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We study Jensen’s inequality for generalized Peng’s 𝑔-expectations and give four equivalent conditions on Jensen’s inequality
for generalized Peng’s 𝑔-expectations without the assumption that the generator 𝑔 is continuous with respect to t. This result
includes and extends some existing results. Furthermore, we give some applications of Jensen’s inequality for generalized Peng’s
𝑔-expectations.

1. Introduction

By Pardoux and Peng [1], we know that there exists a
unique adapted and square integrable solution to a backward
stochastic differential equation (BSDE for short) of the type

𝑦
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑔 (𝑠, 𝑦
𝑠
, 𝑧

𝑠
) 𝑑𝑠 − ∫

𝑇

𝑡

𝑧
𝑠
⋅ 𝑑𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] , (1)

provided that the function 𝑔 is Lipschitz in both variables
𝑦 and 𝑧, and 𝜉 and (𝑔(𝑡, 0, 0))

𝑡∈[0,𝑇]
are square integrable.

𝑔 is said to be the generator of BSDE (1). We denote the
unique adapted and square integrable solution of BSDE (1)
by (𝑦(𝑇,𝑔,𝜉)

𝑡
, 𝑧

(𝑇,𝑔,𝜉)

𝑡
)
𝑡∈[0,𝑇]

.
Based on such a BSDE, Peng [2] introduced the notion

of 𝑔-expectation. He proved that the 𝑔-expectation preserves
many of properties of the classical mathematical expectation,
but not the linearity property, and thus the 𝑔-expectation
is a type of nonlinear mathematical expectation. Indeed, 𝑔-
expectation is a kind of nonlinear expectation, which can
be considered as a nonlinear extension of the well-known
Girsanov transformations.The original motivation for study-
ing 𝑔-expectation comes from the theory of expected utility.
Since the notion of 𝑔-expectation was introduced, many
properties of 𝑔-expectation have been investigated by many
researchers. In 1997, Peng [3] introduced the notions of
conditional 𝑔-expectation and 𝑔-martingale. Later, Briand et
al. [4] studied Jensen’s inequality for 𝑔-expectations and gave

a counter example and a proposition to indicate that even
for a linear function, Jensen’s inequality might fail for some
𝑔-expectations. This yields a natural question: under which
conditions on 𝑔 in the 𝑔-expectation does Jensen’s inequality
hold for any convex function? Under the assumptions that 𝑔
does not depend on 𝑦 and is convex, Chen et al. [5, 6] studied
Jensen’s inequality for 𝑔-expectations and gave a necessary
and sufficient condition on 𝑔 under which Jensen’s inequality
holds for convex functions. Provided that 𝑔 only does not
depend on 𝑦, Jiang [7] gave another necessary and sufficient
condition on 𝑔 under which Jensen’s inequality holds for
convex functions. It was an improved result in comparison
with the result that Chen et al. yielded. Later, this result was
improved byHu [8] and Jiang [9] showing that, in fact,𝑔must
be independent of 𝑦. But these results need the assumption
that the generator 𝑔 is continuous with respect to 𝑡.

In this paper, without the assumption that the generator
𝑔 is continuous with respect to 𝑡, we study Jensen’s inequality
for generalizedPeng’s𝑔-expectations and give four equivalent
conditions on Jensen’s inequality for generalized Peng’s 𝑔-
expectations, which generalize the known results on Jensen’s
inequality for 𝑔-expectations in Chen et al. [5, 6], Jiang [7,
9], and Hu [8]. Furthermore, we give some applications of
Jensen’s inequality for generalized Peng’s 𝑔-expectations.

This paper is organized as follows: in Section 2, we
introduce some notations, assumptions, notions, and lemmas
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which will be useful in this paper; in Section 3, we give our
main results including the proofs and applications.

2. Preliminaries

Firstly, let us list some notations, assumptions, notions,
lemmas, and propositions that are used in this paper. Let
(Ω,F, 𝑃) be a probability space and let (𝑊

𝑡
)
𝑡≥0

be a 𝑑-
dimensional standard Brownian motion with respect to
filtration (F

𝑡
)
𝑡≥0

generated by Brownian motion and all 𝑃-
null subsets, that is,

F
𝑡
= 𝜎 {𝑊

𝑠
; 𝑠 ≤ 𝑡} ∨N, (2)

where N is the set of all 𝑃-null subsets. Fix a real number
𝑇 > 0. For any positive integer 𝑛 and 𝑧 ∈ 𝑅

𝑛, |𝑧| denotes its
Euclidean norm.

We define the following usual spaces of processes (ran-
dom variables):

(i) Consider 𝐿𝑝
(Ω,F

𝑇
, 𝑃) = {𝜉 : 𝜉 is F

𝑇
-measurable

random variable such that 𝐸[|𝜉|𝑝] < ∞, 𝑝 ≥ 1};
(ii) ConsiderL(Ω,F

𝑇
, 𝑃) = ⋃

𝑝>1
𝐿

𝑝
(Ω,F

𝑇
, 𝑃);

(iii) Consider S𝑝

F
(0, 𝑇; 𝑃; 𝑅) = {𝑉 : 𝑉 is a continuous

process with 𝐸[sup
0≤𝑡≤𝑇

|𝑉
𝑡
|
𝑝
] < ∞, 𝑝 ≥ 1};

(iv) Consider SF(0, 𝑇; 𝑃; 𝑅) = ⋃
𝑝>1

S
𝑝

F
(0, 𝑇; 𝑃; 𝑅);

(v) ConsiderL𝑝

F
(0, 𝑇; 𝑃; 𝑅

𝑛
) = {𝑉 : 𝑉 is a progressively

measurable process with 𝐸[(∫
𝑇

0
|𝑉

𝑠
|
2
𝑑𝑠)

𝑝/2

] <

∞, 𝑝 ≥ 1};
(vi) ConsiderLF(0, 𝑇; 𝑃; 𝑅

𝑛
) = ⋃

𝑝>1
𝐿

𝑝

F
(0, 𝑇; 𝑃; 𝑅

𝑛
).

Suppose the generator 𝑔(𝜔, 𝑡, 𝑦, 𝑧) : Ω×[0, 𝑇]×𝑅×𝑅
𝑑
→

𝑅 satisfies the following assumptions:

(A.1) there exists a constant 𝜇 > 0, such that𝑃-a.s., we have:
∀𝑡 ∈ [0, 𝑇], ∀𝑦

1
, 𝑦

2
∈ 𝑅, 𝑧

1
, 𝑧

2
∈ 𝑅

𝑑, |𝑔(𝑡, 𝑦
1
, 𝑧

1
) −

𝑔(𝑡, 𝑦
2
, 𝑧

2
)| ≤ 𝜇(|𝑦

1
− 𝑦

2
| + |𝑧

1
− 𝑧

2
|);

(A.2) 𝑃-a.s., ∀(𝑡, 𝑦) ∈ [0, 𝑇] × 𝑅, 𝑔(𝑡, 𝑦, 0) ≡ 0.

The following lemma is a special case of Theorem 4.2 in
Briand et al. [10].

Lemma 1. Suppose 𝑔 satisfies (A.1) and (A.2). Then for each
given 𝜉 ∈ 𝐿

𝑝
(Ω,F

𝑇
, 𝑃), where 1 < 𝑝 < 2, the BSDE (1)

has a unique pair of adapted processes (𝑦(𝑇,𝑔,𝜉)

𝑡
, 𝑧

(𝑇,𝑔,𝜉)

𝑡
)
𝑡∈[0,𝑇]

∈

S
𝑝

F
(0, 𝑇; 𝑃; 𝑅) × 𝑙

𝑝

F
(0, 𝑇; 𝑃; 𝑅

𝑑
).

From Lemma 1, we have the following.

Remark 2. Suppose 𝑔 satisfies (A.1) and (A.2). Then for each
given 𝜉 ∈ L(Ω,F

𝑇
, 𝑃), the BSDE (1) has a unique pair of

adapted processes (𝑦(𝑇,𝑔,𝜉)

𝑡
, 𝑧

(𝑇,𝑔,𝜉)

𝑡
)
𝑡∈[0,𝑇]

∈ SF(0, 𝑇; 𝑃; 𝑅) ×

LF(0, 𝑇; 𝑃; 𝑅
𝑑
).

Now, we introduce the notions of generalized Peng’s
𝑔-expectation and generalized conditional Peng’s 𝑔-
expectation.

Definition 3 (generalized Peng’s 𝑔-expectation [11]). Suppose
𝑔 satisfies (A.1) and (A.2). For any 𝜉 ∈ L(Ω,F

𝑇
, 𝑃), let

(𝑦
(𝑇,𝑔,𝜉)

𝑡
, 𝑧

(𝑇,𝑔,𝜉)

𝑡
)
𝑡∈[0,𝑇]

be the solution of BSDE (1). Consider
the mapping E

𝑔
[⋅] : L(Ω,F

𝑇
, 𝑃) → 𝑅, denoted by E

𝑔
[𝜉] =

𝑦
(𝑇,𝑔,𝜉)

0
. One calls E

𝑔
[𝜉] the generalized Peng’s 𝑔-expectation

of 𝜉.

Definition 4 (generalized Peng’s conditional 𝑔-expectation
[11]). Suppose 𝑔 satisfies (A.1) and (A.2). The generalized
Peng’s conditional 𝑔-expectation of 𝜉 with respect to F

𝑡
is

defined by

E
𝑔
[𝜉 | F

𝑡
] = 𝑦

(𝑇,𝑔,𝜉)

𝑡
, 𝑡 ∈ [0, 𝑇] . (3)

Then, let us list some basic properties of generalized
Peng’s 𝑔-expectation.

Proposition 5 (see [11]). Consider E
𝑔
[𝜉 | F

𝑡
] is the unique

random variable 𝜂 inL(Ω,F
𝑡
, 𝑃) such that

E
𝑔
[1

𝐴
𝜉] = E

𝑔
[1

𝐴
𝜂] , ∀𝐴 ∈ F

𝑡
. (4)

Proposition 6 (see [11]). Suppose𝑔 satisfies (A.1) and (A.2). If
𝑔 does not depend on 𝑦, that is, 𝑔(𝜔, 𝑡, 𝑧) : Ω×[0, 𝑇]×𝑅𝑑

→ 𝑅,
then

E
𝑔
[𝜉 + 𝜂 | F

𝑡
] = E

𝑔
[𝜉 | F

𝑡
] + 𝜂, ∀𝜉 ∈ L (Ω,F

𝑇
, 𝑃) ,

∀𝜂 ∈ L (Ω,F
𝑡
, 𝑃) .

(5)

Proposition 7 (see [11]). Suppose 𝑔 satisfies (A.1) and (A.2).
For 𝜉, 𝜂

𝑛
∈ 𝐿

𝑝
(Ω,F

𝑇
, 𝑃), where 𝑛 = 1, 2, . . . and 𝑝 > 1, if

𝐸[|𝜉 − 𝜂
𝑛
|
𝑝
| F

𝑡
] → 0, a.s., 𝑡 ∈ [0, 𝑇], then

lim
𝑛→∞

E
𝑔
[𝜂

𝑛
| F

𝑡
] = E

𝑔
[𝜉 | F

𝑡
] , a.s., 𝑡 ∈ [0, 𝑇] . (6)

Applying Proposition 7, one can immediately obtain the follow-
ing.

Remark 8. (i) For any 𝜉 ∈ L(Ω,F
𝑇
, 𝑃), let 𝜉𝑛 = (𝜉∧𝑛)∨(−𝑛),

𝑛 = 1, 2, . . ., then lim
𝑛→∞

E
𝑔
[𝜉

𝑛
| F

𝑡
] = E

𝑔
[𝜉 | F

𝑡
], a.s.,

∀𝑡 ∈ [0, 𝑇].
(ii) For any 𝜉

𝑛
∈ L(Ω,F

𝑇
, 𝑃), if lim

𝑛→∞
𝜉
𝑛
= 𝜉 a.s. and

|𝜉
𝑛
| ≤ 𝜂 a.s. with 𝜂 ∈ L(Ω,F

𝑇
, 𝑃), then lim

𝑛→∞
E

𝑔
[𝜉

𝑛
|

F
𝑡
] = E

𝑔
[𝜉 | F

𝑡
], a.s., ∀𝑡 ∈ [0, 𝑇].

Lemma 9. Suppose 𝑔 satisfies (A.1) and (A.2). Let {𝐴
𝑖
}
𝑚

𝑖=1
be

a F
𝑡
-measurable partition of Ω (i.e., 𝐴

𝑖
∈ F

𝑡
, 𝐴

𝑖
⋂𝐴

𝑗
= 0

if 𝑖 ̸= 𝑗 and ⋃𝑚

𝑖=1
𝐴

𝑖
= Ω), where 𝑡 ≤ 𝑇. Then for each 𝑋

𝑖
∈

L(Ω,F
𝑇
, 𝑃), 𝑖 = 1, . . . , 𝑚, one has

𝑚

∑

𝑖=1

1
𝐴𝑖
E

𝑔
[𝑋

𝑖
| F

𝑡
] = E

𝑔
[

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑋

𝑖
| F

𝑡
] a.s. (7)
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Proof. We consider the following BSDEs:

E
𝑔
[𝑋

𝑖
| F

𝑡
]

= 𝑋
𝑖
+ ∫

𝑇

𝑡

𝑔 (𝑠,E
𝑔
[𝑋

𝑖
| F

𝑠
] , 𝑧

(𝑇,𝑔,𝑋𝑖)

𝑠
) 𝑑𝑠

− ∫

𝑇

𝑡

𝑧
(𝑇,𝑔,𝑋𝑖)

𝑠
⋅ 𝑑𝑊

𝑠
, 𝑖 = 1, . . . , 𝑚,

(8)

E
𝑔
[

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑋

𝑖
| F

𝑡
]

=

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑋

𝑖
+ ∫

𝑇

𝑡

𝑔(𝑠,E
𝑔
[

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑋

𝑖
| F

𝑠
] ,

𝑧
(𝑇,𝑔,∑

𝑚

𝑖=1
1𝐴𝑖

𝑋𝑖)

𝑠 )𝑑𝑠

− ∫

𝑇

𝑡

𝑧
(𝑇,𝑔,∑

𝑚

𝑖=1
1𝐴𝑖

𝑋𝑖)

𝑠 ⋅ 𝑑𝑊
𝑠
.

(9)

By the fact that ∑
𝑚

𝑖=1
1
𝐴𝑖
𝑔(𝑠,E

𝑔
[𝑋

𝑖
| F

𝑠
], 𝑧

(𝑇,𝑔,𝑋𝑖)

𝑠
) =

𝑔(𝑠, ∑
𝑚

𝑖=1
1
𝐴𝑖
E

𝑔
[𝑋

𝑖
| F

𝑠
], ∑

𝑚

𝑖=1
1
𝐴𝑖
𝑧
(𝑇,𝑔,𝑋𝑖)

𝑠
), 𝑡 ≤ 𝑠 ≤ 𝑇 and

from (8), we have

𝑚

∑

𝑖=1

1
𝐴𝑖
E

𝑔
[𝑋

𝑖
| F

𝑡
]

=

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑋

𝑖

+ ∫

𝑇

𝑡

𝑔(𝑠,

𝑚

∑

𝑖=1

1
𝐴𝑖
E

𝑔
[𝑋

𝑖
| F

𝑠
] ,

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑧
(𝑇,𝑔,𝑋𝑖)

𝑠
)𝑑𝑠

− ∫

𝑇

𝑡

𝑚

∑

𝑖=1

1
𝐴𝑖
𝑧
(𝑇,𝑔,𝑋𝑖)

𝑠
⋅ 𝑑𝑊

𝑠
.

(10)

Comparing this with (9), it follows that ∑𝑚

𝑖=1
1
𝐴𝑖
E

𝑔
[𝑋

𝑖
|

F
𝑡
] = E

𝑔
[∑

𝑚

𝑖=1
1
𝐴𝑖
𝑋

𝑖
| F

𝑡
] a.s. The proof of Lemma 9 is

complete.

Proposition 10. Suppose 𝑔 satisfies (A.1) and (A.2). Then the
following two statements are equivalent:

(i) consider ∀(𝑋, 𝑘) ∈ L(Ω,F
𝑇
, 𝑃)×𝑅,E

𝑔
[𝑋+𝑘 | F

𝑡
] =

E
𝑔
[𝑋 | F

𝑡
] + 𝑘 a.s.,

(ii) consider ∀(𝑋, 𝜂) ∈ L(Ω,F
𝑇
, 𝑃) × L(Ω,F

𝑡
, 𝑃),

E
𝑔
[𝑋 + 𝜂 | F

𝑡
] = E

𝑔
[𝑋 | F

𝑡
] + 𝜂 a.s.

Proof. It is obvious that (ii) implies (i). We only need to
prove that (i) implies (ii). Suppose (i) holds. Let {𝐴

𝑖
}
𝑚

𝑖=1

be a F
𝑡
-measurable partition of Ω and let 𝜆

𝑖
∈ 𝑅 (𝑖 =

1, 2, . . . , 𝑚). From Lemma 9 and (i), we deduce that for each
𝑋 ∈ L(Ω,F

𝑇
, 𝑃),

E
𝑔
[𝑋 +

𝑚

∑

𝑖=1

𝜆
𝑖
1
𝐴𝑖
| F

𝑡
] = E

𝑔
[

𝑚

∑

𝑖=1

1
𝐴𝑖
(𝑋 + 𝜆

𝑖
) | F

𝑡
]

=

𝑚

∑

𝑖=1

1
𝐴𝑖
E

𝑔
[𝑋 + 𝜆

𝑖
| F

𝑡
]

=

𝑚

∑

𝑖=1

1
𝐴𝑖
(E

𝑔
[𝑋 | F

𝑡
] + 𝜆

𝑖
)

= E
𝑔
[𝑋 | F

𝑡
] +

𝑚

∑

𝑖=1

𝜆
𝑖
1
𝐴𝑖

a.s.

(11)

In other words, for any 𝑋 ∈ L(Ω,F
𝑇
, 𝑃) and any simple

function 𝜂 ∈ L(Ω,F
𝑡
, 𝑃),

E
𝑔
[𝑋 + 𝜂 | F

𝑡
] = E

𝑔
[𝑋 | F

𝑡
] + 𝜂 a.s. (12)

Let

𝜂
𝑛
:=

𝑛2
𝑛
−1

∑

𝑖=0

𝑖

2𝑛
1
{(𝑖/2
𝑛
)≤𝜂<((𝑖+1)/2

𝑛
)}
+ 𝑛1

{𝜂≥𝑛}

+

𝑛2
𝑛
−1

∑

𝑖=0

−𝑖

2𝑛
1
{−((𝑖+1)/2

𝑛
) ≤𝜂<−(𝑖/2

𝑛
)}

+ (−𝑛) 1
{𝜂<−𝑛}

, 𝑛 = 1, 2, . . . .

(13)

Obviously, for each 𝑛, 𝜂
𝑛
is a simple function inL(Ω,F

𝑡
, 𝑃).

From (12), we have

E
𝑔
[𝑋 + 𝜂

𝑛
| F

𝑡
] = E

𝑔
[𝑋 | F

𝑡
] + 𝜂

𝑛
a.s. (14)

On the other hand, lim
𝑛→∞

(𝑋 + 𝜂
𝑛
) = 𝑋 + 𝜂, |𝑋 + 𝜂

𝑛
| ≤

|𝑋| + |𝜂|. Thus, from Remark 8 (ii), it follows that (ii) is true.
The proof of Proposition 10 is complete.

3. Main Results and Applications
Definition 11. Let 𝑔:Ω × [0, 𝑇] × 𝑅 × 𝑅

𝑑
→ 𝑅. The function

𝑔 is said to be superhomogeneous if for each (𝑦, 𝑧) ∈ 𝑅 × 𝑅
𝑑

and any real number 𝜆, then 𝑔(𝑡, 𝜆𝑦, 𝜆𝑧) ≥ 𝜆𝑔(𝑡, 𝑦, 𝑧), 𝑑𝑃×𝑑𝑡
a.s. The function 𝑔 is said to be positively homogeneous if
for each (𝑦, 𝑧) ∈ 𝑅 × 𝑅

𝑑 and any real number 𝜆 ≥ 0, then
𝑔(𝑡, 𝜆𝑦, 𝜆𝑧) = 𝜆𝑔(𝑡, 𝑦, 𝑧), 𝑑𝑃 × 𝑑𝑡 a.s.

Before we give our main results, let us see an example.
Example 12. Fix 𝑇 = 1 and 𝑑 = 1. Let 𝜉 = 𝑓(𝑊

1
), where

𝑓(𝑥) = exp((𝑥2
/2𝑝

1
) − 𝑥)1

(𝑥≥𝑝1)
, 1 < 𝑝

1
< 2.

Obviously, 𝑓 is an increasing function. We can easily get

𝐸 [
𝜉

𝑝1
] = ∫

∞

𝑝1

exp(𝑥
2

2
− 𝑝

1
𝑥)

1

√2𝜋
e−(1/2)𝑥

2

𝑑𝑥

=
1

√2𝜋𝑝
1

e−𝑝
2

1 < ∞, 𝐸 [
𝜉

𝑝

] = ∞, ∀𝑝 > 𝑝
1
.

(15)

Hence, 𝜉 ∈ L(Ω,F
1
, 𝑃), but 𝜉 ∉ 𝐿2

(Ω,F
1
, 𝑃).
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Let 𝜉𝑛 = 𝜉 ∧ 𝑛, 𝑛 = 1, 2, . . .. Clearly, for each 𝑛, 𝜉𝑛 ∈

𝐿
2
(Ω,F, 𝑃). For simplicity, we will write E𝜇

[⋅] ≡ E
𝑔
[⋅] for

𝑔 = 𝜇|𝑧|. From Theorem 1 in Chen and Kulperger’s [12], we
know that E𝜇

[𝜉
𝑛
] = 𝐸

𝑄
[𝜉

𝑛
], where 𝑑𝑄/𝑑𝑃 = e−(1/2)𝜇

2
+𝜇𝑊1 .

By Remark 8(i), we have E𝜇
[𝜉

𝑛
] → E𝜇

[𝜉], as 𝑛 → ∞.
On the other hand, applying Hölder’s inequality and noting
that 𝐸[e−(1/2)𝜇

2
+𝜇𝑊1] = 1 and 𝐸[e−(1/2)𝜇

2
𝑞
2
+𝜇𝑞𝑊1] = 1, we

obtain

𝐸
𝑄
[𝜉] ≤ (𝐸[

𝜉

𝑝1
])

1/𝑝1

(𝐸[(
𝑑𝑄

𝑑𝑃
)

𝑞

])

1/𝑞

≤ e(1/2)(𝑞−1)𝜇
2

(𝐸 [
𝜉

𝑝1
])

1/𝑝1

< ∞,

(16)

where (1/𝑝
1
) + (1/𝑞) = 1. It then follows from the monotonic

convergence theorem that

𝐸
𝑄
[𝜉

𝑛
] → 𝐸

𝑄
[𝜉] , as 𝑛 → ∞. (17)

Thus

E
𝜇
[𝜉] = 𝐸

𝑄
[𝜉] . (18)

Let 𝜑(𝑥) = (𝑥 − 𝑘)
+, where 𝑘 ∈ 𝑅. Obviously, 𝜑(𝑥) is

a convex and increasing function. From this, we know that
𝜑 ∘ 𝑓 is an increasing function. In a similar manner of the
above, we can deduce that

E
𝜇
[𝜑 (𝜉)] = 𝐸

𝑄
[𝜑 (𝜉)] . (19)

From (18), (19), and the classical Jensen’s inequality, we
have

𝜑 (E
𝜇
[𝜉]) = 𝜑 (𝐸

𝑄
[𝜉]) ≤ 𝐸

𝑄
[𝜑 (𝜉)] = E

𝜇
[𝜑 (𝜉)] . (20)

This problem yields a natural question: in general, under
which conditions on 𝑔 do generalized Peng’s 𝑔-expectations
satisfy Jensen’s inequality for convex functions?

The following theorem will answer this question.

Theorem 13. Let 𝑔 satisfy (A.1) and (A.2). Then the following
four statements are equivalent.

(i) Jensen’s inequality for generalized Peng’s 𝑔-expectation
E

𝑔
[⋅ | F

𝑡
] holds in general, that is, for each convex

function 𝜑(𝑥) : 𝑅 → 𝑅 and each 𝜉 ∈ L(Ω,F
𝑇
, 𝑃), if

𝜑(𝜉) ∈ L(Ω,F
𝑇
, 𝑃), then one has

E
𝑔
[𝜑 (𝜉)F

𝑡
] ≥ 𝜑 (E

𝑔
[𝜉 | F

𝑡
]) a.s.; (21)

(ii) consider ∀(𝜉, 𝑎, 𝑏) ∈ 𝐿2
(Ω,F

𝑇
, 𝑃) × 𝑅 × 𝑅, E

𝑔
[𝑎𝜉 +

𝑏] ≥ 𝑎E
𝑔
[𝜉] + 𝑏;

(iii) consider ∀(𝜉, 𝑎, 𝑏) ∈ 𝐿2
(Ω,F

𝑇
, 𝑃) ×𝑅×𝑅,E

𝑔
[𝑎𝜉+ 𝑏 |

F
𝑡
] ≥ 𝑎E

𝑔
[𝜉 | F

𝑡
] + 𝑏 a.s.;

(iv) consider 𝑔 is independent of𝑦, superhomogeneous, and
positively homogeneous with respect to 𝑧.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii): let 𝜂 = 𝜉 + 𝑏. By (ii), we have

E
𝑔
[𝜂 − 𝑏] ≥ E

𝑔
[𝜂] − 𝑏, (22)

That is,

E
𝑔
[𝜉] + 𝑏 ≥ E

𝑔
[𝜉 + 𝑏] . (23)

Thus, for each (𝜉, 𝑏) ∈ 𝐿2
(Ω,F

𝑇
, 𝑃) × 𝑅,

E
𝑔
[𝜉 + 𝑏] = E

𝑔
[𝜉] + 𝑏. (24)

For each (𝑋, 𝑡, 𝑘) ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃) × [0, 𝑇] × 𝑅, by (24), we

know that for each 𝐴 ∈ F
𝑡
,

E
𝑔
[1

𝐴
(𝑋 + 𝑘)] = E

𝑔
[1

𝐴
𝑋 + 1

𝐴
𝑘 − 𝑘] + 𝑘

= E
𝑔
[1

𝐴
𝑋 + 1

𝐴
𝐶 (−𝑘)] + 𝑘

= E
𝑔
[E

𝑔
[1

𝐴
𝑋 + 1

𝐴
𝐶 (−𝑘) | F

𝑡
]] + 𝑘

= E
𝑔
[1

𝐴
E

𝑔
[𝑋 | F

𝑡
] + 1

𝐴
𝐶 (−𝑘)] + 𝑘

= E
𝑔
[1

𝐴
E

𝑔
[𝑋 | F

𝑡
] + 1

𝐴
𝐶 (−𝑘) + 𝑘]

= E
𝑔
[1

𝐴
(E

𝑔
[𝑋 | F

𝑡
] + 𝑘)] .

(25)

Thus,

E
𝑔
[𝑋 + 𝑘 | F

𝑡
] = E

𝑔
[𝑋 | F

𝑡
] + 𝑘 a.s., ∀𝑡 ∈ [0, 𝑇] .

(26)

On the other hand, for each 𝜆 ̸= 0, define

E
𝜆
[⋅ | F

𝑡
] =

E
𝑔
[𝜆⋅ | F

𝑡
]

𝜆
, ∀𝑡 ∈ [0, 𝑇] . (27)

It is easy to check that E
𝑔
[⋅ | F

𝑡
] and E𝜆

[⋅ | F
𝑡
] are twoF-

expectations on 𝐿
2
(Ω,F

𝑇
, 𝑃) (the notion of F-expectation

can be seen in [13]). From (ii), we have if 𝜆 > 0, for each
𝜉 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃)

E
𝜆
[𝜉] ≥ E

𝑔
[𝜉] . (28)

Hence, by Lemma 4.5 in [13], we have

E
𝜆
[𝜉 | F

𝑡
] ≥ E

𝑔
[𝜉 | F

𝑡
] a.s., ∀𝑡 ∈ [0, 𝑇] . (29)

Similarly, if 𝜆 < 0, for each 𝜉 ∈ 𝐿2
(Ω,F

𝑇
, 𝑃)

E
𝜆
[𝜉] ≤ E

𝑔
[𝜉] . (30)

Hence, by Lemma 4.5 in [13] again, we have

E
𝜆
[𝜉 | F

𝑡
] ≤ E

𝑔
[𝜉 | F

𝑡
] a.s., ∀𝑡 ∈ [0, 𝑇] . (31)

Thus from (29) and (31), we have ∀(𝜉, 𝜆) ∈ 𝐿2
(Ω,F

𝑇
, 𝑃) × 𝑅,

E
𝑔
[𝜆𝜉 | F

𝑡
] ≥ 𝜆E

𝑔
[𝜉 | F

𝑡
] a.s., ∀𝑡 ∈ [0, 𝑇] . (32)
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From (26) and (32), we have

∀ (𝜉, 𝑎, 𝑏) ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃) × 𝑅 × 𝑅,

E
𝑔
[𝑎𝜉 + 𝑏 | F

𝑡
] ≥ 𝑎E

𝑔
[𝜉 | F

𝑡
] + 𝑏 a.s.,

∀𝑡 ∈ [0, 𝑇] .

(33)

(iii)⇒(iv): Firstly, we prove that 𝑔 is independent of 𝑦.
From (iii), we can obtain that for each (𝜉, 𝑦) ∈ 𝐿2

(Ω,F
𝑇
, 𝑃)×

𝑅,

E
𝑔
[𝜉 − 𝑦 | F

𝑡
] = E

𝑔
[𝜉 | F

𝑡
] − 𝑦, a.s., ∀𝑡 ∈ [0, 𝑇] .

(34)

For each (𝑡, 𝑦, 𝑧) ∈ [0, 𝑇] ×𝑅×𝑅𝑑, let 𝑌𝑡,𝑦,𝑧

⋅
be the solution of

the following SDE defined on [𝑡, 𝑇]:

𝑌
𝑡,𝑦,𝑧

𝑠
= 𝑦 − ∫

𝑠

𝑡

𝑔 (𝑟, 𝑌
𝑡,𝑦,𝑧

𝑟
, 𝑧) 𝑑𝑟 + 𝑧 ⋅ (𝑊

𝑠
−𝑊

𝑡
) . (35)

From (34), we have

𝑌
𝑡,𝑦,𝑧

𝑟
− 𝑦 = E

𝑔
[𝑌

𝑡,𝑦,𝑧

𝑠
| F

𝑟
] − 𝑦 = E

𝑔
[𝑌

𝑡,𝑦,𝑧

𝑠
− 𝑦 | F

𝑟
] ,

𝑡 ≤ 𝑟 ≤ 𝑠 ≤ 𝑇.

(36)

Let 𝑌
𝑠
= 𝑌

𝑡,𝑦,𝑧

𝑠
−𝑦, 𝑠 ∈ [𝑡, 𝑇] and𝑍 be the corresponding part

of Itô’s integrand. It then follows that

𝑌
𝑠
= −∫

𝑠

𝑡

𝑔 (𝑟, 𝑌
𝑡,𝑦,𝑧

𝑟
, 𝑧) 𝑑𝑟 + ∫

𝑠

𝑡

𝑧 ⋅ 𝑑𝑊
𝑟

= −∫

𝑠

𝑡

𝑔 (𝑟, 𝑌
𝑟
, 𝑍

𝑟
) d𝑟 + ∫

𝑠

𝑡

𝑍
𝑟
⋅ 𝑑𝑊

𝑟
.

(37)

Thus, 𝑍
𝑟
≡ 𝑧 and

𝑔 (𝑟, 𝑌
𝑟
, 𝑧) = 𝑔 (𝑟, 𝑌

𝑡,𝑦,𝑧

𝑟
− 𝑦, 𝑧) = 𝑔 (𝑟, 𝑌

𝑡,𝑦,𝑧

𝑟
, 𝑧) . (38)

Then, we can apply Lemma 4.4 in Peng [14] to obtain that for
each (𝑦, 𝑧) ∈ 𝑅 × 𝑅𝑑,

𝑔 (𝑡, 𝑦, 𝑧) = 𝑔 (𝑡, 0, 𝑧) , 𝑑𝑃 × 𝑑𝑡 a.s. (39)

Namely, 𝑔 is independent of 𝑦.
Now we prove that 𝑔 is superhomogeneous with respect

to 𝑧. From (iii), we can obtain that for each (𝜉, 𝜆) ∈

𝐿
2
(Ω,F

𝑇
, 𝑃) × 𝑅,

𝜆E
𝑔
[𝜉 | F

𝑡
] ≤ E

𝑔
[𝜆𝜉 | F

𝑡
] , a.s., ∀𝑡 ∈ [0, 𝑇] . (40)

For each (𝑡, 𝑧) ∈ [0, 𝑇] × 𝑅
𝑑, let 𝑌𝑡,𝑧

⋅
be the solution of the

following SDE defined on [𝑡, 𝑇]:

𝑌
𝑡,𝑧

𝑠
= −∫

𝑠

𝑡

𝑔 (𝑟, 𝑧) 𝑑𝑟 + 𝑧 ⋅ (𝑊
𝑠
−𝑊

𝑡
) . (41)

From (40), we have

E
𝑔
[𝜆𝑌

𝑡,𝑧

𝑠
| F

𝑟
] ≥ 𝜆E

𝑔
[𝑌

𝑡,𝑧

𝑠
| F

𝑟
] = 𝜆𝑌

𝑡,𝑧

𝑟
, 𝑡 ≤ 𝑟 ≤ 𝑠 ≤ 𝑇.

(42)

Thus, (𝜆𝑌𝑡,𝑧

𝑠
)
𝑠∈[𝑡,𝑇]

is anE
𝑔
-submartingale. From the decom-

position theorem ofE
𝑔
-supermartingale (see [15]), it follows

that there exists an increasing process (𝐴
𝑠
)
𝑠∈[𝑡,𝑇]

such that

𝜆𝑌
𝑡,𝑧

𝑠
= −∫

𝑠

𝑡

𝑔 (𝑟, 𝑍
𝑟
) 𝑑𝑟 + 𝐴

𝑠
− 𝐴

𝑡
+ ∫

𝑠

𝑡

𝑍
𝑟
⋅ 𝑑𝑊

𝑟
,

𝑠 ∈ [𝑡, 𝑇] .

(43)

This with 𝜆𝑌𝑡,𝑧

𝑠
= −∫

𝑠

𝑡
𝜆𝑔(𝑟, 𝑧)d𝑟 +∫𝑠

𝑡
𝜆𝑧 ⋅ 𝑑𝑊

𝑟
yields𝑍

𝑟
≡ 𝜆𝑧

and

𝜆𝑔 (𝑟, 𝑧) ≤ 𝑔 (𝑟, 𝜆𝑧) , 𝑑𝑃 × 𝑑𝑡 a.s. (44)

At last, we prove that 𝑔 is positively homogeneous with
respect to 𝑧. From (iii), we can obtain that for each fixed 𝜆 > 0

and 𝜉 ∈ 𝐿2
(Ω,F

𝑇
, 𝑃),

1

𝜆
E

𝑔
[𝜆𝜉 | F

𝑡
] ≤ E

𝑔
[𝜉 | F

𝑡
] , a.s., ∀𝑡 ∈ [0, 𝑇] , (45)

that is,

E
𝑔
[𝜆𝜉 | F

𝑡
] ≤ 𝜆E

𝑔
[𝜉 | F

𝑡
] , a.s., ∀𝑡 ∈ [0, 𝑇] . (46)

Thus, we have

E
𝑔
[𝜆𝜉 | F

𝑡
] = 𝜆E

𝑔
[𝜉 | F

𝑡
] , a.s., ∀𝑡 ∈ [0, 𝑇] . (47)

Obviously, if 𝜆 = 0, (47) still holds. Thus, for each 𝜆 ≥ 0,

E
𝑔
[𝜆𝜉 | F

𝑡
] = 𝜆E

𝑔
[𝜉 | F

𝑡
] , a.s., ∀𝑡 ∈ [0, 𝑇] . (48)

For each (𝑡, 𝑧) ∈ [0, 𝑇] × 𝑅
𝑑, let 𝑌𝑡,𝑧

⋅
be the solution of SDE

(34). From (48), for each 𝜆 ≥ 0, we have

E
𝑔
[𝜆𝑌

𝑡,𝑧

𝑠
| F

𝑟
] = 𝜆E

𝑔
[𝑌

𝑡,𝑧

𝑠
| F

𝑟
] = 𝜆𝑌

𝑡,𝑧

𝑟
, 𝑡 ≤ 𝑟 ≤ 𝑠 ≤ 𝑇.

(49)

This implies that there exists a process 𝑍𝑡,𝑧,𝜆

⋅
such that

𝜆𝑌
𝑡,𝑧

𝑠
= −∫

𝑠

𝑡

𝑔 (𝑟, 𝑍
𝑡,𝑧,𝜆

𝑟
) 𝑑𝑟 + ∫

𝑠

𝑡

𝑍
𝑡,𝑧,𝜆

𝑟
⋅ 𝑑𝑊

𝑟
, 𝑠 ∈ [𝑡, 𝑇] .

(50)

Comparing this with 𝜆𝑌𝑡,𝑧

𝑠
= −∫

𝑠

𝑡
𝜆𝑔(𝑟, 𝑧)𝑑𝑟 + ∫

𝑠

𝑡
𝜆𝑧 ⋅ 𝑑𝑊

𝑟
, it

follows that 𝑍𝑡,𝑧,𝜆

𝑟
≡ 𝜆𝑧 and

𝜆𝑔 (𝑟, 𝑧) = 𝑔 (𝑟, 𝜆𝑧) , 𝑑𝑃 × 𝑑𝑡 a.s. (51)

(iv)⇒(iii): By comparison theorem (for example, we can
see [3]), it is easy to obtain (iii).

(iii)⇒(i): Suppose (iii) holds. From (iii) and by Remark 8
(i), we have

∀ (𝑋, 𝑘) ∈ L (Ω,F
𝑇
, 𝑃) × 𝑅,

E
𝑔
[𝑋 + 𝑘 | F

𝑡
] = E

𝑔
[𝑋 | F

𝑡
] + 𝑘 a.s.,

(52)

∀ (𝑋, 𝜆) ∈ L (Ω,F
𝑇
, 𝑃) × 𝑅,

E
𝑔
[𝜆𝑋 | F

𝑡
] ≥ 𝜆E

𝑔
[𝑋 | F

𝑡
] a.s.

(53)
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From (53), we can deduce that for each bounded variable 𝜁 ∈
F

𝑡
,

∀𝑋 ∈ L (Ω,F
𝑇
, 𝑃) , E

𝑔
[𝜁𝑋 | F

𝑡
] ≥ 𝜁E

𝑔
[𝑋 | F

𝑡
] a.s.

(54)

In fact, let {𝐴
𝑖
}
𝑚

𝑖=1
be aF

𝑡
-measurable partition of Ω and let

𝜆
𝑖
∈ 𝑅 (𝑖 = 1, 2, . . . , 𝑚). By (53), we have

E
𝑔
[

𝑚

∑

𝑖=1

𝜆
𝑖
1
𝐴𝑖
𝑋 | F

𝑡
] =

𝑚

∑

𝑖=1

1
𝐴𝑖
E

𝑔
[𝜆

𝑖
𝑋 | F

𝑡
]

≥

𝑚

∑

𝑖=1

1
𝐴𝑖
𝜆

𝑖
E

𝑔
[𝑋 | F

𝑡
] a.s.

(55)

In other words, for each 𝑋 ∈ L(Ω,F
𝑇
, 𝑃) and each simple

function 𝜁 ∈ L(Ω,F
𝑡
, 𝑃),

E
𝑔
[𝜁𝑋 | F

𝑡
] ≥ 𝜁E

𝑔
[𝑋 | F

𝑡
] a.s. (56)

Thus, thanks to Remark 8(ii), it follows that (54) is true.
The main idea of the following proof is derived from [7].

Given 𝜉 ∈ L(Ω,F
𝑇
, 𝑃) and convex function 𝜑 such that

𝜑(𝜉) ∈ L(Ω,F
𝑇
, 𝑃), we set 𝜂

𝑡
= 𝜑



−
(E

𝑔
[𝜉 | F

𝑡
]). Then 𝜂

𝑡

isF
𝑡
-measurable. Since 𝜑 is convex, we have

𝜑 (𝑥) − 𝜑 (𝑦) ≥ 𝜑


−
(𝑦) (𝑥 − 𝑦) , ∀𝑥, 𝑦 ∈ 𝑅. (57)

Take 𝑥 = 𝜉, 𝑦 = E
𝑔
[𝜉 | F

𝑡
]. Then we have

𝜑 (𝜉) − 𝜑 (E
𝑔
[𝜉 | F

𝑡
]) ≥ 𝜂

𝑡
(𝜉 −E

𝑔
[𝜉 | F

𝑡
]) a.s. (58)

For each 𝑛 ∈ 𝑁, we define

Ω
𝑡,𝑛
:= {


E

𝑔
[𝜉 | F

𝑡
]

+
𝜂𝑡

 +

𝜑 (E

𝑔
[𝜉 | F

𝑡
])

≤ 𝑛} , (59)

so we have

E
𝑔
[1

Ω𝑡,𝑛
𝜑 (𝜉) | F

𝑡
]

≥ E
𝑔
[1

Ω𝑡,𝑛
𝜑 (E

𝑔
[𝜉 | F

𝑡
]) − 1

Ω𝑡,𝑛
𝜂
𝑡
E

𝑔
[𝜉 | F

𝑡
]

+1
Ω𝑡,𝑛

𝜂
𝑡
𝜉 | F

𝑡
] a.s.

(60)

By the definition of 1
Ω𝑡,𝑛

, we know

1
Ω𝑡,𝑛

𝜑 (E
𝑔
[𝜉 | F

𝑡
]) − 1

Ω𝑡,𝑛
𝜂
𝑡
E

𝑔
[𝜉 | F

𝑡
] ∈ L (Ω,F

𝑡
, 𝑃) .

(61)

Thus, in view of (52) and from Proposition 10, we can get

E
𝑔
[1

Ω𝑡,𝑛
𝜑 (𝜉) | F

𝑡
] ≥ 1

Ω𝑡,𝑛
𝜑 (E

𝑔
[𝜉 | F

𝑡
])

− 1
Ω𝑡,𝑛

𝜂
𝑡
E

𝑔
[𝜉 | F

𝑡
]

+E
𝑔
[1

Ω𝑡,𝑛
𝜂
𝑡
𝜉 | F

𝑡
] a.s.

(62)

Moreover, from (54), considering that 1
Ω𝑡,𝑛

𝜂
𝑡
∈ F

𝑡
and is

bounded by 𝑛, we can get

E
𝑔
[1

Ω𝑡,𝑛
𝜂
𝑡
𝜉 | F

𝑡
] ≥ 1

Ω𝑡,𝑛
𝜂
𝑡
E

𝑔
[𝜉 | F

𝑡
] a.s. (63)

Hence, we can deduce that for each 𝑛 ∈ 𝑁,

E
𝑔
[1

Ω𝑡,𝑛
𝜑 (𝜉) | F

𝑡
] ≥ 1

Ω𝑡,𝑛
𝜑 (E

𝑔
[𝜉 | F

𝑡
]) a.s. (64)

Finally, thanks to Remark 8 (ii) again, we can get

E
𝑔
[𝜑 (𝜉) | F

𝑡
] ≥ 𝜑 (E

𝑔
[𝜉 | F

𝑡
]) a.s. (65)

Hence, Jensen’s inequality forE
𝑔
[⋅ | F

𝑡
] holds in general.The

proof of Theorem 13 is complete.

Example 14. Suppose 𝐻 is a bounded, convex, and closed
subset of 𝑅𝑑 and 𝐷 = the set of 𝑅𝑑-valued continuous
processes (𝑣

𝑡
)
𝑡∈[0,𝑇]

such that for each 𝑡, 𝑣
𝑡
∈ 𝐻 a.s.. Define

the probability measure 𝑄𝑣 by

𝑑𝑄
𝑣

𝑑𝑃
= e−(1/2) ∫

𝑇

0
|𝑣𝑠|
2
𝑑𝑠+∫
𝑇

0
𝑣𝑠 ⋅𝑑𝑊𝑠 . (66)

Thus, for any convex function 𝜑,

𝜑(ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]) ≤ ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜑 (𝜉) | F

𝑡
] ,

a.s., ∀𝑡 ∈ [0, 𝑇] ,

(67)

whenever 𝜉, 𝜑(𝜉) ∈ L(Ω,F
𝑇
, 𝑃).

Proof. Let 𝑔(𝑡, 𝑧) = ess sup
𝑣∈𝐷

𝑣
𝑡
⋅ 𝑧. Obviously, 𝑔(𝑡, 𝑧)

is superhomogeneous and positively homogeneous with
respect to 𝑧. and satisfies (A.1) and (A.2).

From El Karoui and Quenez [16], we have
ess sup

𝑣∈𝐷
𝐸

𝑄
𝑣[𝜉 | F

𝑡
] = E

𝑔
[𝜉 | F

𝑡
], a.s., ∀𝜉 ∈

𝐿
2
(Ω,F

𝑇
, 𝑃). Now we prove ess sup

𝑣∈𝐷
𝐸

𝑄
𝑣[𝜉 | F

𝑡
] =

E
𝑔
[𝜉 | F

𝑡
], a.s., ∀𝜉 ∈ L(Ω,F

𝑇
, 𝑃). Indeed, for any

𝜉 ∈ L(Ω,F
𝑇
, 𝑃), there exists 1 < 𝑝 < 2 such that

𝜉 ∈ 𝐿
𝑝
(Ω,F

𝑇
, 𝑃). Let 𝜉𝑛 = (𝜉∧𝑛)∨(−𝑛), 𝑛 = 1, 2, . . .. Clearly,

for each 𝑛, 𝜉𝑛 ∈ 𝐿2
(Ω,F

𝑇
, 𝑃), then

ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
| F

𝑡
] = E

𝑔
[𝜉

𝑛
| F

𝑡
] , a.s. (68)

Since
ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
| F

𝑡
]

= ess sup
𝑣∈𝐷

(𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉| F

𝑡
] + 𝐸

𝑄
𝑣 [𝜉| F

𝑡
])

≤ ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉 | F

𝑡
] + ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
] ,

(69)

we have
E

𝑔
[𝜉

𝑛
| F

𝑡
] − ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]

≤ ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉 | F

𝑡
] .

(70)

With an approach similar to the one above, we can get easily
that

E
𝑔
[𝜉

𝑛
| F

𝑡
] − ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]

≥ ess inf
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉 | F

𝑡
] .

(71)
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Combining (42) with (43), we have


E
𝑔
[𝜉

𝑛
| F

𝑡
] − ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]



≤ (


ess inf

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉| F

𝑡
]



∨



ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉

𝑛
− 𝜉 | F

𝑡
]



)

≤ ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [
𝜉

𝑛
− 𝜉

 | F𝑡
] .

(72)

By Hölder’s inequality and noting
that (e−(1/2) ∫

𝑡

0
|𝑣𝑠|
2
𝑑𝑠+∫
𝑡

0
𝑣𝑠 ⋅𝑑𝑊𝑠)

𝑡∈[0,𝑇]
and

(e−(1/2) ∫
𝑡

0
|𝑞𝑣𝑠|
2
𝑑𝑠+∫
𝑡

0
𝑞𝑣𝑠 ⋅𝑑𝑊𝑠)

𝑡∈[0,𝑇]
are both martingales with

respect to (F
𝑡
)
𝑡∈[0,𝑇]

, we can obtain

𝐸
𝑄
𝑣 [
𝜉

𝑛
− 𝜉

 | F𝑡
]

=
𝐸 [

𝜉
𝑛
− 𝜉

 (𝑑𝑄
𝑣
/𝑑𝑃) | F

𝑡
]

𝐸 [(𝑑𝑄𝑣/𝑑𝑃) | F
𝑡
]

≤
(𝐸 [

𝜉
𝑛
− 𝜉


𝑝

| F
𝑡
])

1/𝑝

(𝐸 [(𝑑𝑄
𝑣
/𝑑𝑃)

𝑞

| F
𝑡
])

1/𝑞

𝐸 [(𝑑𝑄𝑣/𝑑𝑃) | F
𝑡
]

≤ e(1/2)(𝑞−1)𝜇
2
𝑇
(𝐸 [

𝜉
𝑛
− 𝜉


𝑝

| F
𝑡
])

1/𝑝

,

(73)

where (1/𝑝) + (1/𝑞) = 1. It then follows from Lebesgue’s
dominated convergence theorem that

ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [
𝜉

𝑛
− 𝜉

 | F𝑡
] → 0, as 𝑛 → ∞. (74)

Hence,


E
𝑔
[𝜉

𝑛
| F

𝑡
] − ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]



→ 0, as 𝑛 → ∞.

(75)

On the other hand, from Remark 8(i), we have

E
𝑔
[𝜉

𝑛
| F

𝑡
] → E

𝑔
[𝜉 | F

𝑡
] , as 𝑛 → ∞. (76)

Thus,

E
𝑔
[𝜉 | F

𝑡
] = ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
] ,

a.s., ∀𝜉 ∈ L (Ω,F
𝑇
, 𝑃) .

(77)

ApplyingTheorem 13, we have

𝜑(ess sup
𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜉 | F

𝑡
]) ≤ ess sup

𝑣∈𝐷

𝐸
𝑄
𝑣 [𝜑 (𝜉) | F

𝑡
] , a.s.

(78)

Definition 15. Suppose 𝑔 satisfies (A.1) and (A.2). A process
(𝑋

𝑡
)
𝑡∈[0,𝑇]

satisfying that for each 𝑡, 𝑋
𝑡

∈ L(Ω,F
𝑡
, 𝑃)

is called a generalized Peng’s 𝑔-martingale (resp., gen-
eralized Peng’s 𝑔-supermartingale, generalized Peng’s 𝑔-
submartingale), if for any 𝑡, 𝑠 satisfying 𝑡 ≤ 𝑠 ≤ 𝑇,

E
𝑔
[𝑋

𝑠
| F

𝑡
] = 𝑋

𝑡
(resp. ≤ 𝑋

𝑡
, ≥ 𝑋

𝑡
) , a.s. (79)

ApplyingTheorem 13, immediately we have the following.

Theorem 16. Suppose 𝑔 is independent of 𝑦, superhomo-
geneous and positively homogeneous with respect to 𝑧 and
satisfies (A.1) and (A.2). If (𝑋

𝑡
)
𝑡∈[0,𝑇]

is a generalized Peng’s
𝑔-martingale and 𝜑 is a convex function such that 𝜑(𝑋

𝑡
) ∈

L(Ω,F
𝑡
, 𝑃), then (𝜑(𝑋

𝑡
))

𝑡∈[0,𝑇]
is a generalized Peng’s 𝑔-

submartingale.

Remark 17. Suppose 𝑔 is independent of 𝑦, superhomoge-
neous and positively homogeneous with respect to 𝑧 and
satisfies (A.1) and (A.2). Similarly, we can get the following.

(i) If (𝑋
𝑡
)
𝑡∈[0,𝑇]

is a generalized Peng’s 𝑔-submartingale
and 𝜑 is a convex and increasing function such
that 𝜑(𝑋

𝑡
) ∈ L(Ω,F

𝑡
, 𝑃), then (𝜑(𝑋

𝑡
))

𝑡∈[0,𝑇]
is a

generalized Peng’s 𝑔-submartingale.
(ii) If (𝑋

𝑡
)
𝑡∈[0,𝑇]

is a generalized Peng’s 𝑔-supermartingale
and 𝜑 is a convex and decreasing function such
that 𝜑(𝑋

𝑡
) ∈ L(Ω,F

𝑡
, 𝑃), then (𝜑(𝑋

𝑡
))

𝑡∈[0,𝑇]
is a

generalized Peng’s 𝑔-submartingale.

Example 18. (i) Let 𝑔 = 𝜇|𝑧| and 𝜑(𝑥) = (𝑥−𝑎)
+ where 𝑎 ∈ 𝑅.

Obviously, 𝑔 satisfies the assumptions of Remark 17 and 𝜑 is
a convex and increasing function. By Remark 17 (i), we have
the following: suppose (𝑋

𝑡
)
𝑡∈[0,𝑇]

is aE𝜇-submartingale, then
((𝑋

𝑡
− 𝑎)

+
)
𝑡∈[0,𝑇]

is a E𝜇-submartingale.
(ii) Let 𝑔 = 𝜇|𝑧| and 𝜑(𝑥) = (𝑥 − 𝑏)

− where 𝑏 ∈ 𝑅.
With the similar argument, we have the following: suppose
(𝑌

𝑡
)
𝑡∈[0,𝑇]

is a E𝜇-supermartingale, then ((𝑌
𝑡
− 𝑏)

−
)
𝑡∈[0,𝑇]

is a
E𝜇-submartingale.
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