(30)
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where

𝐵
𝑛𝑖
=

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)

𝜕
]

𝜕𝑥
] (𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑛
)) 𝜛
(𝛼,𝛽)

𝑁,𝑖

=

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
)(

∞

∑

𝑙=0

𝑆] (𝑗, 𝑙, 𝛼, 𝛽) 𝑃
(𝛼,𝛽)

𝐿,𝑙
(𝑥
(𝛼,𝛽)

𝑁,𝑛
))

× 𝜛
(𝛼,𝛽)

𝑁,𝑖

≃

𝑁

∑

𝑗=0

𝑁

∑

𝑙=0

1

ℎ
𝑗

𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝑁,𝑖
) 𝑆] (𝑗, 𝑙, 𝛼, 𝛽) 𝑃

(𝛼,𝛽)

𝐿,𝑙
(𝑥
(𝛼,𝛽)

𝑁,𝑛
)

× 𝜛
(𝛼,𝛽)

𝑁,𝑖
,

(31)

for 1 < ] ≤ 2, and 𝑆](𝑗, 𝑙, 𝛼, 𝛽) is defined in (29).
If we apply the Jacobi-Gauss-Lobatto collocation method

of (12) without the two assigned abscissas 0 and 𝐿; {𝑥(𝛼,𝛽)
𝑁,0

=

0, 𝑥
(𝛼,𝛽)

𝑁,𝑁
= 𝐿}, whichwill be necessary used as two points from

the collocation nodes for enforcing the boundary conditions
(13), and using (30), then (12) may be written as

𝑢
𝑡
(𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡) = −𝑎 (𝑥

(𝛼,𝛽)

𝑁,𝑛
, 𝑡)

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡)

− 𝑏 (𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡)

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡)

+ 𝑞 (𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡) , 𝑛 = 1, . . . , 𝑁 − 1.

(32)

Let us denote that

𝑢
𝑛
(𝑡) = 𝑢

𝑁
(𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡) ,

𝑎
𝑛
(𝑡) = 𝑎 (𝑥

(𝛼,𝛽)

𝑁,𝑛
, 𝑡) ,

𝑏
𝑛
(𝑡) = 𝑏 (𝑥

(𝛼,𝛽)

𝑁,𝑛
, 𝑡) ,

𝑞
𝑛
(𝑡) = 𝑞 (𝑥

(𝛼,𝛽)

𝑁,𝑛
, 𝑡) ,

�̇�
𝑛
(𝑡) = 𝑢

𝑡
(𝑥
(𝛼,𝛽)

𝑁,𝑛
, 𝑡) .

(33)

Thus, (32) can be rewritten in the following simple form:

�̇�
𝑛
(𝑡) = −𝑎

𝑛
(𝑡)

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡)

− 𝑏
𝑛
(𝑡)

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡) + 𝑞

𝑛
(𝑡) ,

𝑛 = 1, . . . , 𝑁 − 1.

(34)

Let us assume that
𝑑
𝑛
(𝑡) = 𝑎

𝑛
(𝑡) (𝐴

𝑛0
𝑔
1
(𝑡) + 𝐴

𝑛𝑁
𝑔
2
(𝑡)) ,

𝑒
𝑛
(𝑡) = 𝑏

𝑛
(𝑡) (𝐵
𝑛0
𝑔
1
(𝑡) + 𝐵

𝑛𝑁
𝑔
2
(𝑡)) ,

(35)

Then (34) and using the two-point boundary conditions (13)
generate a system of (𝑁 − 1) ordinary differential equations
in time.

�̇�
𝑛
(𝑡) = −𝑎

𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡)

− 𝑏
𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡)

− 𝑑
𝑛
(𝑡) − 𝑒

𝑛
(𝑡) + 𝑞

𝑛
(𝑡) , 𝑛 = 1, . . . , 𝑁 − 1.

(36)

with the initial values

𝑢
𝑛
(0) = 𝑓 (𝑥

(𝛼,𝛽)

𝑁,𝑛
) , 𝑛 = 1, . . . , 𝑁 − 1, (37)

which may be written in the following matrix form:

u̇ (𝑡) = F (𝑡, 𝑢 (𝑡)) ,

u (0) = f ,
(38)

where

u̇ (𝑡) = [�̇�
1
(𝑡) , �̇�
2
(𝑡) , . . . , �̇�

𝑁−1
(𝑡)]
𝑇

,

f = [𝑓 (𝑥
𝑁,1

) , 𝑓 (𝑥
𝑁,2

) , . . . , 𝑓 (𝑥
𝑁,𝑁−1

)] ,

F (𝑡, 𝑢 (𝑡)) = [𝐹
1
(𝑡, 𝑢 (𝑡)) , 𝐹

2
(𝑡, 𝑢 (𝑡)) , . . . , 𝐹

𝑁−1
(𝑡, 𝑢 (𝑡))]

𝑇

,

𝐹
𝑛
(𝑡, 𝑢 (𝑡)) = −𝑎

𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡)

− 𝑏
𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡)

− 𝑑
𝑛
(𝑡) − 𝑒

𝑛
(𝑡) + 𝑞

𝑛
(𝑡) , 𝑛 = 1, . . . , 𝑁 − 1.

(39)

The system of ordinary differential equations (38) in time
may be solved using any standard technique to find 𝑢

𝑛
(𝑡) and

then 𝑢
𝑁
(𝑥, 𝑡) from (22).

4. Numerical Results

In order to check the accuracy and reliability of the proposed
algorithm, we present two numerical examples using the
proposed algorithm. In the first example, we compute the
space fractional diffusion equation to check the accuracy, and
space fractional advection-dispersion equation with variable
coefficients is solved in the second example which confirms
the good accuracy of our method. Comparing the results
obtained by various choices of Jacobi parameters 𝛼 and 𝛽 and
results presented elsewhere reveals that the present method is
very effective and convenient for all choices of 𝛼 and 𝛽.

Example 1. Consider the space fractional diffusion equation
(see, [42, 48, 49]):

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

−

Γ (2.2) 𝑥
2.8

6

𝜕
1.8

𝑢 (𝑥, 𝑡)

𝜕𝑥
1.8

= − (1 + 𝑥) 𝑒
−𝑡

𝑥
3

,

𝑥 ∈ (0, 1) , 𝑡 ∈ (0, 𝑇] ,

(40)
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Table 1: Comparing maximum absolute errors of the proposed method and [42, 49].

𝑁 𝛼 = 𝛽 = 1/2 𝛼 = −𝛽 = 1/2 −𝛼 = 𝛽 = 1/2 CN [42] Extra CN [42] BEFD [49]
3 1.04 × 10

−1

1.45 × 10
−1

1.45 × 10
−1 — — —

5 8.51 × 10
−6

4.28 × 10
−5

7.33 × 10
−6 — — —

10 3.75 × 10
−7

2.85 × 10
−6

3.60 × 10
−7

1.82 × 10
−3

1.77 × 10
−4

8.05 × 10
−3

15 5.86 × 10
−8

5.77 × 10
−7

8.59 × 10
−8

1.16 × 10
−3

7.85 × 10
−5

5.48 × 10
−3

20 3.03 × 10
−8

1.79 × 10
−7

3.47 × 10
−8

8.64 × 10
−4

4.40 × 10
−5

4.24 × 10
−3

25 1.97 × 10
−8

7.11 × 10
−8

3.20 × 10
−8 — — —

Table 2: Comparing maximum absolute errors for different choices of 𝑎𝑙 and 𝛽 and𝑁 = 3, 6, 12, 24.

𝑁 𝛼 = 𝛽 = 1/2 𝛼 = −𝛽 = 1/2 −𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = 0 𝛼 = 𝛽 = 3/2

3 1.99 × 10
−2

3.40 × 10
−2

2.30 × 10
−2

1.30 × 10
−2

3.29 × 10
−2

6 6.10 × 10
−4

1.45 × 10
−3

6.84 × 10
−4

3.48 × 10
−4

1.21 × 10
−3

12 1.02 × 10
−4

5.08 × 10
−4

1.05 × 10
−4

1.04 × 10
−4

1.06 × 10
−4

18 5.38 × 10
−5

2.61 × 10
−4

5.47 × 10
−5

5.41 × 10
−5

5.84 × 10
−5

24 3.55 × 10
−5

1.34 × 10
−4

3.49 × 10
−5

3.92 × 10
−5

3.74 × 10
−5

with the initial condition:

𝑢 (𝑥, 0) = 𝑥
3 for 𝑥 ∈ (0, 1) , (41)

and the boundary conditions:

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 𝑒
−𝑡

, 𝑡 ∈ (0, 𝑇] . (42)

The exact solution to this problem is

𝑢 (𝑥, 𝑡) = 𝑒
−𝑡

𝑥
3

. (43)

In Table 1, we list the maximum absolute errors using J-
GL-C method with three choices of the Jacobi parameters 𝛼
and 𝛽 and various choices of the𝑁.

We contrast our results with the corresponding results
for the backward Euler finite difference scheme (BEFD [49]),
the fractional Crank-Nicholson approach (CN [50]), and
the extrapolated fractional Crank-Nicholson approach (Extra
CN [50]) which we have presented in the fifth, sixth, and
seventh columns of Table 1. We should note that for all values
of𝛼 and𝛽, the proposedmethod is alwaysmore accurate than
the results of CN [50], Extra CN [50], and BEFD [49], which
shows the spectral accuracy of our method.

In Figures 1 and 2, the analytical solutions and the
numerical solutions for 𝑥 ∈ (0, 1), 𝑡 = 0.1, 0.5, 0.7, 0.9, and
𝑥 = 0.2, 0.6, 0.8, 1.0, 𝑡 ∈ (0, 1), are shown, respectively.
Consequently, we see that all numerical solutions are in
complete agreement with the analytical solutions.

Example 2. Consider the space fractional advection-dis-
persion equation with variable coefficients:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

= −

𝑡𝑥

𝜃

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

+

𝑡
2

𝑥
𝜃

Γ (1 + 𝜃)

𝜕
𝜃

𝑢 (𝑥, 𝑡)

𝜕𝑥
𝜃

+ 𝑓 (𝑥, 𝑡) ,

𝑥 ∈ [0, 2] , 𝑡 ∈ (0, 𝑇] ,

(44)
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Ex(x, 0.1)
Ap(x, 0.5)
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Ap(x

x

, 0.7)
Ex(x, 0.7)
Ap(x, 0.9)
Ex(x, 0.9)

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1: The comparison of the curves of analytical solutions and
approximate solutions at𝑁 = 24 and 𝑡 = 0.1, 0.5, 0.7, 0.9.

where

𝑓 (𝑥, 𝑡) = 𝑥
𝜃

(4𝜋 cos (4𝜋𝑡) + 𝑡 sin (4𝜋𝑡) − 𝑡2 sin (4𝜋𝑡)) ,
(45)

with the initial condition:

𝑢 (𝑥, 0) = 0 for 𝑥 ∈ [0, 2] , (46)

and the boundary conditions:

𝑢 (0, 𝑡) = 0, 𝑢 (2, 𝑡) = 2
𝜃 sin (4𝜋𝑡) , 𝑡 ∈ (0, 𝑇] . (47)

The exact solution to this problem is

𝑢 (𝑥, 𝑡) = sin (4𝜋𝑡) 𝑥𝜃. (48)
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Figure 2: The comparison of the curves of analytical solutions and
approximate solutions at𝑁 = 24 and 𝑥 = 0.2, 0.6, 0.8, 1.0.
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Figure 3: The space-time graph of approximate solutions at 𝜃 =

1.01.

For the sake of comparison of some different values
of Jacobi parameters 𝛼 and 𝛽, we introduce in Table 2 the
maximum absolute errors between the exact and numerical
solutions using Jacobi Gauss-Lobatto collocation method
with 𝜃 = 1.9, 𝑡 ∈ (0, 2], and various choices of 𝑁. Conse-
quently, we conclude that all numerical solutions are in good
agreement with the analytical solutions in all choices of 𝛼 and
𝛽.

In case of Chebyshev polynomials of the first kind 𝛼 =

𝛽 = −1/2, the space-time graphs of approximate solutions
at 𝑁 = 28 for the two choices 𝜃 = 1.01 and 𝜃 = 1.81 are
shown in Figures 3 and 4, respectively. From these figures,
it can be seen that the numerical solutions are in excellent
agreement with the exact solutions. Numerical simulation is
given in Figure 5 to compare the curves of exact solution
and approximate solution (in case of Legendre polynomials
𝛼 = 𝛽 = 0 and 𝑁 = 16) for 𝜃 = 1.5 with 𝑥 ∈ (0, 2) and

u
N

(x
,t

) 2.0

1.5

1.0

0.5

0.0
2.0

1.5

1.0

0.5

0.0

2

0

−2

t

x

Figure 4: The space-time graph of approximate solutions at 𝜃 =

1.81.

0.0 0.5 1.0 1.5 2.0

Ap(x, 0)
Ex(x, 0)
Ap(x, 0.4)
Ex(x, 0.4)
Ap(x, 0.6)

Ex(x

x

, 0.6)
Ap(x, 1.2)
Ex(x, 1.2)
Ap(x, 1.8)
Ex(x, 1.8)

3

2

1

0

−1

−2

−3

Ex
ac

t a
nd

 ap
pr

ox
im

at
e s

ol
ut

io
ns

Figure 5: The comparison of the curves of analytical solutions and
approximate solutions at 𝑡 = 0, 0.4, 0.6, 1.2, 1.8.

𝑡 = 0, 0.4, 0.6, 1.2, 1.8. Moreover, the curves of exact solution
and approximate solution (in case of Chebyshev polynomials
of the second kind 𝛼 = 𝛽 = 1/2 and 𝑁 = 16) for 𝜃 = 1.5

with 𝑡 ∈ (0, 2) and 𝑥 = 0.2, 0.6, 1.2, 1.6, 2 are sketched in
Figure 6. Consequently, we see that the curves of the exact
and approximate solutions almost coincide for all chosen
values of 𝑡 and 𝑥.

The obtained results of this example show that the
Jacobi Gauss-Lobatto collocation method is simple and very
accurate for all values of 𝛼 and 𝛽. Also by selecting limited
Gauss-Lobatto collocation points, excellent numerical results
are obtained.
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Figure 6: The comparison of the curves of analytical solutions and
approximate solutions at 𝑥 = 0.2, 0.6, 1.2, 1.6, 2.

5. Conclusion and Future Work

In this paper, we have proposed the Jacobi Gauss-Lobatto
collocation spectral approximation for tackling fractional-
in-space advection-dispersion equation subject to initial-
boundary conditions. Applying the collocation method has
reduced the problem to system of ordinary differential
equations in time. This system may be solved by an implicit
iterative technique. One of the main advantages of the
proposed method is the Legendre Gauss-Lobatto collocation
approximation, and the four kinds of Chebyshev Gauss-
Lobatto collocation approximations may be obtained as spe-
cial cases of the proposed Jacobi Gauss-Lobatto collocation
approximation by taking the corresponding special cases of
the Jacobi parameters 𝛼 and 𝛽. The numerical results given
in Section 4 demonstrate the good accuracy of proposed
algorithm.

The implementation of Jacobi Gauss-Lobatto collocation
spectral approximation for time-space fractional advection-
dispersion equations may also constitute another line of our
future lines of research. We also conclude that this algorithm
can be useful in dealing with coupled nonlinear partial
differential equations.
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