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This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional
synchronization and antisynchronization are considered a very narrow subset from the proposed techniquewhere the scale between
the output response and the input response can be controlled via control functions and this scale may be either constant (positive,
negative) or time dependent. The concept of the proposed technique is based on the nonlinear control theory and Lyapunov
stability theory. The nonlinear controller is designed to ensure the stability and convergence of the proposed synchronization
scheme. This technique is applied on the synchronization of two identical fractional-order Chua’s circuit systems with memristor.
Different examples are studied numerically with different system parameters, different orders, and with five alternative cases where
the scaling functions are chosen to be positive/negative and constant/dynamic which covers all possible cases from conventional
synchronization to the amplitude modulation cases to validate the proposed concept.

1. Introduction

Despite that the history of fractional calculus started in the
same period of time as integer calculus, themajor revolutions
in this area have been discovered only during the last five
decades where the realization, modeling, and numerical
simulations were available [1–4]. Similarly, the chaotic sys-
tems have been studied heavily during the last four decades
since they play an important role in industrial applications
particularly in chemical reactions [5], biological systems [6],
circuit theory [7–11], control [12], and security applications
[13–16]. Recently much attention has been devoted to the
search for better and more efficient methods for the control
or determination of a solution, approximate or analytical, of
chaotic systems.

Antisynchronization is a phenomenon in which the state
vectors of the synchronized systems have the same amplitude
but opposite signs to those of the driving system. Therefore,
the sum of two signals is expected to converge to zero
when antisynchronization appears. Since the discovery of

antisynchronization experimentally in the context of self-
synchronization, it has been applied in many different fields,
such as biological and physical systems, structural engineer-
ing, and ecological models [17]. Liu et al. [18] show that either
synchronization or antisynchronization can appear depend-
ing on the initial conditions of the coupled pendula. Active
control method is used to study the antisynchronization for
two identical and nonidentical systems [19–21].

The synchronization of fractional chaotic systems has
started to attract much attention and has also raised up
some problems [22–24]. Recently the consistency of the
improvement ofmodels based on fractional-order differential
structure has increased in reputation in the research of
dynamical systems [25–27]. Yu et al. studied the synchroniza-
tion of three chaotic fractional-order Lorenz systems with
bidirectional coupling [28], Odibat et al. [29] investigated
the chaos synchronization of two identical systems via linear
control, and Bhalekar and Daftardar-Gejji [30] demonstrated
that two different fractional-order chaotic systems can be
synchronized using active control.
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Recently, Radwan et al. [31] developed a framework to
obtain approximate numerical solutions of the fractional-
order Chua’s circuit with memristor using a nonstandard
finite difference method. The most important advantage of
using fractional order is to increase the chaotic range as
proven from the stability analyses of this circuit in both
the W-plane and s-plane. Moreover, another circuit from
Chua’s family was studied and modified with the use of
memristor with detailed responses by Petráš in [32]. In
this paper, the concept of dynamic scaling between the
master and slave systems in the fractional-order domain is
introduced. The proposed concept covers the conventional
synchronization up to the amplitude modulation technique.
Different examples have been studied based on the nonlinear
antisynchronization of two identical fractional-order chaotic
Chua’s circuits with memristor. This generalized projective
synchronization is based on the nonlinear control theory and
Lyapunov stability theory.

The paper is organized as follows. In Section 2 we provide
some mathematical models of the fractional calculus theory
and describe the nonstandard finite difference scheme to
solve fractional differential equations and in the last subsec-
tion we present the fractional Chua’s circuit with memristor.
Nonlinear antisynchronization of two identical fractional-
order chaotic Chua’s circuit systems is also introduced in
Section 3, while the generalized projective synchronization is
discussed in Section 4. Finally, conclusions are drawn in the
last section.

2. Fractional Order System Memristor Based
Chua’s Circuit

Recently,most of the dynamical systems based on the integer-
order calculus have been modified into the fractional order
domain due to the extra degrees of freedom which increase
the flexibility of the design and can be used to precisely fit
the experimental data much better than the integer-order
modeling. The Caputo fractional derivative of order 𝛼 of a
continuous function 𝑓 : 𝑅

+
→ 𝑅 is defined as follows:
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where 𝑚 is the first integer greater than 𝛼 and Γ(⋅) is the
gamma function and is defined by
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The Grünwald-Letnikov method of approximation for the
one-dimensional fractional derivative is as follows [33]:
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where 𝛼 > 0 and 𝐷∝ denotes the fractional derivative. Also
𝑁 = [𝑡/ℎ], and ℎ is the step size. Therefore, (3a) and (3b) is
discretized as follows:
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The nonstandard discretization technique [34] is a general
scheme where we replace the step size ℎ by a function 𝜑(ℎ).
By applying this technique and using the Grünwald-Letnikov
discretization method [2, 31], it yields the following relations:
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where 𝑐𝛼1
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1
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2
), when ℎ → 0. The fractional-order

Chua’s circuit [31] based on the new nanodevice element
which is calledmemristor [35–38] is shown in Figure 1with its
𝑞−𝜙 relationship.The canonical memristor-based fractional-
order Chua’s circuit can be written as follows:
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𝑘 = {

𝑚
1
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𝑚
2
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(7b)

where 𝑎, 𝑏, 𝑐, m
1
, andm

2
are related to the circuit parameters

[31]. The effect of the memristive property appears through
the parameter 𝑘 (the slope of the charge with respect to the
flux in the memristor) which is a piecewise-linear function
with two different slopes m

1
and m

2
depending on the value

of the flux 𝑢 (Figure 1(b)). It is clear that the system has
four variables which are {𝑥, 𝑦, 𝑧, and 𝑢} and the chaotic
behavior exists in a wider range as proved in [31].The chaotic
behavior has been verified by the calculation of themaximum
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Figure 1: (a)The canonical Chua’s circuit with memristor, (b) the piecewise-linear flux-controlled memristor, and (c) 3D shapes in the u-y-z
plane when (𝛼, 𝛽, 𝛾) (a) (1.0, 0.9, 0.9) and (d) (1.1, 0.9, 0.9).

Lyapunov exponent (MLE). Figures 1(c) and 1(d) show the
chaotic responses for two different cases where the 𝛼 order
changes from 1.0 to 1.1. It is clear from these subfigures that
the output response is very sensitive to the fractional-order
parameters.Therefore, these fractional-order parameters can
be used for extra degrees of freedom and also to control the
behavior of the strange attractors of the Chua’s circuit.

3. The Proposed Technique

From the previous section, the fractional-order memristor-
based Chua’s circuit has ten parameters which are three
fractional-orders {𝛼, 𝛽, 𝛾}, three system parameters {𝑎, 𝑏, 𝑐},
and the initial conditions. Figure 2 shows the general block
diagram of the proposed system assuming that the fractional-
orders of the two systems are identical but the other seven
parameters may be different. The idea is based on modifying
the equations of the second system by adding control func-
tions {𝑢

1
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2
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Then, if 𝑠
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4
= −1, this will be the conventional

synchronization, and if 𝑠
1
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be the antisynchronization as will be discussed in the next
subsection.Moreover, the scaling functions 𝑠

𝑖
(𝑡), 𝑖 = 1, 2, 3, 4,

can have different values and time-dependent functions are
discussed in the next subsections.

3.1. Nonlinear Antisynchronization of Two Identical Frac-
tional-Order Chaotic Chua’s Circuit Systems (𝑠

𝑖
= 1, 𝑖 =

1, 2, 3, 4). In this subsection we observe the antisynchroniza-
tion behavior in two identical fractional-order chaotic Chua’s
circuit systems via nonlinear control. The drive (master) and
slave (response) systems are described, respectively, by the
following equations. However, the initial condition on the
drive system is different from that of the response system:
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where the control function 𝑢 = [𝑢
1
; 𝑢
2
; 𝑢
3
; 𝑢
4
]
𝑇

= 0. Our
goal is to determine the control function to make the first
derivative of 𝑉(𝑒), that is, 𝑉(𝑒) < 0. From (9a), (9b), (9c),
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Figure 4:The general synchronization of (a), (b) the𝑥 and𝑦 responses when {𝛼, 𝛽, 𝛾, 𝑎
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for Case A, (c) the 𝑥 response under the same condition with additive noise with amplitude 0.1, (d) the response when
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1
, 𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} = {0.96, 0.96, 0.96, 4, 1, 0.65, 4, 1, 0.65} for Case B, and (e) Case C.

and (9d) to (10a), (10b), (10c), and (10d), the error equations
when the systemparameters {𝑎
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are given as follows:
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In order to determine the controller, let
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Then we rewrite system (11a), (11b), (11c), and (11d) in the
following form:
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Based on the Lyapunov stability theory, when the controller
satisfies the assumption 𝑉(𝑒) = 0.5𝑒

𝑇
𝑒, a positive definite

function, the first derivative of 𝑉(𝑒), 𝑉(𝑒) < 0, and the
antisynchronization of two identical Chua’s circuit systems
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from different initial conditions is achieved, we choose 𝑢 as
follows:
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− 𝑎𝑒
𝑦
, (14a)

𝑢
2
= −𝑒
𝑧
+ 𝑒
𝑥
− 𝑒
𝑦
, (14b)

𝑢
3
= −2𝑐𝑒

𝑧
+ 𝑏𝑒
𝑦
, (14c)
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𝑥
− 𝑒
𝑢
. (14d)

Theorem 1. The nonlinear controller achieves global anti-
synchronization between two identical Chua’s circuit systems
master (9a), (9b), (9c), and (9d) and slave (10a), (10b), (10c),
and (10d).

Proof. Take a Lyapunov function for (13a), (13b), (13c), and
(13d) into consideration as

𝑉 (𝑒) = 0.5𝑒
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We then get the first derivative of 𝑉(𝑒):
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so �̇�(𝑒) < 0 is satisfied. Since �̇�(𝑒) is a negative-definite
function [39], the error states tend to zero at steady state.
Therefore, the states of controlled response system and drive
system are globally antisynchronized asymptotically.

3.2. Generalized Projective Synchronization of Two Identical
Chua’s Circuits. In this subsection we study the synchroniza-
tion between two identical fractional-order chaotic Chua’s
circuits based on the generalized projective synchronization.
The unknown terms 𝑢
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4
in (11a), (11b), (11c), and
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error functions as

(

𝑒
𝑥
(𝑡)

𝑒
𝑦
(𝑡)

𝑒
𝑧
(𝑡)

𝑒
𝑤
(𝑡)

) = (

𝑥
1
(𝑡) + 𝑠

1
(𝑡) 𝑥
2
(𝑡)

𝑦
1
(𝑡) + 𝑠

2
(𝑡) 𝑦
2
(𝑡)

𝑧
1
(𝑡) + 𝑠

3
(𝑡) 𝑧
2
(𝑡)

𝑤
1
(𝑡) + 𝑠

4
(𝑡) 𝑤
2
(𝑡)

) . (17)

Then by similar procedure, the control functions are given by

(

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

𝑢
4
(𝑡)

) =

(

(

(

(

(

(

(𝑎
1
𝑓 (𝑤
1
(𝑡)) − 𝑘

𝑥
) 𝑥
1
(𝑡) −𝑎

1
𝑦
1
(𝑡)

𝑠
1
(𝑡)

+ (𝑎
2
𝑓 (𝑤
2
(𝑡)) − 𝑘

𝑥
) 𝑥
2
(𝑡) − 𝑎

2
𝑦
2
(𝑡)

𝑥
1
(𝑡) − 𝑧

1
(𝑡) − 𝑘

𝑦
𝑦
1
(𝑡)

𝑠
2
(𝑡)

+ 𝑥
2
(𝑡) − 𝑧

2
(𝑡) − 𝑘

𝑦
𝑦
2
(𝑡)

𝑏
1
𝑦
1
(𝑡) − 𝑐

1
𝑧
1
(𝑡) − 𝑘

𝑧
𝑧
1
(𝑡)

𝑠
3
(𝑡)

+ 𝑏
2
𝑦
2
(𝑡) − 𝑐

2
𝑧
2
(𝑡) − 𝑘

𝑧
𝑧
2
(𝑡)

−𝑥
1
(𝑡) − 𝑘

𝑤
𝑤
1
(𝑡)

𝑠
4
(𝑡)

+ −𝑥
2
(𝑡) − 𝑘

𝑤
𝑤
2
(𝑡)

)

)

)

)

)

)

. (18a)

Then

(

𝐷
𝛼
𝑒
𝑥

𝐷
𝛽
𝑒
𝑦

𝐷
𝛾
𝑒
𝑧

𝐷𝑒
𝑤

)

=(

−𝑘
𝑥

0

0

0

0

−𝑘
𝑦

0

0

0

0

−𝑘
𝑧

0

0

0

0

−𝑘
𝑤

)(

𝑒
𝑥

𝑒
𝑦

𝑒
𝑧

𝑒
𝑤

)

(18b)

which are decaying functions as the values of 𝑘
𝑥
, 𝑘
𝑦
, 𝑘
𝑧
, and

𝑘
𝑤
are positive.

4. Numerical Results

Nonstandard finite difference method with 𝜙(ℎ) = 1 − 𝑒
−ℎ

is used to solve the systems of differential equations. In
addition, a time step size 0.01 is employed. We select the
parameters of the master system of Chua’s circuit system as

𝑎
1
= 4, 𝑏

1
= 1, 𝑐

1
= 0.65,𝑚

1
= 0.2, and 𝑚

2
= 5, so these

systems exhibit chaotic behavior with the following initial
conditions:

(

𝑥
1
(0)

𝑦
1
(0)

𝑧
1
(0)

𝑤
1
(0)

) = (

0.01

0.02

0.01

0.05

) ,

(

𝑥
2
(0)

𝑦
2
(0)

𝑧
2
(0)

𝑤
2
(0)

) = (

0.02

0.03

0.02

0.06

) .

(19)

To validate the proposed technique, five different cases of the
scaling parameters 𝑠

1
(𝑡), 𝑠
2
(𝑡), 𝑠
3
(𝑡), and 𝑠

4
(𝑡) are discussed as

shown in Figure 3 and we have the following.

(i) Case A ({𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
} = {1, 1, 1, 1}). In this case the scaling

parameters are positive ones; then the output responses
of system 2 are the antisynchronization of the system 1
output, that is, 𝑥

2
= −𝑥

1
and the same for other outputs
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Figure 5: The 𝑦 response when for Case D when (a) {𝛼, 𝛽, 𝛾, 𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} = {0.96, 0.96, 0.96, 4, 1, 0.65, 4, 1, 0.65}, (b) {𝛼, 𝛽, 𝛾, 𝑎

1
,

𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} = {0.9, 0.95, 1, 4, 1, 0.65, 4, 1, 0.65}, (c) {𝛼, 𝛽, 𝛾, 𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} = {0.9, 0.95, 1, 4, 1, 0.65, 4.5, 1.2, 0.55}, and (d) {𝛼, 𝛽, 𝛾, 𝑎

1
, 𝑏
1
,

𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} = {0.95, 0.95, 0.95, 4, 1, 0.65, 4, 1, 0.65}.

(see Figures 4(a) and 4(b)). Moreover, when an additive ran-
dom noise is added to both the𝑋

1
and 𝑌

1
with amplitude 0.1

under the same conditions, the output response tries to follow
the changes as shown in Figure 4(c).

(ii) Case B ({𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
} = {−2, −2, −2, −2}). In this case the

scaling parameters are equal and negative; then the output
responses of system 2 are the half-synchronization of the
system 1 output, that is, 𝑥

2
= 0.5 𝑥

1
and the same for other

outputs (see Figure 4(d)).

(iii) Case C ({𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
} = {2, 3, 4, 5}). In this case the scaling

parameters are different constants and positive; then the out-
put responses of system 2 have different antisynchronization
scale than system 1 output, that is, 𝑥

2
= −0.5𝑥

1
, 𝑦
2
= −𝑦
1
/3,

𝑧
2
= −𝑧
1
/4, and 𝑤

2
= −𝑤
1
/5 (see Figure 4(e)).

(iv) Case D (𝑠
1
= 𝑠
2
= 𝑠
3
= 𝑠
4
= −0.5 + integer part of (𝑡/20)).

In this case the scaling parameters are time dependent
(staircase) as steps (every 20 seconds); then the output
responses of system 2 will start with double synchronization
in the first 20 seconds and then double antisynchronization in
the following 20 seconds, and the scale factor increases with
time every 20 seconds (see Figure 5).

(v) Case E (𝑠
1
= 𝑠
2
= 𝑠
3
= 𝑠
4
= 1 + (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡)

of (𝑡/50))/50. In this case the scaling parameters are time
dependent as they ramp up to 50 seconds and then reset and
increase again. Since it is always positive, then the output
response will be the antisynchronization of system 1 with a
different scale (see Figure 6).

Figure 5 shows the proposed technique under different
orders and different system parameters where the output will
follow the expected response; however the transient time
until the synchronization happens may be increased. Figures
5(b) and 5(c) illustrate the response with different fractional
orders where 𝛼 = 0.9, 𝛽 = 0.95, and 𝛾 = 1.0, and
Figure 5(c) shows the responses for different fractional orders
and also system parameters {𝛼, 𝛽, 𝛾, 𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
2
} =

{0.9, 0.95, 1, 4, 1, 0.65, 4.5, 1.2, 0.55}. Moreover, Figure 5(d)
shows the system responses for equal fractional orders and
different system parameters only. Therefore, many cases
have been discussed when the synchronization parameters
are changed by steps showing great matching with the
expected results. Figure 6 illustrates the projections and sys-
tem responses when the synchronization parameters change
gradually and linearly resulting in a sawtooth waveform
(Case E). It is clear from the previous responses for different
system parameters, fractional orders, and time-independent
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Figure 6: ((a), (b)) the 𝑥
1
-𝑦
1
and 𝑥

2
-𝑦
2
projections, and ((c), (d)) the 𝑥, 𝑦, and 𝑧 responses when {𝛼, 𝛽, 𝛾, 𝑎

1
, 𝑏
1
, 𝑐
1
, 𝑎
2
, 𝑏
2
, 𝑐
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} =

{0.95, 0.95, 0.95, 4, 1, 0.65, 4, 1, 0.65} for Case E.

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5

−4 −2 0 2 4 6
−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2
x1

−3 −2 −1 0 1 2
x1 x2x2

y
1

y
2

−2

−1.5

−1

−0.5

0

0.5

1

−4 −2 0 2 4 6
−2

−1

0

1

2

3

y
2

y
1

(a)

0 100 200 300 400 500 600
−2

−1

0

1

2

3

4

Time

s1 = s2 = s3 = s4 z2

z1

(b)

Figure 7: The projection and responses for the amplitude modulation when 𝑠
1
(𝑡) = 𝑠

2
(𝑡) = 𝑠

3
(𝑡) = 𝑠

4
(𝑡) = 1.5 + sin(0.02𝜋𝑡).
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and time-dependent synchronization parameters that the
proposed method has many advantages and can be used for
the synchronization of any two chaotic systems. There are
many recent research articles which discuss the importance
of communication techniques using chaotic signals [40, 41].
In the amplitude modulation, the amplitude of the output
signal should be a function of the input signal. In Figure 7,
we assumed that the information data 𝑠

1
(𝑡) = 𝑠

2
(𝑡) = 𝑠

3
(𝑡) =

𝑠
4
(𝑡) = 1.5 + sin(0.02𝜋𝑡). Therefore, the output will be

different from system 1 output as shown from the strange
attractors shown in Figure 7(a). The time waveform of the
scaling functions, 𝑧

1
(𝑡), and 𝑧

2
(𝑡), is shown in Figure 7(b)

where themodulation is clear.The demodulation can be done
similarly by reversing the operation.

5. Conclusions

This paper discussed the concept of a general time-dependent
synchronization scheme based on a nonlinear controller and
then applied this technique on the fractional-order Chua’s
circuit with memristor. This nonlinear controller is based on
the control theory and Lyapunov stability theory to achieve
the required synchronization.Many examples including anti-
synchronization, synchronization, and both (as in Case D)
between two identical fractional-order Chua’s circuits with
same/different fractional orders and same/different system
parameters are discussed using numerical simulations by the
nonstandard finite method. This technique can be repeated
for other chaotic systems in a similar way to achieve good
results.
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