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This paper deals with robust synchronization of the fractional-order unified chaotic systems. Firstly, control design for
synchronization of nominal systems is proposed via fractional sliding mode technique.Then, systematic uncertainties and external
disturbances are considered in the fractional-order unified chaotic systems, and adaptive sliding mode control is designed for
the synchronization issue. Finally, numerical simulations are carried out to verify the effectiveness of the two proposed control
techniques.

1. Introduction

Even though the theory of fractional calculus dates back to
the end of the 17th century, the subject only really came
to life over the last few decades [1]. The most significant
advantage of fractional calculus is that it provides a powerful
instrument of describing memory and hereditary properties
of different substances [2]. In particular, fractional differential
equations, as the basic theory for fractional-order control [3],
have become a powerful tool in describing the dynamics of
complex systems and gained great development very recently
[4–6].

One of the most important areas of application is the
fractional-order chaotic systems, which have wide potential
applications in engineering. Since Hartley et al. firstly dis-
covered chaotic phenomenon in fractional dynamics systems
[7], there has emerged great interest in this novel and
promising topic. On one hand, more and more fractional
nonlinear systems which exhibit chaos have been discov-
ered, and their chaotic behaviors have been studied with
numerical simulations, such as the fractional-order Chua
circuit [8], the fractional-order Van der Pol oscillator [9–11],
the fractional-order Lorenz system [12, 13], the fractional-
order Chen system [14–16], the fractional-order Lü system
[17], the fractional-order Liu system [18], the fractional-order

Rössler system [19, 20], the fractional-order Arneodo system
[21], the fractional-order Lotka-Volterra system [22, 23], the
fractional-order financial system [24, 25], and the discrete
fractional logistic map [26]. On the other hand, control and
synchronization of fractional-order dynamical systems have
been attracting growing investigations. Linear-state feedback
control approach has been designed in [14, 27–35], nonlinear
feedback control in [36–40], fractional PID control in [41,
42], and open-plus-closed-loop control in [43]. To tackle
with modeling inaccuracies and external noises which are
unavoidable in the real-world application, fractional-order
sliding mode control methodology has been established in
[44–51].

In this paper, we investigate robust synchronization of the
fractional-order unified chaotic systems. We firstly propose
controllers to synchronize the nominal systems via fractional
sliding mode technique. Secondly, we consider systematic
uncertainties and external disturbances in the fractional-
order unified chaotic systems and establish adaptive sliding
mode control for synchronization of the uncertain systems.

The rest of this paper is organized as follows. Section 2
presents some basic definitions and theorems about frac-
tional calculus and fractional-order dynamical system.
Section 3 describes the general form of fractional-order
unified chaotic system and presents ourmain objective in this
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paper. Section 4 proposes the sliding mode control design
for synchronization of nominal systems and adaptive sliding
mode control design for the uncertain system. Numerical
simulations are presented to show the effectiveness of the pro-
posed schemes in Section 5. Finally, this paper is concluded
in Section 6.

2. Preliminaries

Definition 1. Themost important function used in fractional
calculus is Euler’s Gamma function, which is defined as

Γ (𝑛) = ∫

∞

0

𝑡
𝑛−1

𝑒
−𝑡

𝑑𝑡. (1)

Definition 2. Another important function is a two-parameter
function of the Mittag-Leffler type defined as

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
, 𝛼 > 0, 𝛽 > 0. (2)

Fractional calculus is a generalization of integration
and differentiation to noninteger-order fundamental opera-
tor
𝑎
𝐷
𝛼

𝑡
, where 𝑎 and 𝑡 are the bounds of the operation and

𝑎 ∈ R. The continuous integrodifferential operator is defined
as

𝑎
𝐷
𝛼

𝑡
=

{{{{{

{{{{{

{

𝑑
𝛼

𝑑𝑡𝛼
, 𝛼 > 0,

1, 𝛼 = 0,

∫

𝑡

𝑎

(𝑑𝜏)
𝛼

, 𝛼 < 0.

(3)

The threemost frequently used definitions for the general
fractional calculus are the Grünwald-Letnikov definition, the
Riemann-Liouville definition, and the Caputo definition [2,
23, 52, 53].

Definition 3. TheGrünwald-Letnikov derivative definition of
order 𝛼 is described as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝛼

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) . (4)

For binomial coefficients calculation, we can use the rela-
tion between Euler’s Gamma function and factorial defined
as

(
𝛼

𝑗
) =

𝛼!

𝑗! (𝛼 − 𝑗)!
=

Γ (𝛼 + 1)

Γ (𝑗 + 1) Γ (𝛼 − 𝑗 + 1)
(5)

for

(
𝛼

0
) = 1. (6)

Definition 4. The Riemann-Liouville derivative definition of
order 𝛼 is described as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛼−𝑛+1

, 𝑛 − 1 < 𝛼 < 𝑛.

(7)

However, applied problems require definitions of frac-
tional derivatives allowing the utilization of physically inter-
pretable initial conditions, which contain 𝑓(𝑎), 𝑓󸀠(𝑎), and
so forth. Unfortunately, the Riemann-Liouville approach fails
to meet this practical need. It is M. Caputo who solved this
conflict.

Definition 5. The Caputo definition of fractional derivative
can be written as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

𝑓
(𝑛)

(𝜏) 𝑑𝜏

(𝑡 − 𝜏)
𝛼−𝑛+1

, 𝑛 − 1 < 𝛼 < 𝑛. (8)

In the following, we use the Caputo approach to describe
the fractional chaotic systems and the Grünwald-Letnikov
approach to propose numerical simulations. To simplify the
notation, we denote the fractional-order derivative as 𝐷

𝛼

instead of
0
𝐷
𝛼

𝑡
in this paper.

Lemma 6 (see [22]). Consider the following commensurate
fractional-order dynamics system:

𝐷
𝛼

𝑥 = 𝑓 (𝑥) , (9)

where 0 < 𝛼 ≤ 1 and 𝑥 ∈ R𝑛. The equilibrium points of system
(9) are calculated by solving the following equation:

𝑓 (𝑥) = 0. (10)

These points are locally asymptotically stable if all eigenvalues
𝜆
𝑖
of the Jacobian matrix 𝐽 = 𝜕𝑓/𝜕𝑥 evaluated at the

equilibrium points satisfy

󵄨󵄨󵄨󵄨arg (𝜆)
󵄨󵄨󵄨󵄨 >

𝛼𝜋

2
. (11)

Lemma 7 (see [22]). Consider the following 𝑛-dimensional
linear fractional-order dynamics system:

𝐷
𝑞
1𝑥
1
= 𝑎
11
𝑥
1
+ 𝑎
12
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥
𝑛
,

𝐷
𝑞
2𝑥
2
= 𝑎
21
𝑥
1
+ 𝑎
22
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥
𝑛
,

⋅ ⋅ ⋅

𝐷
𝑞
𝑛𝑥
𝑛
= 𝑎
𝑛1
𝑥
1
+ 𝑎
𝑛2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥
𝑛
,

(12)

where all 𝛼
𝑖
’s are rational numbers between 0 and 1. Assume

𝑀 be the lowest common multiple of the denominators 𝑢
𝑖
’s of

𝛼
𝑖
’s, where 𝛼

𝑖
= V
𝑖
/𝑢
𝑖
, (𝑢
𝑖
, V
𝑖
) = 1, and 𝑢

𝑖
, V
𝑖
∈ 𝑍
+, for 𝑖 =

1, 2, . . . , 𝑛. Define

Δ (𝜆) = (

𝜆
𝑀𝛼
1 − 𝑎
11

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

𝜆
𝑀𝛼
2 − 𝑎
22

⋅ ⋅ ⋅ −𝑎
2𝑛

...
... d

...
−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ 𝜆
𝑀𝛼
𝑛 − 𝑎
𝑛𝑛

). (13)

Then, the zero solution of system (12) is globally asymptot-
ically stable in the Lyapunov sense if all roots of the equation
det(Δ(𝜆)) = 0 satisfy | arg(𝜆)| > 𝜋/2𝑀.
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Lemma8 (see [53]). Assume that there exists a scalar function
𝑉 of the state 𝑥with continuous first-order derivative such that
the following are given:

(i) 𝑉(𝑥) is positive definite,
(ii) 𝑉̇(𝑥) is negative definite,
(iii) 𝑉(𝑥) → ∞ as ‖𝑥‖ → ∞.

Then, the equilibrium at the origin is globally asymptotically
stable.

3. Problem Formulation

In [54], Lü et al. have considered a kind of chaotic systems and
pointed out that these systems can be described in a unified
form as follows:

𝑥̇
1
= (25𝛼 + 10) (𝑥

2
− 𝑥
1
) ,

𝑥̇
2
= (28 − 35𝛼) 𝑥

1
− 𝑥
1
𝑥
3
+ (29𝛼 − 1) 𝑥

2
,

𝑥̇
3
= 𝑥
1
𝑥
2
−

(8 + 𝛼) 𝑥
3

3
,

(14)

where 𝑥
1
, 𝑥
2
, and 𝑥

3
are state variables and 𝛼 ∈ [0, 1] is

the system parameter. Lü et al. [54] call system (14) a unified
chaotic system because it is chaotic for any 𝛼 ∈ [0, 1]. When
𝛼 ∈ [0, 0.8), system (14) is called a the generalized Lorenz
chaotic system. When 𝛼 = 0.8, it is called the Lü chaotic
system. And it is called the generalized Chen chaotic system
when 𝛼 ∈ (0.8, 1].

The fractional-order unified chaotic system has been
firstly introduced and studied in [55] and reads as

𝐷
𝑞
1𝑥
1
= (25𝛼 + 10) (𝑥

2
− 𝑥
1
) ,

𝐷
𝑞
2𝑥
2
= (28 − 35𝛼) 𝑥

1
− 𝑥
1
𝑥
3
+ (29𝛼 − 1) 𝑥

2
,

𝐷
𝑞
3𝑥
3
= 𝑥
1
𝑥
2
−

(8 + 𝛼) 𝑥
3

3
,

(15)

where 𝑞
1
, 𝑞
2
, 𝑞
3
∈ (0, 1] is the fractional order.

System (15) is considered as the drive (master) system and
the response (slave) system is a controlled system as follows:

𝐷
𝑞
1𝑦
1
= (25𝛼 + 10) (𝑦

2
− 𝑦
1
) + 𝑢
1
,

𝐷
𝑞
2𝑦
2
= (28 − 35𝛼) 𝑦

1
− 𝑦
1
𝑦
3
+ (29𝛼 − 1) 𝑦

2
+ 𝑢
2
,

𝐷
𝑞
3𝑦
3
= 𝑦
1
𝑦
2
−

(8 + 𝛼) 𝑦
3

3
+ 𝑢
3
.

(16)

Let us define the state errors between the response system
(16) and the drive system (15) as 𝑒

1
= 𝑦
1
− 𝑥
1
, 𝑒
2
= 𝑦
2
− 𝑥
2
,

and 𝑒
3
= 𝑦
3
− 𝑥
3
.

By subtracting (15) from (16), one can get the following
error dynamical system:

𝐷
𝑞
1𝑒
1
= (25𝛼 + 10) (𝑒

2
− 𝑒
1
) + 𝑢
1
,

𝐷
𝑞
2𝑒
2
= (28 − 35𝛼) 𝑒

1
+ 𝑒
1
𝑒
3
− 𝑒
1
𝑦
3

− 𝑒
3
𝑦
1
+ (29𝛼 − 1) 𝑒

2
+ 𝑢
2
,

𝐷
𝑞
3𝑒
3
= −𝑒
1
𝑒
2
+ 𝑒
1
𝑦
2
+ 𝑒
2
𝑦
1
−

(8 + 𝛼) 𝑒
3

3
+ 𝑢
3
.

(17)

Ourmain objective in this paper is to investigate the synchro-
nization issue for the fractional-order unified chaotic system
(15). It is clear that the synchronization of systems (15) and
(16) is equivalent to the stabilization of the error dynamical
system (17).

4. Synchronization Design

In the following, the sliding mode control technique, which
can maintain low sensitivity to unmodeled dynamics and
external disturbances, is applied to establish an effective
control law to guarantee the synchronization of the drive
system (15) and the response system (16). Two major steps
are involved in the sliding mode control design: firstly,
constructing an appropriate sliding surface on which the
desired system dynamics is stable and, secondly, developing a
suitable control law such that the sliding condition is attained.

4.1. Synchronization of the Nominal System. In this sub-
section, let us firstly consider a simple case: the nominal
fractional-order unified chaotic system; that is, the system
contains no systematic uncertainties or external disturbances.
The design procedure is elaborated in the rest part of this
subsection.

4.1.1. Sliding Surfaces Design. In order to achieve the stability
of system (17), three sliding surfaces 𝑆

1
, 𝑆
2
, and 𝑆

3
are

introduced as

𝑠
𝑖
(𝑡) = (𝐷

𝑞
𝑖 + 𝜆
𝑖
) ∫

𝑡

0

𝑒
𝑖
(𝜏) 𝑑𝜏, 𝑖 = 1, 2, 3, (18)

the time derivative of which becomes

̇𝑠
𝑖
(𝑡) = 𝐷

𝑞
𝑖𝑒
𝑖
(𝑡) + 𝜆

𝑖
𝑒
𝑖
(𝑡) , 𝑖 = 1, 2, 3. (19)

As long as system (17) operates on the sliding surfaces,
it satisfies 𝑠

𝑖
= 0 and ̇𝑠

𝑖
= 0, 𝑖 = 1, 2, 3, which yields the

following sliding mode dynamics:

𝐷
𝑞
1𝑒
1
= −𝜆
1
𝑒
1
,

𝐷
𝑞
2𝑒
2
= −𝜆
2
𝑒
2
,

𝐷
𝑞
3𝑒
3
= −𝜆
3
𝑒
3
.

(20)

By using Lemmas 6 or 7, system (20) is asymptotically
stable. As a result, the sliding mode surfaces (18) we have just
constructed are appropriate for the control design.

4.1.2. Control Laws Design

Step 1. Choose the first control Lyapunov function

𝑉
1
(𝑡) =

1

2
𝑠
2

1
. (21)

Taking time derivative gives

𝑉̇
1
(𝑡) = 𝑠

1
̇𝑠
1
= 𝑠
1
(𝐷
𝑞
1𝑒
1
+ 𝜆
1
𝑒
1
) . (22)
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Substituting the first state equation of (17) into (22), one has

𝑉̇
1
(𝑡) = 𝑠

1
[(25𝛼 + 10) (𝑒

2
− 𝑒
1
) + 𝑢
1
+ 𝜆
1
𝑒
1
] . (23)

Therefore, by designing the first control law as

𝑢
1
= − (25𝛼 + 10) (𝑒

2
− 𝑒
1
) − 𝜆
1
𝑒
1
− 𝑘
1
sgn (𝑠

1
) , (24)

where 𝑘
1
> 0 and

sgn (𝑠) =

{{

{{

{

1, 𝑠 > 0,

0, 𝑠 = 0,

−1, 𝑠 < 0,

(25)

then, (23) becomes

𝑉̇
1
(𝑡) = −𝑘

1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 .

(26)

Step 2. Choose the second control Lyapunov function

𝑉
2
(𝑡) =

1

2
𝑠
2

2
. (27)

By taking its derivative with respect to time yields

𝑉̇
2
(𝑡) = 𝑠

2
̇𝑠
2
= 𝑠
2
(𝐷
𝑞
2𝑒
2
+ 𝜆
2
𝑒
2
) . (28)

Substituting the second state equation of (17) into (28), one
has

𝑉̇
2
(𝑡) = 𝑠

2
[(28 − 35𝛼) 𝑒

1
+ 𝑒
1
𝑒
3
− 𝑒
1
𝑦
3
− 𝑒
3
𝑦
1

+ (29𝛼 − 1) 𝑒
2
+ 𝑢
2
+ 𝜆
2
𝑒
2
] .

(29)

Therefore, by designing the second control law as

𝑢
2
= − (28 − 35𝛼) 𝑒

1
− 𝑒
1
𝑒
3
+ 𝑒
1
𝑦
3
+ 𝑒
3
𝑦
1

− (29𝛼 − 1) 𝑒
2
− 𝜆
2
𝑒
2
− 𝑘
2
sgn (𝑠

3
) ,

(30)

where 𝑘
2
> 0.

Equation (29) becomes

𝑉̇
2
(𝑡) = −𝑘

2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 .

(31)

Step 3. Choose the third control Lyapunov function

𝑉
3
(𝑡) =

1

2
𝑠
2

3
. (32)

Its time derivative is given by

𝑉̇
3
(𝑡) = 𝑠

3
̇𝑠
3
= 𝑠
3
(𝐷
𝑞
3𝑒
3
+ 𝜆
3
𝑒
3
) . (33)

Substituting the third state equation of (17) into (33), one has

𝑉̇
3
(𝑡) = 𝑠

3
[−𝑒
1
𝑒
2
+ 𝑒
1
𝑦
2
+ 𝑒
2
𝑦
1
−

(8 + 𝛼) 𝑒
3

3
+ 𝑢
3
+ 𝜆
3
𝑒
3
] .

(34)

We are, then, in the position to design the third control law
as follows:

𝑢
3
= 𝑒
1
𝑒
2
− 𝑒
1
𝑦
2
− 𝑒
2
𝑦
1
+

(8 + 𝛼) 𝑒
3

3
− 𝜆
3
𝑒
3
− 𝑘
3
sgn (𝑠

3
) ,

(35)

where 𝑘
3
> 0.

With this choice, (34) can be rewritten as

𝑉̇
3
(𝑡) = −𝑘

3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 .

(36)

Step 4. Finally, we gather the above three control functions as

𝑉 (𝑠
1
, 𝑠
2
, 𝑠
3
) =

1

2
𝑠
2

1
+

1

2
𝑠
2

2
+

1

2
𝑠
2

3
. (37)

It is clear from (26), (31), and (36) that

𝑉̇ (𝑠
1
, 𝑠
2
, 𝑠
3
) = − (𝑘

1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 + 𝑘
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 + 𝑘
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨) .

(38)

There exists some 𝑘 > 0 such that

𝑘
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 + 𝑘
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 + 𝑘
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 > 𝑘 ‖𝑠‖ , (39)

where

‖𝑠‖ = √𝑠
2

1
+ 𝑠
2

2
+ 𝑠
2

3
. (40)

The resulting derivative of 𝑉 is

𝑉̇ (𝑠
1
, 𝑠
2
, 𝑠
3
) < −𝑘 ‖𝑠‖ . (41)

In terms of Lemma 8, the Lyapunov function (37) pro-
vides the proof of globally asymptotical stability with the
control laws (24), (30), and (35).

4.2. Synchronization of the Uncertain System. In this subsec-
tion, we will proceed to study the synchronization of the
fractional-order unified chaotic system in the presence of
systematic uncertainties and external disturbances which can
be hardly ignored in the real-world application. It is assumed
that systematic uncertainties Δ𝑓

1
, Δ𝑓
2
, and Δ𝑓

3
and external

disturbances 𝑑
1
, 𝑑
2
, and 𝑑

3
are all bounded; that is, |Δ𝑓

𝑖
| <

𝜌
𝑖
and |𝑑

𝑖
(𝑡)| < 𝜃

𝑖
, where 𝜌

𝑖
and 𝜃

𝑖
are unknown positive

constants, 𝑖 = 1, 2, 3. Let us denote that 𝜌
𝑖
is an estimate of 𝜌

𝑖
,

while 𝜃
𝑖
is an estimate of 𝜃

𝑖
. Since 𝜌

𝑖
and 𝜃
𝑖
are unknown, our

task in this subsection is fulfilled with an adaptive controller
consisting of control laws and update laws to obtain 𝜌

𝑖
and 𝜃
𝑖
,

𝑖 = 1, 2, 3.
The uncertain fractional-order unified chaotic system can

be described as

𝐷
𝑞
1𝑒
1
= (25𝛼 + 10) (𝑒

2
− 𝑒
1
) + Δ𝑓

1
+ 𝑑
1
+ 𝑢
1
,

𝐷
𝑞
2𝑒
2
= (28 − 35𝛼) 𝑒

1
+ 𝑒
1
𝑒
3
− 𝑒
1
𝑦
3
− 𝑒
3
𝑦
1

+ (29𝛼 − 1) 𝑒
2
+ Δ𝑓
2
+ 𝑑
2
+ 𝑢
2
,

𝐷
𝑞
3𝑒
3
= −𝑒
1
𝑒
2
+ 𝑒
1
𝑦
2
+ 𝑒
2
𝑦
1
−

(8 + 𝛼) 𝑒
3

3
+ Δ𝑓
3
+ 𝑑
3
+ 𝑢
3
.

(42)

The adaptive sliding mode design of system (42) consists
of four steps which are elaborated as follows.

Step 1. Consider the first control Lyapunov function

𝑉
1
(𝑡) =

1

2
[𝑠
2

1
+

1

𝜇
1

(𝜌
1
− 𝜌
1
)
2

+
1

𝛾
1

(𝜃
1
− 𝜃
1
)
2

] , (43)
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the time derivative of which becomes

𝑉̇
1
(𝑡) = 𝑠

1
̇𝑠
1
+

1

𝜇
1

(𝜌
1
− 𝜌
1
) ̇̂𝜌
1
+

1

𝛾
1

(𝜃
1
− 𝜃
1
)

̇̂
𝜃
1

= 𝑠
1
(𝐷
𝑞
1𝑒
1
+ 𝜆
1
𝑒
1
) +

1

𝜇
1

(𝜌
1
− 𝜌
1
) ̇̂𝜌
1

+
1

𝛾
1

(𝜃
1
− 𝜃
1
)

̇̂
𝜃
1
.

(44)

Substituting the first state equation of (17) into (44), one has

𝑉̇
1
(𝑡) = 𝑠

1
[(25𝛼 + 10) (𝑒

2
− 𝑒
1
) + Δ𝑓

1
+ 𝑑
1
+ 𝑢
1
+ 𝜆
1
𝑒
1
]

+
1

𝜇
1

(𝜌
1
− 𝜌
1
) ̇̂𝜌
1
+

1

𝛾
1

(𝜃
1
− 𝜃
1
)

̇̂
𝜃
1
.

(45)

By designing the first control law and adaptive law as

𝑢
1
= − (25𝛼 + 10) (𝑒

2
− 𝑒
1
) − 𝜆
1
𝑒
1
− (𝜌
1
+ 𝜃
1
+ 𝑘
1
) sgn (𝑠

1
) ,

(46)

̇̂𝜌
1
= 𝜇
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 ,

̇̂
𝜃
1
= 𝛾
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 ,

(47)

then, (45) becomes

𝑉̇
1
= 𝑠 [(Δ𝑓

1
+ 𝑑
1
) − (𝜌

1
+ 𝜃
1
+ 𝑘
1
) sgn (𝑠

1
)]

+ (𝜌
1
− 𝜌
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 + (𝜃
1
− 𝜃
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨

≤ (
󵄨󵄨󵄨󵄨Δ𝑓1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑑1

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 − (𝜌
1
+ 𝜃
1
+ 𝑘
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨

+ (𝜌
1
− 𝜌
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 + (𝜃
1
− 𝜃
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨

< (𝜌
1
+ 𝜃
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 − (𝜌
1
+ 𝜃
1
+ 𝑘
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨

+ (𝜌
1
− 𝜌
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 + (𝜃
1
− 𝜃
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨 = −𝑘
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 .

(48)

Step 2. Choose the second control Lyapunov function

𝑉
2
(𝑡) =

1

2
[𝑠
2

2
+

1

𝜇
2

(𝜌
2
− 𝜌
2
)
2

+
1

𝛾
2

(𝜃
2
− 𝜃
2
)
2

] (49)

whose derivative is

𝑉̇
2
(𝑡) = 𝑠

2
̇𝑠
2
+

1

𝜇
2

(𝜌
2
− 𝜌
2
) ̇̂𝜌
2
+

1

𝛾
2

(𝜃
2
− 𝜃
2
)

̇̂
𝜃
2

= 𝑠
2
(𝐷
𝑞
2𝑒
2
+ 𝜆
2
𝑒
2
) +

1

𝜇
2

(𝜌
2
− 𝜌
2
) ̇̂𝜌
2

+
1

𝛾
1

(𝜃
2
− 𝜃
2
)

̇̂
𝜃
2
.

(50)

Substituting the second state equation of (17) into (50), one
has

𝑉̇
2
(𝑡) = 𝑠

2
[(28 − 35𝛼) 𝑒

1
+ 𝑒
1
𝑒
3
− 𝑒
1
𝑦
3

−𝑒
3
𝑦
1
+ (29𝛼 − 1) 𝑒

2
]

+ 𝑠
2
[Δ𝑓
2
+ 𝑑
2
+ 𝑢
2
+ 𝜆
2
𝑒
2
]

+
1

𝜇
2

(𝜌
2
− 𝜌
2
) ̇̂𝜌
2
+

1

𝛾
2

(𝜃
2
− 𝜃
2
)

̇̂
𝜃
2
.

(51)

We choose the control law and the adaptive law

𝑢
2
= − (28 − 35𝛼) 𝑒

1
− 𝑒
1
𝑒
3
+ 𝑒
1
𝑦
3
+ 𝑒
3
𝑦
1

− (29𝛼 − 1) 𝑒
2
− 𝜆
2
𝑒
2
− (𝜌
2
+ 𝜃
2
+ 𝑘
2
) sgn (𝑠

2
) ,

(52)

̇̂𝜌
2
= 𝜇
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 ,

(53)

̇̂
𝜃
2
= 𝛾
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 .

(54)

With this choice, (51) becomes

𝑉̇
2
(𝑡) < −𝑘

2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 .

(55)

Step 3. Choose the third Lyapunov function

𝑉
3
(𝑡) =

1

2
[𝑠
2

3
+

1

𝜇
3

(𝜌
3
− 𝜌
3
)
2

+
1

𝛾
3

(𝜃
3
− 𝜃
3
)
2

] . (56)

Taking time derivative gives

𝑉̇
3
(𝑡) = 𝑠

3
̇𝑠
3
+

1

𝜇
3

(𝜌
3
− 𝜌
3
) ̇̂𝜌
3
+

1

𝛾
3

(𝜃
3
− 𝜃
3
)

̇̂
𝜃
3

= 𝑠
3
(𝐷
𝑞
3𝑒
3
+ 𝜆
3
𝑒
3
) +

1

𝜇
3

(𝜌
3
− 𝜌
3
) ̇̂𝜌
3

+
1

𝛾
3

(𝜃
3
− 𝜃
3
)

̇̂
𝜃
3
.

(57)

Substituting the third state equation of (17) into (57), one has

𝑉̇
3
(𝑡) = 𝑠

3
[−𝑒
1
𝑒
2
+ 𝑒
1
𝑦
2
+ 𝑒
2
𝑦
1
−

(8 + 𝛼) 𝑒
3

3
]

+ 𝑠
3
[Δ𝑓
3
+ 𝑑
3
+ 𝑢
3
+ 𝜆
3
𝑒
3
]

+
1

𝜇
3

(𝜌
3
− 𝜌
3
) ̇̂𝜌
3
+

1

𝛾
3

(𝜃
3
− 𝜃
3
)

̇̂
𝜃
3
.

(58)

We choose the third control law and adaptive law

𝑢
3
= 𝑒
1
𝑒
2
− 𝑒
1
𝑦
2
− 𝑒
2
𝑦
1
+

(8 + 𝛼) 𝑒
3

3
− 𝜆
3
𝑒
3

− (𝜌
3
+ 𝜃
3
+ 𝑘
3
) sgn (𝑠

3
) ,

(59)

̇̂𝜌
3
= 𝜇
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 ,

̇̂
𝜃
3
= 𝛾
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 .

(60)

Then, the resulting derivative of 𝑉
3
is

𝑉̇
3
(𝑡) < −𝑘

3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 .

(61)
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Figure 1: Chaotic trajectories with 𝛼 = 0.5.

Step 4. Finally, we gather the above three control functions as

𝑉 (𝑡) =
1

2

3

∑

𝑖=1

𝑠
2

𝑖
+

3

∑

𝑖=1

1

2𝜇
𝑖

(𝜌
𝑖
− 𝜌
𝑖
)
2

+

3

∑

𝑖=1

1

2𝛾
𝑖

(𝜃
𝑖
− 𝜃
𝑖
)
2

. (62)

It is clear from (48), (55), and (61) that

𝑉̇ (𝑡) = − (𝑘
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 + 𝑘
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 + 𝑘
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨) .

(63)

There exists some 𝑘 > 0 such that

𝑘
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 + 𝑘
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 + 𝑘
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 > 𝑘 ‖𝑠‖ . (64)

The resulting derivative of 𝑉̇ is

𝑉̇ (𝑠
1
, 𝑠
2
, 𝑠
3
) < −𝑘 ‖𝑠‖ , (65)

where

‖𝑠‖ = √𝑠
2

1
+ 𝑠
2

2
+ 𝑠
2

3
. (66)

By using Lemma 8, this Lyapunov function provides the
proof of globally asymptotical stability with the control laws
(46), (52), and (59) and adaptive laws (47), (53), and (60).

5. Numerical Simulations

5.1. Chaotic Behaviors of Fractional-Order Chaotic System. In
[55], the authors have provided us with numerical methods
of fractional calculus. In [56], the chaotic behaviors of the
fractional-order unified system were numerically investi-
gated, where it is found that the lowest order to exhibit chaos
is 2.76.

The chaotic behaviors are presented in Figures 1 and
2 with fractional orders of 𝑞

1
= 0.93, 𝑞

2
= 0.94, and
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Figure 2: Chaotic trajectories with 𝛼 = 1.

𝑞
3
= 0.95 and the initial conditions of (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) =

(−1, −2, 1).Thenumerical algorithm is based on the following
Grünwald-Letnikov’s definition:

𝑥 (𝑡
𝑘
) = (25𝛼 + 10) (𝑥

2
(𝑡
𝑘−1

) − 𝑥
1
(𝑡
𝑘−1

)) ℎ
𝑞
1

−

𝑘

∑

𝑗=2

𝑐
(𝑞
1
)

𝑗
𝑥
1
(𝑡
𝑘−𝑗

) ,

𝑥
2
(𝑡
𝑘
) = [(28 − 35𝛼) 𝑥

1
(𝑡
𝑘
) − 𝑥
1
(𝑡
𝑘
) 𝑥
3
(𝑡
𝑘−1

)

+ (29𝛼 − 1) 𝑥
2
(𝑡
𝑘−1

)] ℎ
𝑞
2 −

𝑘

∑

𝑗=2

𝑐
(𝑞
2
)

𝑗
𝑥
2
(𝑡
𝑘−𝑗

) ,

𝑥
3
(𝑡
𝑘
) = [𝑥

1
(𝑡
𝑘
) 𝑥
2
(𝑡
𝑘
) −

𝛼 + 8

3
𝑥
3
(𝑡
𝑘−1

)] ℎ
𝑞
3

−

𝑘

∑

𝑗=2

𝑐
(𝑞
3
)

𝑗
𝑥
3
(𝑡
𝑘−𝑗

) ,

(67)

where 𝑇sim is the simulation time, 𝑘 = 1, 2, . . . , 𝑁, for 𝑁 =

[𝑇sim/ℎ].

5.2. Simulations of Synchronization of the Nominal System.
In this subsection, numerical simulations are presented to
demonstrate the effectiveness of the proposed sliding model
control in Section 4.1. In the numerical simulations, the
fractional orders are chosen as 𝑞

1
= 0.93, 𝑞

2
= 0.94, and

𝑞
3
= 0.95. The initial conditions of the drive system (15) and

the response system (16) are chosen as (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) =

(−1, −2, 1) and (𝑦
1
(0), 𝑦
2
(0), 𝑦
3
(0)) = (4, −4, 4), respectively.

Parameters in (18) are chosen as 𝜆
1
= 𝜆
2
= 𝜆
3
= 4. Gains

of the control inputs in (24), (30), and (35) are chosen as
𝑘
1
= 𝑘
2
= 𝑘
2
= 1.

When 𝛼 = 0.5 and 𝛼 = 1, numerical simulations of
synchronization of system (15) are presented in Figures 3,
4, 5, 6, 7, and 8 with control inputs (24), (30), and (35).
For interpretations of the references to colors in these figure
legends, the reader is referred to the web version of this paper.
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Figure 3: Synchronization of determined fractional-order unified chaotic system with 𝛼 = 0.5 (blue line represents the trajectories of the
drive system, while red line represents the trajectories of the response system).
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Figure 4: Synchronization errors states with 𝛼 = 0.5 (red line represents the first error state 𝑒
1
, blue line represents the second error state 𝑒
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and black line represents the third error state 𝑒
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, blue line represents the second sliding
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, and black line represents the third sliding surface state 𝑠
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).
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Figure 6: Synchronization of determined fractional-order unified chaotic system with 𝛼 = 1 (blue line represents the trajectories of the drive
system, while red line represents the trajectories of the response system).

0 2 4 6 8 10

0

1

2

3

4

5

 Time (s)

Sy
nc

hr
on

iz
at

io
n 

er
ro

rs

−2

−1
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Figure 9: Synchronization of fractional-order unified chaotic
system in the presence of systematic uncertainties and external
disturbances with 𝛼 = 0.5 (blue line represents the trajectories of
the drive system, while red line represents the trajectories of the
response system).
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Figure 10: Synchronization errors states in the presence of system-
atic uncertainties and external disturbances with 𝛼 = 0.5 (red line
represents the first error state 𝑒

1
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2
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).

5.3. Simulations of Synchronization of the Uncertain System.
In this subsection, numerical simulations are presented to
demonstrate the effectiveness of the proposed adaptive slid-
ing model control in Section 4.2. In the numerical simula-
tions, the fractional orders are always chosen as 𝑞

1
= 0.93,

𝑞
2
= 0.94, and 𝑞

3
= 0.95. The initial conditions of the drive

system (15) and the response system (16) are also chosen as
(𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (−1, −2, 1) and (𝑦

1
(0), 𝑦
2
(0), 𝑦
3
(0)) =

(4, −4, 4), respectively. Parameters in (18) are chosen as
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Figure 11: Sliding surfaces states in the presence of systematic
uncertainties and external disturbances with 𝛼 = 0.5 (red line
represents the first sliding surface state 𝑠

1
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second sliding surface state 𝑠
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Figure 12: Synchronization of fractional-order unified chaotic
system in the presence of systematic uncertainties and external
disturbances with 𝛼 = 1 (blue line represents the trajectories of
the drive system, while red line represents the trajectories of the
response system).

𝜆
1

= 𝜆
2

= 𝜆
3

= 20. Gains of the control laws (46), (52),
and (59) are chosen as 𝑘

1
= 𝑘
2

= 𝑘
2

= 0.5. Gains of the
adaptive laws (47), (53), and (60) are chosen as 𝜇

1
= 𝛾
1
=

𝜇
2

= 𝛾
2

= 𝜇
3

= 𝛾
3

= 0.1. Systematic uncertainties and
external disturbances are assumed to be Δ𝑓

1
= 0, 𝑑

1
=

−3 cos(𝜋(𝑡 − 0.1)), Δ𝑓
2
= −0.6 sin(2(𝑦

1
− 𝑥
1
)), 𝑑
2
= 5 sin(𝑡),

Δ𝑓
3
= 0, and 𝑑

3
= 2 cos(𝑡 − 0.1).
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Figure 13: Synchronization errors states in the presence of system-
atic uncertainties and external disturbances with 𝛼 = 1 (red line
represents the first error state 𝑒

1
, blue line represents the second

error state 𝑒
2
, and black line represents the third error state 𝑒

3
).
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Figure 14: Sliding surfaces states in the presence of systematic
uncertainties and external disturbances with 𝛼 = 1 (red line
represents the first sliding surface state 𝑠

1
, blue line represents the

second sliding surface state 𝑠
2
, and black line represents the third

sliding surface state 𝑠
3
).

When 𝛼 = 0.5 and 𝛼 = 1, numerical simulations are
presented in Figures 9, 10, 11, 12, 13, and 14 with control inputs
(46), (52), and (59) and adaptive laws (47), (53), and (60).
For interpretations of the references to colors in these figure
legends, the reader is referred to the web version of this paper.

6. Conclusions

This work is concerned with robust synchronization of the
fractional-order unified chaotic system. The sliding mode
control technique was applied to propose the control design
of nominal system and adaptive slidingmode control scheme

was designed to develop the control laws and adaptive laws for
uncertain system with systematic uncertainties and external
disturbances whose bounds are unknown. Numerical simu-
lations were presented to demonstrate the effectiveness of the
two kinds of techniques.
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