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The existence of asymptotically almost automorphic mild solutions to an abstract stochastic fractional partial integrodifferential
equation is considered.Themain tools are some suitable composition results for asymptotically almost automorphic processes, the
theory of sectorial linear operators, and classical fixed point theorems. An example is also given to illustrate the main theorems.

1. Introduction

This paper is mainly concerned with the existence and
uniqueness of square-mean asymptotically almost automor-
phic mild solutions to the following stochastic fractional
partial integrodifferential equation in the form

𝑑 [𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))]

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
𝐴 [𝑥 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ≥ 0,

𝑥 (0) = 𝑢
0
,

(1)

where 1 < 𝛼 < 2,𝐴 : 𝐷(𝐴) ⊂ 𝐿
2
(P,H) → 𝐿

2
(P,H) is a linear

densely defined operator of sectorial type on a Hilbert space
𝐿
2
(P,H), 𝑊(𝑡) is a two-sided standard one-dimensional

Brownian motion defined on the filtered probability space
(Ω,F,P,F

𝑡
), where F

𝑡
= 𝜎{𝑊(𝑢) − 𝑊(V); 𝑢, V ≤ 𝑡}, and

𝑢
0
is anF

0
-adapted,H-valued random variable independent

of the Wiener process 𝑊. Here 𝑓 and 𝑔 are appropriate
functions to be specified later. The convolution integral in

(1) is understood in the Riemann-Liouville fractional integral
(see, e.g., [1, 2]). We notice that fractional order can be
complex in viewpoint of pure mathematics and there is
much interest in developing the theoretical analysis and
numericalmethods to fractional equations, because they have
recently proven to be valuable in various fields of science and
engineering (see, e.g., [3–11] and references therein).

The concept of asymptotically almost automorphic func-
tionswas firstly introduced byN’Guérékata in [12]. Since then
these functions have become of great interest to severalmath-
ematicians and gained lots of developments and applications,
we refer the reader to [13–16] and the references listed therein.

Recently, the existence of almost automorphic and pseu-
do almost automorphic solutions to some stochastic dif-
ferential equations has been considered in many publica-
tions such as [17–27] and the references therein. In a very
recent paper [28], the authors introduced a new notation of
square-mean asymptotically almost automorphic stochastic
processes including a composition theorem. However, to the
best of our knowledge, the existence of square-mean asymp-
totically almost automorphic mild solutions to the problem
(1) is an untreated topic. Therefore, motivated by the works
[16, 28], the main purpose of this paper is to investigate
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the existence and uniqueness of square-mean asymptotically
almost automorphic mild solutions to the problem (1). Then,
we present an example as an application of our main results.

The rest of this paper is organized as follows. In Section 2,
we recall some basic definitions and facts which will be used
throughout this paper. In Section 3, we prove some existence
results of square-mean asymptotically almost automorphic
mild solutions to the problem (1). Finally, we give an example
as an application of our abstract results.

2. Preliminaries

In this section, we introduce some basic definitions, nota-
tions, and preliminary facts which will be used in the sequel.
For more details on this section, we refer the reader to [28–
30].

Throughout the paper, (H, ‖ ⋅ ‖, ⟨⋅, ⋅⟩) stands for a real
separable Hilbert space. (Ω,F,P) denotes a complete proba-
bility space, and 𝐿2(P,H) stands for the space of allH-valued
random variables 𝑥 such that

𝐸‖𝑥‖
2
= ∫
Ω

‖𝑥‖
2
𝑑P < ∞. (2)

Note that 𝐿2(P,H) is a Hilbert space equipped with the norm

‖𝑥‖
2
:= (∫
Ω

‖𝑥‖
2
𝑑P)
1/2

, for each 𝑥 ∈ 𝐿
2
(P,H) . (3)

We denote by 𝐶
0
(R+; 𝐿2(P,H)) the collection of all bounded

continuous stochastic processes 𝜑 from R+ into 𝐿
2
(P,H)

such that lim
𝑡→+∞

𝐸‖𝜑(𝑡)‖
2
= 0. It is then easy to check

that 𝐶
0
(R+; 𝐿2(P,H)) is a Banach space when it is endowed

with the norm ‖𝜑‖
𝐶0

:= sup
𝑡∈R+‖𝜑(𝑡)‖2. Similarly, 𝐶

0
(R+ ×

𝐿
2
(P,H); 𝐿2(P,H)) stands for the space of the continuous

stochastic processes 𝑓 : R+ × 𝐿
2
(P,H) → 𝐿

2
(P,H) such

that

lim
𝑡→+∞

𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
2

= 0 (4)

uniformly for 𝑥 ∈ 𝐾, where 𝐾 ⊂ 𝐿
2
(P,H) is any bounded

subset. Additionally, 𝑊(𝑡) will be a two-sided standard
one-dimensional Brownian motion defined on the filtered
probability space (Ω,F,P,F

𝑡
), where F

𝑡
= 𝜎{𝑊(𝑢) −

𝑊(V); 𝑢, V ≤ 𝑡}.

2.1. Sectorial Linear Operators. A closed and linear operator
𝐴 is said to be sectorial of type 𝜛 and angle 𝜃 if there exist
0 < 𝜃 < 𝜋/2,𝑀 > 0, and 𝜛 ∈ R such that its resolvent exists
outside the sector 𝜛 + 𝑆

𝜃
:= {𝜛 + 𝜆 : 𝜆 ∈ C, | arg(−𝜆)| < 𝜃}

and ‖(𝜆 − 𝐴)
−1
‖ ≤ 𝑀/|𝜆 − 𝜛|, 𝜆 ∉ 𝜛 + 𝑆

𝜃
.

Definition 1 (see [2]). Let 𝐴 be a closed and linear operator
with domain 𝐷(𝐴) defined on a Banach space X. We call
𝐴 the generator of a solution operator if there exist 𝜛 ∈ R

and a strongly continuous function 𝑆
𝛼
: R+ → L(X) such

that {𝜆𝛼 : Re(𝜆) > 𝜛} ⊂ 𝜌(𝐴) and 𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1
𝑥 =

∫
∞

0
𝑒
−𝜆𝑡

𝑆
𝛼
(𝑡)𝑥𝑑𝑡,𝑅𝑒(𝜆) > 𝜛, 𝑥 ∈ X. In this case, 𝑆

𝛼
(⋅) is called

the solution operator generated by 𝐴.

We note that if𝐴 is sectorial of type 𝜛 with 0 ≤ 𝜃 < 𝜋(1 −

𝛼/2), then 𝐴 is the generator of a solution operator given by
𝑆
𝛼
(𝑡) := (1/2𝜋𝑖) ∫

𝛾
𝑒
𝜆𝑡
𝜆
𝛼−1

(𝜆
𝛼
− 𝐴)
−1
𝑑𝜆, 𝑡 ≥ 0, where 𝛾 is a

suitable path lying outside the sector 𝜛+ 𝑆
𝜃
. Recently, Cuesta

in [1] proved that if 𝐴 is a sectorial operator of type 𝜛 < 0

for some𝑀 > 0 and 0 ≤ 𝜃 < 𝜋(1 − 𝛼/2), then there exists a
constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝐶𝑀

1 + |𝜛| 𝑡𝛼
, 𝑡 ≥ 0. (5)

Remark 2. Note that 𝑆
𝛼
(𝑡) is, in fact, integrable. For more

details on the solution family 𝑆
𝛼
(𝑡) and related issues, we refer

the reader to [31–33].

2.2. Square-Mean Asymptotically Almost Automorphic Pro-
cesses. We recall some basic facts for a symptotically almost
automorphic processes which will be used in the sequel.

Definition 3 (see [22]). A stochastic process 𝑥 : R →

𝐿
2
(P,H) is said to be stochastically continuous if

lim
𝑡→ 𝑠

𝐸‖𝑥 (𝑡) − 𝑥 (𝑠)‖
2
= 0. (6)

Definition 4 (see [17]). A stochastically continuous stochastic
process 𝑥 : R → 𝐿

2
(P,H) is said to be square-mean almost

automorphic if, for every sequence of real numbers {𝑠󸀠
𝑛
}
𝑛∈N

,
there exist a subsequence {𝑠

𝑛
}
𝑛∈N and a stochastic process 𝑦 :

R → 𝐿
2
(P,H) such that

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡 + 𝑠

𝑛
) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

= 0,

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝑡 − 𝑠

𝑛
) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩
2

= 0

(7)

hold for each 𝑡 ∈ R. The collection of all square-mean almost
automorphic stochastic processes 𝑥 : R → 𝐿

2
(P,H) is

denoted by 𝐴𝐴(R; 𝐿2(P,H)).

Definition 5 (see [17]). A function 𝑓 : R×𝐿
2
(P,H) → 𝐿

2
(P,

H), (𝑡, 𝑥) → 𝑓(𝑡, 𝑥), which is jointly continuous, is said to be
square-mean almost automorphic if 𝑓(𝑡, 𝑥) is square-mean
almost automorphic in 𝑡 ∈ R uniformly for all 𝑥 ∈ K, where
K is any bounded subset of 𝐿2(P,H). That is to say, for every
sequence of real numbers {𝑠󸀠

𝑛
}
𝑛∈N

, there exists a subsequence
{𝑠
𝑛
}
𝑛∈N and a function𝑓 : R×𝐿

2
(P,H) → 𝐿

2
(P,H) such that

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡 + 𝑠

𝑛
, 𝑥) − 𝑓 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩󵄩

2

= 0,

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡 − 𝑠

𝑛
, 𝑥) − 𝑓 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩󵄩

2

= 0

(8)

for each 𝑡 ∈ R and each 𝑥 ∈ K. Denote by 𝐴𝐴(R × 𝐿
2
(P,H);

𝐿
2
(P,H)) the set of all such functions.

Lemma 6 (see [22]). (𝐴𝐴(R; 𝐿2(P,H)), ‖ ⋅ ‖
∞
) is a Banach

space equipped with the norm

‖𝑥‖
∞
:= sup
𝑡∈R

‖𝑥 (𝑡)‖
2
= sup
𝑡∈R

(𝐸‖𝑥 (𝑡)‖
2
)
1/2

, (9)

for 𝑥 ∈ 𝐴𝐴(R; 𝐿2(P,H)).
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Lemma 7 (see [17]). Let 𝑓 : R × 𝐿
2
(P,H) → 𝐿

2
(P,H), (𝑡, 𝑥)

→ 𝑓(𝑡, 𝑥) be square-mean almost automorphic, and assume
that 𝑓(𝑡, ⋅) is uniformly continuous on each bounded subset
K ⊂ 𝐿

2
(P,H) uniformly for 𝑡 ∈ R; that is, for all 𝜀 > 0, there

exists 𝛿 > 0 such that 𝑥, 𝑦 ∈ K and 𝐸‖𝑥 − 𝑦‖
2
< 𝛿 imply that

𝐸‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖
2
< 𝜀 for all 𝑡 ∈ R. Then for any square-

mean almost automorphic process 𝑥 : R → 𝐿
2
(P,H), the

stochastic process 𝐹 : R → 𝐿
2
(P,H) given by 𝐹(⋅) := 𝑓(⋅, 𝑥(⋅))

is square-mean almost automorphic.

Definition 8 (see [25]). A stochastically continuous process
𝑓 : R+ → 𝐿

2
(P,H) is said to be square-mean asymptotically

almost automorphic if it can be decomposed as 𝑓 = 𝑔 + ℎ,
where 𝑔 ∈ 𝐴𝐴(R; 𝐿2(P,H)) and ℎ ∈ 𝐶

0
(R+; 𝐿2(P,H)).

Denote by 𝐴𝐴𝐴(R+; 𝐿2(P,H)) the collection of all the
square-mean asymptotically almost automorphic processes
𝑓 : R+ → 𝐿

2
(P,H).

Definition 9 (see [28]). A function 𝑓 : R+ × 𝐿
2
(P,H) →

𝐿
2
(P,H), (𝑡, 𝑥) → 𝑓(𝑡, 𝑥), which is jointly continuous, is

said to be square-mean asymptotically almost automorphic
if it can be decomposed as 𝑓 = 𝑔 + ℎ, where 𝑔 ∈ 𝐴𝐴(R ×

𝐿
2
(P,H); 𝐿2(P,H)) and ℎ ∈ 𝐶

0
(R+ × 𝐿

2
(P,H); 𝐿2(P,H)).

Denote by 𝐴𝐴𝐴(R+ × 𝐿
2
(P,H); 𝐿2(P,H)) the set of all such

functions.

Lemma 10 (see [28]). If 𝑓, 𝑓
1
, and 𝑓

2
are all square-mean

asymptotically almost automorphic stochastic processes, then
the following hold true:

(I) 𝑓
1
+𝑓
2
is square-mean asymptotically almost automor-

phic;
(II) 𝜆𝑓 is square-mean asymptotically almost automorphic

for any scalar 𝜆;
(III) there exists a constant 𝑀 > 0 such that

sup
𝑡∈R+𝐸‖𝑓(𝑡)‖

2
≤ 𝑀.

Lemma 11 (see [28]). Suppose that 𝑓 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H))

admits a decomposition𝑓 = 𝑔+ℎ, where 𝑔 ∈ 𝐴𝐴(R; 𝐿2(P,H))

and ℎ ∈ 𝐶
0
(R+; 𝐿2(P,H)). Then {𝑔(𝑡) : 𝑡 ∈ R} ⊂

{𝑓(𝑡) : 𝑡 ∈ R+}.

Corollary 12 (see [28]). The decomposition of a square-mean
asymptotically almost automorphic process is unique.

Lemma 13 (see [28]). 𝐴𝐴𝐴(R+; 𝐿2(P,H)) is a Banach space
when it is equipped with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐴𝐴𝐴(R+ ;𝐿2(P,H)) := sup

𝑡∈R

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩2 + sup
𝑡∈R+

‖ℎ (𝑡)‖
2
, (10)

where 𝑓 = 𝑔 + ℎ ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)) with 𝑔 ∈ 𝐴𝐴(R;

𝐿
2
(P,H)), ℎ ∈ 𝐶

0
(R+; 𝐿2(P,H)).

Lemma 14 (see [28]). 𝐴𝐴𝐴(R+; 𝐿2(P,H)) is a Banach space
with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ := sup

𝑡∈R+

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩2 = sup
𝑡∈R+

(𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩
2

)
1/2

. (11)

Remark 15 (see [28]). In view of the previous lemmas it
is clear that the two norms are equivalent in 𝐴𝐴𝐴(R+;

𝐿
2
(P,H)).

Lemma 16 (see [28]). Let 𝑓 ∈ 𝐴𝐴(R × 𝐿
2
(P,H); 𝐿2(P,H))

and let 𝑓(𝑡, 𝑥) be uniformly continuous in any bounded subset
K ⊂ 𝐿

2
(P,H) uniformly for 𝑡 ∈ R+. Then 𝑓(𝑡, 𝑥) is uniformly

continuous in any bounded subset K ⊂ 𝐿
2
(P,H) uniformly for

𝑡 ∈ R.

Lemma 17 (see [28]). Let 𝑓 ∈ 𝐴𝐴𝐴(R+×𝐿2(P,H); 𝐿2(P,H))

and suppose that 𝑓(𝑡, 𝑥) is uniformly continuous in any
bounded subset K ⊂ 𝐿

2
(P,H) uniformly for 𝑡 ∈ R+. If 𝑢(𝑡) ∈

𝐴𝐴𝐴(R+; 𝐿2(P,H)), then 𝑓(⋅, 𝑢(⋅)) ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)).

Wenow give the following concept ofmild solution of (1).

Definition 18. Let 𝑆
𝛼
(𝑡) be an integrable solution operator on

𝐿
2
(P,H)with generator𝐴. AnF

𝑡
-adapted stochastic process

𝑥 : [0, +∞) → 𝐿
2
(P,H) is called a mild solution of the

problem (1) if 𝑥(0) = 𝑢
0
is F
0
-measurable and 𝑥(𝑡) satisfies

the corresponding stochastic integral equation:

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) [𝑢
0
− 𝑓 (0, 𝑢

0
)] + 𝑓 (𝑡, 𝑥 (𝑡))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) , 𝑡 ≥ 0.

(12)

3. Main Results

In this section, we establish the existence of square-mean
asymptotically almost automorphic mild solutions to the
problem (1). For that, we need the following technical results.

First, we list the following basic assumptions.

(H1) The operator 𝐴 is a sectorial operator of type 𝜛 < 0

for some 𝑀 > 0 and 0 ≤ 𝜃 < 𝜋(1 − 𝛼/2), and then
there exists 𝐶 > 0 such that

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝐶𝑀

1 + |𝜛| 𝑡𝛼
, 𝑡 ≥ 0, (13)

where 𝑆
𝛼
(𝑡) is the solution operator generated by 𝐴.

(H2) The function 𝑓 ∈ 𝐴𝐴𝐴(R+ × 𝐿
2
(P,H); 𝐿2(P,H)) and

there exists a continuous and nondecreasing function
𝐿
𝑓
: [0, +∞) → [0, +∞) such that for each 𝑟 ≥ 0

and for all 𝐸‖𝑥‖2 ≤ 𝑟, 𝐸‖𝑦‖2 ≤ 𝑟,

𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩󵄩󵄩󵄩
2

≤ 𝐿
𝑓
(𝑟) 𝐸

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2 (14)

for all 𝑡 ∈ R+.
(H3) The function 𝑔 ∈ 𝐴𝐴𝐴(R+ × 𝐿

2
(P,H); 𝐿2(P,H)) and

there exists a continuous and nondecreasing function
𝐿
𝑔
: [0, +∞) → [0, +∞) such that for each 𝑟 ≥ 0 and

for all 𝐸‖𝑥‖2 ≤ 𝑟, 𝐸‖𝑦‖2 ≤ 𝑟,

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)

󵄩󵄩󵄩󵄩
2

≤ 𝐿
𝑔
(𝑟) 𝐸

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2 (15)

for all 𝑡 ∈ R+.
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(H4) We have

sup
𝑟>0

[
𝑟

6(𝐶𝑀)
2
−
𝐿
𝑓
(𝑟) 𝑟

(𝐶𝑀)
2

−
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋𝐿
𝑔
(𝑟) 𝑟

𝛼 sin (𝜋/𝛼)
− 𝜆𝑟]

> (1 +
1

(𝐶𝑀)
2
)𝑀
𝑓
+
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝑀
𝑔
,

(16)

where 𝑀
𝑓

= sup
𝑡∈R+𝐸‖𝑓(𝑡, 𝑥(𝑡))‖

2 and 𝑀
𝑔

=

sup
𝑡∈R+𝐸‖𝑔(𝑡, 𝑥(𝑡))‖

2.
(H5) The operator 𝐴 is a sectorial operator of type 𝜛 with

0 ≤ 𝜃 < 𝜋(1 − 𝛼/2), and there exists 𝜙(⋅) ∈ 𝐿
1
(R+)

such that
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 𝜙 (𝑡) ∀𝑡 ≥ 0, lim
𝑡→+∞

𝜙 (𝑡) = 0, (17)

where 𝑆
𝛼
(𝑡) is the solution operator generated by 𝐴.

Lemma 19. Suppose that assumption (H1) holds and let 𝑓 ∈

𝐴𝐴𝐴(R+; 𝐿2(P,H)). If 𝐹 is the function defined by

𝐹 (𝑡) := ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑊 (𝑠) , 𝑡 ≥ 0, (18)

then 𝐹 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)).

Proof. Since 𝑓 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)), we have by definition
that 𝑓 = 𝑔 + ℎ, where 𝑔 ∈ 𝐴𝐴(𝑅; 𝐿

2
(𝑃,𝐻)) and ℎ ∈

𝐶
0
(R+; 𝐿2(P,H)). Then

𝐹 (𝑡) = ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑊 (𝑠)

= ∫

𝑡

−∞

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

− ∫

0

−∞

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑊 (𝑠)

= 𝐺 (𝑡) + 𝐻 (𝑡) ,

(19)

where𝐺(𝑡) = ∫
𝑡

−∞
𝑆
𝛼
(𝑡−𝑠)𝑔(𝑠)𝑑𝑊(𝑠) and𝐻(𝑡) = − ∫

0

−∞
𝑆
𝛼
(𝑡−

𝑠)𝑔(𝑠)𝑑𝑊(𝑠) + ∫
𝑡

0
𝑆
𝛼
(𝑡 − 𝑠)ℎ(𝑠)𝑑𝑊(𝑠).

First we prove that 𝐺(𝑡) ∈ 𝐴𝐴(R; 𝐿2(P,H)). Let {𝑠󸀠
𝑛
}
𝑛∈N

be an arbitrary sequence of real numbers. Since 𝑔 ∈

𝐴𝐴(R; 𝐿2(P,H)), there exists a subsequence {𝑠
𝑛
}
𝑛∈N of {𝑠

󸀠

𝑛
}
𝑛∈N

such that for a certain stochastic process 𝑔

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

= 0,

lim
𝑛→∞

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡 − 𝑠

𝑛
) − 𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

= 0

(20)

hold for each 𝑡 ∈ R. Now, let 𝑊̃(𝜎) := 𝑊(𝜎 + 𝑠
𝑛
) − 𝑊(𝑠

𝑛
)

for each 𝜎 ∈ R. Note that 𝑊̃ is also a Brownian motion and
has the same distribution as 𝑊. Moreover, if we let 𝐺(𝑡)=
∫
𝑡

−∞
𝑆
𝛼
(𝑡−𝑠)𝑔(𝑠)𝑑𝑊(𝑠), then bymaking a change of variables

𝜎 = 𝑠 − 𝑠
𝑛
to get (see the equation (10.6.6) in [34])

𝐸
󵄩󵄩󵄩󵄩󵄩
𝐺 (𝑡 + 𝑠

𝑛
) − 𝐺 (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡+𝑠𝑛

−∞

𝑆
𝛼
(𝑡 + 𝑠
𝑛
− 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

−∫

𝑡

−∞

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

−∞

𝑆
𝛼
(𝑡 − 𝜎) [𝑔 (𝜎 + 𝑠

𝑛
) − 𝑔 (𝜎)] 𝑑𝑊̃ (𝜎)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

(21)

and, hence, using the Ito’s isometry property of stochastic
integral, we have the following estimations

𝐸
󵄩󵄩󵄩󵄩󵄩
𝐺 (𝑡 + 𝑠

𝑛
) − 𝐺 (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐸(∫

𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝜎) [𝑔 (𝜎 + 𝑠
𝑛
) − 𝑔 (𝜎)]

󵄩󵄩󵄩󵄩
2

𝑑𝜎)

≤ ∫

𝑡

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝜎)
󵄩󵄩󵄩󵄩
2

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝜎 + 𝑠

𝑛
) − 𝑔 (𝜎)

󵄩󵄩󵄩󵄩
2

𝑑𝜎

≤ sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

∫

𝑡

−∞

(
𝐶𝑀

1 + |𝜛| (𝑡 − 𝜎)
𝛼
)

2

𝑑𝜎

≤ (𝐶𝑀)
2sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

∫

∞

0

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

≤
(𝐶𝑀)

2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

.

(22)

Then by (20), we obtain that lim
𝑛→∞

𝐸‖𝐺(𝑡 + 𝑠
𝑛
) − 𝐺(𝑡)‖

2

=

0 for each 𝑡 ∈ R. In a similar way, we can show that
lim
𝑛→∞

𝐸‖𝐺(𝑡 − 𝑠
𝑛
) − 𝐺(𝑡)‖

2

= 0 for each 𝑡 ∈ R. Thus we
conclude that 𝐺(⋅) ∈ 𝐴𝐴(R; 𝐿2(P,H)).

Next, let us show that𝐻(⋅) ∈ 𝐶
0
(R+; 𝐿2(P,H)). Since ℎ ∈

𝐶
0
(R+; 𝐿2(P,H)) and 1/(1 + |𝜛|𝑠

𝛼
)
2 is integrable in [0, +∞),

for any sufficiently small 𝜀 > 0, there exists a constant 𝑇 > 0

such that 𝐸‖ℎ(𝑠)‖2 ≤ 𝜀 and ∫
∞

𝑇
(1/(1 + |𝜛|𝑠

𝛼
)
2
)𝑑𝑠 ≤ 𝜀 for all

𝑠 ≥ 𝑇. Then, for all 𝑡 ≥ 2𝑇, we obtain

𝐸‖𝐻 (𝑡)‖
2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡/2

0

𝑆
𝛼
(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑊 (𝑠)

+ ∫

𝑡

𝑡/2

𝑆
𝛼
(𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑊 (𝑠)

−∫

0

−∞

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
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≤ 3𝐸(∫

𝑡/2

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) ℎ (𝑠)
󵄩󵄩󵄩󵄩
2

𝑑𝑠)

+ 3𝐸(∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) ℎ (𝑠)
󵄩󵄩󵄩󵄩
2

𝑑𝑠)

+ 3𝐸(∫

0

−∞

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) 𝑔 (𝑠)
󵄩󵄩󵄩󵄩
2

𝑑𝑠)

≤ 3∫

𝑡/2

0

(
𝐶𝑀

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

𝐸‖ℎ (𝑠)‖
2
𝑑𝑠

+ 3∫

𝑡

𝑡/2

(
𝐶𝑀

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

𝐸‖ℎ (𝑠)‖
2
𝑑𝑠

+ 3∫

0

−∞

(
𝐶𝑀

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑠)

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 3(𝐶𝑀)
2 sup
𝑡∈R+

𝐸‖ℎ (𝑡)‖
2
∫

𝑡

𝑡/2

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

+ 3(𝐶𝑀)
2
𝜀 ∫

𝑡/2

0

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

+ 3(𝐶𝑀)
2sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

≤ 3(𝐶𝑀)
2 sup
𝑡∈R+

𝐸‖ℎ (𝑡)‖
2
∫

∞

𝑇

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

+ 3(𝐶𝑀)
2
𝜀 ∫

∞

0

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

+ 3(𝐶𝑀)
2sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

∫

∞

𝑇

1

(1 + |𝜛| 𝑠𝛼)
2
𝑑𝑠

≤ 3(𝐶𝑀)
2
𝜀 (sup
𝑡∈R+

𝐸‖ℎ (𝑡)‖
2
+
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)

+ sup
𝑡∈R

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩
2

) .

(23)

This inequality proves the assertion since 𝜀 is arbitrary.
Recalling that 𝐹(𝑡) = 𝐺(𝑡) + 𝐻(𝑡) for all 𝑡 ≥ 0, we get
𝐹(𝑡) ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)). The proof is completed.

It is easy to see that, by arguments similar to those in the
proof of Lemma 19, we have the following result.

Lemma 20. Suppose that assumption (H5) holds and let 𝑓 ∈

𝐴𝐴𝐴(R+; 𝐿2(P,H)). If 𝐹 is the function defined by

𝐹 (𝑡) := ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑊 (𝑠) , 𝑡 ≥ 0, (24)

then 𝐹 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)).

Now, we are ready to establish our main results.

Theorem 21. Assume that (H1)–(H4) hold. Then there exists
𝜀 > 0 such that for each 𝑢

0
∈ 𝐵
𝜀
(0, 𝐿
2
(P,H)) there exists

a unique square-mean asymptotically almost automorphic
mild solution 𝑥(⋅, 𝑢

0
) of the problem (1) on [0,∞) such that

𝑥(0, 𝑢
0
) = 𝑢
0
.

Proof. We define a nonlinear operator Υ by

(Υ𝑥) (𝑡) = 𝑆
𝛼
(𝑡) [𝑢
0
− 𝑓 (0, 𝑢

0
)] + 𝑓 (𝑡, 𝑥 (𝑡))

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) 𝑡 ≥ 0.

(25)

First we prove that Υ(𝐴𝐴𝐴(R+; 𝐿2(P,H))) ⊆ 𝐴𝐴𝐴(R+;

𝐿
2
(P,H)). Given 𝑥 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)), from the proper-

ties of {𝑆
𝛼
(𝑡)}
𝑡≥0

,𝑓, and 𝑔, we infer thatΥ𝑥 is well defined and
continuous. Since 𝑥(𝑡) is bounded, we can choose a bounded
subset K of 𝐿2(P,H) such that 𝑥(𝑡) ∈ K for all 𝑡 ∈ R+. It
follows from (H2) and (H3) that both 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are
uniformly continuous on the bounded subsetKuniformly for
𝑡 ∈ R+. Moreover, from Lemmas 17 and 19 and taking into
account (H1), it follows that Υ𝑥 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)).

Now, by (H4), there exists a constant 𝑟 > 0 such that

𝑟

6(𝐶𝑀)
2
−
𝐿
𝑓
(𝑟) 𝑟

(𝐶𝑀)
2
−
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋𝐿
𝑔
(𝑟) 𝑟

𝛼 sin (𝜋/𝛼)
− 𝜆𝑟

> (1 +
1

(𝐶𝑀)
2
)𝑀
𝑓
+
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝑀
𝑔
.

(26)

Let 0 < 𝜆 < 1. We affirm that the assertion holds for 𝜀 = 𝜆𝑟.
In fact, let 𝑢

0
∈ 𝐵
𝜀
(0, 𝐿
2
(P,H)). Define the space D = {𝑥 ∈

𝐴𝐴𝐴(R+; 𝐿2(P,H)) : 𝑥(0) = 𝑢
0
, 𝐸 ‖ 𝑥(𝑡)‖

2
≤ 𝑟, 𝑡 ≥ 0}. Then

D is a closed subspace of 𝐴𝐴𝐴(R+; 𝐿2(P,H)). We claim that
ΥD ⊆ D. If 𝑥 ∈ D and 𝑡 ∈ R+, we get

𝐸‖(Υ𝑥) (𝑡)‖
2

≤ 3𝐸
󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡) [𝑢0 − 𝑓 (0, 𝑢

0
)]
󵄩󵄩󵄩󵄩
2

+ 3𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡))

󵄩󵄩󵄩󵄩
2

+ 3𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 6(𝐶𝑀)
2
[𝐸
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
2

+ 𝐸
󵄩󵄩󵄩󵄩𝑓 (0, 𝑢

0
)
󵄩󵄩󵄩󵄩
2

]

+ 3𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0) + 𝑓 (𝑡, 0)

󵄩󵄩󵄩󵄩
2

+ 3𝐸(∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝛼 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))
󵄩󵄩󵄩󵄩
2

𝑑𝑠)

≤ 6(𝐶𝑀)
2
𝜆𝑟 + 6(𝐶𝑀)

2
𝐸
󵄩󵄩󵄩󵄩𝑓 (0, 𝑢

0
)
󵄩󵄩󵄩󵄩
2

+ 6𝐿
𝑓
(𝑟) 𝑟 + 6sup

𝑡∈R+
𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 0)

󵄩󵄩󵄩󵄩
2

+ 6(𝐶𝑀)
2
[∫

𝑡

0

(
1

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

𝐿
𝑔
(𝑟) 𝑟𝑑𝑠

+∫

𝑡

0

(
1

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑠, 0)

󵄩󵄩󵄩󵄩
2

𝑑𝑠]
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≤ 6(𝐶𝑀)
2
𝜆𝑟 + 6(𝐶𝑀)

2
𝑀
𝑓
+ 6𝐿
𝑓
(𝑟) 𝑟 + 6𝑀

𝑓

+
6(𝐶𝑀)

2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
[𝐿
𝑔
(𝑟) 𝑟 + 𝑀

𝑔
] ,

(27)

which from (26) implies that 𝐸‖(Υ𝑥)(𝑡)‖2 ≤ 𝑟 for all 𝑡 ≥ 0,
and so that ΥD ⊆ D.

Next, to complete the proof, we need to show that Υ(⋅) is
a contraction from D into D. By (26), we know that

𝑟

6(𝐶𝑀)
2
−
𝐿
𝑓
(𝑟) 𝑟

(𝐶𝑀)
2
−
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋𝐿
𝑔
(𝑟) 𝑟

𝛼 sin (𝜋/𝛼)
− 𝜆𝑟 > 0.

(28)

That is,

𝑟

6(𝐶𝑀)
2
>
𝐿
𝑓
(𝑟) 𝑟

(𝐶𝑀)
2
+
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋𝐿
𝑔
(𝑟) 𝑟

𝛼 sin (𝜋/𝛼)
+ 𝜆𝑟.

(29)

Then, one has

6𝐿
𝑓
(𝑟) +

6(𝐶𝑀)
2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝐿
𝑔
(𝑟) + 6𝜆(𝐶𝑀)

2
< 1.

(30)

For any 𝑥, 𝑦 ∈ D and 𝑡 ≥ 0, we have

𝐸
󵄩󵄩󵄩󵄩(Υ𝑥) (𝑡) − (Υ𝑦) (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 2𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))

󵄩󵄩󵄩󵄩
2

+ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) [𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))] 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝐿
𝑓
(𝑟) sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

+ 2(𝐶𝑀)
2
∫

𝑡

0

(
1

1 + |𝜛| (𝑡 − 𝑠)
𝛼
)

2

× 𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 2𝐿
𝑓
(𝑟) sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

+
2(𝐶𝑀)

2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝐿
𝑔
(𝑟)

× sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

≤ [2𝐿
𝑓
(𝑟) +

2(𝐶𝑀)
2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝐿
𝑔
(𝑟)]

× sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

.

(31)

Thus, we get
󵄩󵄩󵄩󵄩Υ𝑥 − Υ𝑦

󵄩󵄩󵄩󵄩∞

= sup
𝑡∈R+

(𝐸
󵄩󵄩󵄩󵄩(Υ𝑥) (𝑡) − (Υ𝑦) (𝑡)

󵄩󵄩󵄩󵄩
2

)
1/2

≤ √2𝐿
𝑓
(𝑟)+

2(𝐶𝑀)
2
|𝜛|
−1/𝛼

(1 − 1/𝛼) 𝜋

𝛼 sin (𝜋/𝛼)
𝐿
𝑔
(𝑟)

󵄩󵄩󵄩󵄩𝑥−𝑦
󵄩󵄩󵄩󵄩∞.

(32)

It follows from (30) that Υ is a contraction mapping on D.
So by the Banach contraction mapping principle, we draw a
conclusion that there exists a unique fixed point 𝑥(⋅) for Υ in
D. It is clear that 𝑥 is a square-mean asymptotically almost
automorphic mild solution of (1). The proof is complete.

The next result is proved using the similar steps as in the
proof of the previous result, so we omit the details.

Theorem 22. Assume that (H1)–(H3) hold. If 𝐿
𝑓
(𝑟) ≡ 𝐿

𝑓

and 𝐿
𝑔
(𝑟) ≡ 𝐿

𝑔
for all 𝑟 ≥ 0 and 𝐿

𝑓
+ (𝐶𝑀)

2
|𝜛|
−1/𝛼

(1 −

1/𝛼)𝜋𝐿
𝑔
/𝛼 sin(𝜋/𝛼) < 1/2, then for every 𝑢

0
∈ 𝐿
2
(P,H),

there exists a unique square-mean asymptotically almost auto-
morphicmild solution 𝑥(⋅, 𝑢

0
) of the problem (1) on [0,∞) such

that 𝑥(0, 𝑢
0
) = 𝑢
0
.

Theorem 23. Suppose that assumptions (H2), (H3), and (H5)
hold. If 𝐿

𝑓
(𝑟) ≡ 𝐿

𝑓
and 𝐿

𝑔
(𝑟) ≡ 𝐿

𝑔
for all 𝑟 ≥ 0 and

𝐿
𝑓
+ 𝐿
𝑔
‖𝜙‖
1
< 1/2, then for every 𝑢

0
∈ 𝐿
2
(P,H), there exists

a unique square-mean asymptotically almost automorphic
mild solution 𝑥(⋅, 𝑢

0
) of the problem (1) on [0,∞) such that

𝑥(0, 𝑢
0
) = 𝑢
0
.

Proof. Consider the nonlinear operator Υ given by

(Υ𝑥) (𝑡) = 𝑆
𝛼
(𝑡) [𝑢
0
− 𝑓 (0, 𝑢

0
)] + 𝑓 (𝑡, 𝑥 (𝑡)) ,

+ ∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑊 (𝑠) , 𝑡 ≥ 0.

(33)

First we prove thatΥmaps𝐴𝐴𝐴(R+; 𝐿2(P,H)) into itself.
Given 𝑥 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)), from the properties of
{𝑆
𝛼
(𝑡)}
𝑡≥0

, 𝑓 and 𝑔, we infer that Υ𝑥 is well defined and
continuous. Since 𝑥(𝑡) is bounded, we can choose a bounded
subset K of 𝐿2(P,H) such that 𝑥(𝑡) ∈ K for all 𝑡 ∈ R+.
It follows from conditions (H2) and (H3) that both 𝑓(𝑡, 𝑥)

and 𝑔(𝑡, 𝑥) are uniformly continuous on the bounded subset
K uniformly for 𝑡 ∈ R+. Moreover, from Lemmas 17 and
20 and taking into account (H5), it follows that Υ𝑥 ∈

𝐴𝐴𝐴(R+; 𝐿2(P,H)).
Next we prove that Υ is a contraction mapping from

𝐴𝐴𝐴(R+; 𝐿2(P,H)) into itself. Note that we have already
proved Υ(𝐴𝐴𝐴(R+; 𝐿2(P,H))) ⊆ 𝐴𝐴𝐴(R+; 𝐿2(P,H)). More-
over, for any 𝑥, 𝑦 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)) and 𝑡 ≥ 0, we have

𝐸
󵄩󵄩󵄩󵄩(Υ𝑥) (𝑡) − (Υ𝑦) (𝑡)

󵄩󵄩󵄩󵄩
2

≤ 2𝐸
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))

󵄩󵄩󵄩󵄩
2
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+ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆
𝛼
(𝑡 − 𝑠) [𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))] 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝐿
𝑓
sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

+ 2∫

𝑡

0

𝜙 (𝑡 − 𝑠) 𝐸
󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠)) − 𝑔 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩
2

𝑑𝑠

≤ 2𝐿
𝑓
sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

+ 2𝐿
𝑔
sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

∫

∞

0

𝜙 (𝑠) 𝑑𝑠

≤ [2𝐿
𝑓
+ 2𝐿
𝑔

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩1] sup
𝑡∈R+

𝐸
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

.

(34)

Therefore

󵄩󵄩󵄩󵄩Υ𝑥 − Υ𝑦
󵄩󵄩󵄩󵄩∞ = sup

𝑡∈R+
(𝐸

󵄩󵄩󵄩󵄩(Υ𝑥) (𝑡) − (Υ𝑦) (𝑡)
󵄩󵄩󵄩󵄩
2

)
1/2

≤ √2𝐿
𝑓
+ 2𝐿
𝑔

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩∞.

(35)

That is, Υ is a contraction mapping on 𝐴𝐴𝐴(R+; 𝐿2(P,H)).
By the Banach contractionmapping principle,Υ has a unique
fixed point 𝑥(𝑡) ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)). It is clear that 𝑥
is a square-mean asymptotically almost automorphic mild
solution of (1). The proof is then complete.

4. An Example

In this section, we apply the results obtained previously
to investigate the existence of square-mean asymptotically
almost automorphic mild solutions for the following partial
stochastic fractional differential system:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝜉) − ∫

𝑡

−∞

𝑎 (𝑡) 𝑎
1
(𝑡 − 𝑠) 𝑢 (𝑠, 𝜉) 𝑑𝑠]

= 𝐽
𝛼−1

𝑡
(
𝜕
2

𝜕𝜉2
− ])[𝑢 (𝑡, 𝜉)−∫

𝑡

−∞

𝑎 (𝑡) 𝑎
1
(𝑡 − 𝑠) 𝑢 (𝑠, 𝜉) 𝑑𝑠]

+ ∫

𝑡

−∞

𝑎 (𝑡) 𝑎
2
(𝑡 − 𝑠) 𝑢 (𝑠, 𝜉) 𝑑𝑠𝑑𝑊 (𝑡) ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ≥ 0,

𝑢 (0, 𝜉) = 𝑢
0
(𝜉) , 𝜉 ∈ 𝐼 = [0, 𝜋] ,

(36)

where 𝑎 ∈ 𝐴𝐴𝐴(R+;R), 𝑎
1
, 𝑎
2
: R+ → R are continuous

functions, and ] > 0 is a fixed constant.
Let H = 𝐿

2
([0, 𝜋]) with the norm ‖ ⋅ ‖ and 𝐴 : 𝐷(𝐴) ⊆

H → H be the operator defined by 𝐴𝑥 = 𝑥
󸀠󸀠
− ]𝑥 domain

𝐷(𝐴) = {𝑥 ∈ H : 𝑥
󸀠󸀠
∈ H, 𝑥(0) = 𝑥(𝜋) = 0}. It is well known

that Δ𝑥 = 𝑥
󸀠󸀠 is the infinitesimal generator of an analytic

semigroup {𝑆(𝑡)}
𝑡≥0

on H. Furthermore, 𝐴 is sectorial of type
𝜛 = −] < 0.

In the sequel, we assume

𝐿
𝑓
= ‖𝑎‖
∞
(∫

0

−∞

󵄨󵄨󵄨󵄨𝑎1 (−𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑠)

1/2

< ∞,

𝐿
𝑔
= ‖𝑎‖
∞
(∫

0

−∞

󵄨󵄨󵄨󵄨𝑎2 (−𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑠)

1/2

< ∞.

(37)

Now, we can define the functions 𝑓, 𝑔 : R+ × 𝐿
2
(P,H) →

𝐿
2
(P,H) by

𝑓 (𝑡, 𝑥) (𝜉) = 𝑎 (𝑡) ∫

0

−∞

𝑎
1
(−𝑠) 𝑥 (𝑠, 𝜉) 𝑑𝑠,

𝑔 (𝑡, 𝑥) (𝜉) = 𝑎 (𝑡) ∫

0

−∞

𝑎
2
(−𝑠) 𝑥 (𝑠, 𝜉) 𝑑𝑠,

𝐽
𝛼−1

𝑡
ℎ (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−2

Γ (𝛼 − 1)
ℎ (𝑠) 𝑑𝑠,

(38)

which permits to transform the system (36) into the abstract
system (1). Moreover, it is not difficult to see that𝑓, 𝑔 are con-
tinuous and Lipschitz in the second variable with Lipschitz
constants 𝐿

𝑓
and 𝐿

𝑔
, respectively.

The next result is a consequence of Theorem 22.

Theorem 24. Under the previous assumptions, (36) has a
unique mild solution 𝑥 ∈ 𝐴𝐴𝐴(R+; 𝐿2(P,H)) whenever 𝐿

𝑓

and 𝐿
𝑔
are small enough.
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