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This paper investigates the stability problem of linear matrix differential systems and gives some sufficient conditions of ℎ-stability
for linearmatrix system and its associated perturbed system by using the Kronecker product ofmatrices. An example is also worked
out to illustrate our results.

1. Introduction

The theory of stability in the sense of Lyapunov is well known
and is used in the real world. It is obvious that, in applications,
asymptotic stability is more important than stability because
the desirable feature is to know the size of the region of
asymptotic stability. However, when we study the asymptotic
stability, it is not easy to work with nonexponential types of
stability. In recent years, Medina and Pinto [1, 2] extended
the study of exponential stability to a variety of reasonable
systems called ℎ-systems. They introduced the notion of ℎ-
stability with the intention of obtaining results about stability
for a weakly stable system (at least, weaker than those given
exponential stability and the uniform Lipschitz stability)
under some perturbations. Choi et al. [3] investigated ℎ-
stability for the nonlinear differential systems by employing
the notion of 𝑡

∞
-similarity and the Lyapunov functions. And

then, Choi et al. [4–6] also characterized the ℎ-stability in
variation for nonlinear difference systems via 𝑛

∞
-similarity

and the Lyapunov functions and obtained some results
related to stability for the perturbations of nonlinear differ-
ence systems.

However, as far as the author’s scope, there are few
discussions and results for matrix differential systems. In this
paper, we shall investigate the ℎ-stability problem for linear
matrix differential systems by employing theKronecker prod-
uct of matrices which can be found in Lakshmikantham
and Deo’s monograph [7]. Some preliminaries are presented

in Section 2. A theorem is given in this section, which is
important to complete the main results of this paper. In
Section 3, sufficient conditions for the ℎ-stability are given for
linear matrix system and its associated perturbed system. An
example is also worked out at the end of this paper.

2. Preliminaries

Consider the linear matrix differential equation

𝑋


= 𝐴 (𝑡)𝑋 + 𝑋𝐵 (𝑡) , 𝑋 (𝑡
0
) = 𝑋

0
(1)

and its associated perturbed system

𝑌


= 𝐴 (𝑡) 𝑌 + 𝑌𝐵 (𝑡) + 𝑅 (𝑡, 𝑌) , 𝑌 (𝑡
0
) = 𝑋

0
, (2)

where𝐴, 𝐵 ∈ 𝐶[𝑅+, 𝑅𝑛×𝑛],𝑅 ∈ 𝐶[𝑅
+

×𝑅
𝑛×𝑛

, 𝑅
𝑛×𝑛

],𝑅(𝑡, 0) ≡ 0,
and𝑋,𝑌 ∈ 𝑅

𝑛×𝑛.
Now,we introduce the vec (⋅) operatorwhichmaps an𝑚×

𝑛matrix 𝑃 = (𝑝
𝑖𝑗
) onto the vector composed of the rows of 𝑃

vec (𝑃) = (𝑝
11
, . . . , 𝑝

1𝑛
, 𝑝
21
, . . . , 𝑝

2𝑛
, . . . , 𝑝

𝑚1
, . . . , 𝑝

𝑚𝑛
)
𝑇

.

(3)

Let us begin by defining the Kronecker product of matrices.
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Definition 1 (see [7]). If 𝑃 ∈ 𝑅
𝑐×𝑑, 𝑄 ∈ 𝑅

𝑚×𝑛, then the
Kronecker product of 𝑃 and 𝑄, 𝑃 ⊗ 𝑄 ∈ 𝑅

𝑐𝑚×𝑑𝑛, is defined
by the matrix

𝑃 ⊗ 𝑄 =(

(

𝑝
11
𝑄 𝑝
12
𝑄 ⋅ ⋅ ⋅ 𝑝

1𝑑
𝑄

𝑝
21
𝑄 𝑝
22
𝑄 ⋅ ⋅ ⋅ 𝑝

2𝑑
𝑄

. . . .

. . . .

𝑝
𝑐1
𝑄 𝑝
𝑐2
𝑄 ⋅ ⋅ ⋅ 𝑝

𝑐𝑑
𝑄

)

)

. (4)

Among the main properties of this product presented in
[8], we recall the following useful ones:

(1) vec (𝑃𝑋𝑄) = (𝑃 ⊗ 𝑄𝑇)vec (𝑋),
(2) vec (𝑃𝑋 + 𝑋𝑄) = (𝑃 ⊗ 𝐼 + 𝐼 ⊗ 𝑄

𝑇

)vec (𝑋),

where 𝑃,𝑋,𝑄, and 𝐼 ∈ 𝑅𝑛×𝑛 and 𝐼 is an identity matrix.
Then, the equivalent vector differential systems of (1) and

(2) can be written as

𝑥


= (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵
𝑇

) 𝑥, 𝑥 (𝑡
0
) = 𝑥
0
, (5)

𝑦


= (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵
𝑇

) 𝑦 + 𝑟 (𝑡, 𝑦) , 𝑦 (𝑡
0
) = 𝑥
0
,

(6)

where 𝑥 = vec (𝑋), 𝑦 = vec (𝑌), 𝑟 = vec (𝑅), 𝑟 ∈ 𝐶(𝑅+ × 𝑅𝑛
2

,

𝑅
𝑛
2

), and 𝑟(𝑡, 0) ≡ 0.
In order to investigateℎ-stability of linearmatrix equation

and its associated perturbed system, we need to consider the
following systems and their properties. The techniques and
results are similar to those of [7].

Consider the linear differential system

𝑥


= 𝑃 (𝑡) 𝑥, 𝑥 (𝑡
0
) = 𝑥
0
, (7)

where 𝑃 is an 𝑛 × 𝑛 continuous matrix and its perturbation

𝑦


= 𝑃 (𝑡)𝑦 + 𝐹 (𝑡, 𝑦) , 𝑦 (𝑡
0
) = 𝑥
0
, (8)

where 𝐹 ∈ 𝐶[𝑅
+

× 𝑅
𝑛

, 𝑅
𝑛

]. Suppose that the solution 𝑥(𝑡, 𝑡
0
,

𝑥
0
) of (7) exists for all 𝑡 ≥ 𝑡

0
. The fundamental matrix solu-

tionΦ(𝑡, 𝑡
0
, 𝑥
0
) of (7) is given by [7]

Φ(𝑡, 𝑡
0
, 𝑥
0
) =

𝜕𝑥 (𝑡, 𝑡
0
, 𝑥
0
)

𝜕𝑥
0

(9)

and Φ(𝑡
0
, 𝑡
0
, 𝑥
0
) = 𝐼.

We are now in a position to give the Alekseev formula,
which connects the solutions of (7) and (8).

Lemma 2 (see [7]). If 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is the solution of (7) and

exists for 𝑡 ≥ 𝑡
0
, any solution𝑦(𝑡, 𝑡

0
, 𝑥
0
) of (8), with𝑦(𝑡

0
) = 𝑥
0
,

satisfies the integral equation

𝑦 (𝑡, 𝑡
0
, 𝑥
0
) = 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)

+ ∫

𝑡

𝑡
0

Φ(𝑡, 𝑠, 𝑦 (𝑠, 𝑡
0
, 𝑥
0
)) 𝐹 (𝑠, 𝑦 (𝑠, 𝑡

0
, 𝑥
0
))𝑑𝑠,

(10)

for 𝑡 ≥ 𝑡
0
, where Φ(𝑡, 𝑡

0
, 𝑥
0
) = 𝜕𝑥(𝑡, 𝑡

0
, 𝑥
0
)/𝜕𝑥
0
.

Lemma 3 (see [7]). Assume that 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is the solution of

(7) through (𝑡
0
, 𝑥
0
), which exists for 𝑡 ≥ 𝑡

0
, then

𝑥 (𝑡, 𝑡
0
, 𝑥
0
) = [∫

1

0

Φ(𝑡, 𝑡
0
, 𝑠𝑥
0
) 𝑑𝑠]𝑥

0
, (11)

whereΦ(𝑡, 𝑡
0
, 𝑥
0
) = 𝜕𝑥(𝑡, 𝑡

0
, 𝑥
0
)/𝜕𝑥
0
.

The following theorem gives an analog of the variation of
parameters formula for the solution of (2).

Theorem 4. Assume that 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is the solution of (5) for

𝑡 ≥ 𝑡
0
, let

𝐺 (𝑡, 𝑡
0
, 𝑥
0
) = 𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵

𝑇

. (12)

Then one has the following.
(i) Φ(𝑡, 𝑡

0
, 𝑥
0
) = 𝜕𝑥(𝑡, 𝑡

0
, 𝑥
0
)/𝜕𝑥
0
exists and is the funda-

mental matrix solution of the variational equation

𝜑


= 𝐺 (𝑡, 𝑡
0
, 𝑥
0
) 𝜑, (13)

such that Φ(𝑡
0
, 𝑡
0
, 𝑥
0
) = 𝐼, and therefore

Φ(𝑡, 𝑡
0
, 𝑥
0
) = 𝑊(𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
) , (14)

where𝑊(𝑡, 𝑡
0
) and 𝑍(𝑡, 𝑡

0
) are solutions of

𝑊


= 𝐴 (𝑡)𝑊, 𝑊 (𝑡
0
) = 𝐼, (15)

𝑍


= 𝑍𝐵 (𝑡) , 𝑍 (𝑡
0
) = 𝐼, (16)

respectively.
(ii) Any solution of (2) satisfies the integral equation

𝑌 (𝑡, 𝑡
0
, 𝑋
0
) = 𝑋 (𝑡, 𝑡

0
, 𝑋
0
)

+ ∫

𝑡

𝑡
0

𝑊(𝑡, 𝑠) 𝑅 (𝑠, 𝑌 (𝑠, 𝑡
0
, 𝑋
0
)) 𝑍 (𝑡, 𝑠) 𝑑𝑠,

(17)

for 𝑡 ≥ 𝑡
0
.

Proof. (i) It is obvious that Φ(𝑡, 𝑡
0
, 𝑥
0
) = 𝜕𝑥(𝑡, 𝑡

0
, 𝑥
0
)/𝜕𝑥
0

exists and is the fundamental matrix solution of the varia-
tional equation

𝜑


= 𝐺 (𝑡, 𝑡
0
, 𝑥
0
) 𝜑, (18)

such thatΦ(𝑡
0
, 𝑡
0
, 𝑥
0
) = 𝐼.

Furthermore, we get

𝜑


= 𝐺 (𝑡, 𝑡
0
, 𝑥
0
) 𝜑 = [𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵

𝑇

] 𝜑, (19)

with the initial value

𝜑 (𝑡
0
, 𝑡
0
, 𝑥
0
) = 𝑒, 𝑒 = vec (𝐼) , (20)

which has the solution

𝜑 (𝑡, 𝑡
0
, 𝑥
0
) = (𝑊 (𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
)) 𝑒, (21)
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where𝑊 and𝑍 are the solutions of (15) and (16), respectively,
and 𝐼 is the 𝑛 × 𝑛 identity matrix.

Therefore,

Φ(𝑡, 𝑡
0
, 𝑥
0
) = 𝑊(𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
) . (22)

(ii) Employing Lemma 2 and substituting forΦ the right-
hand side of (22), we get

𝑦 (𝑡, 𝑡
0
, 𝑥
0
) = 𝑥 (𝑡, 𝑡

0
, 𝑥
0
)

+ ∫

𝑡

𝑡
0

[𝑊 (𝑡, 𝑠) ⊗ 𝑍
𝑇

(𝑡, 𝑠)] 𝑟 (𝑠, 𝑦 (𝑠, 𝑡
0
, 𝑥
0
))𝑑𝑠

(23)

for 𝑡 ≥ 𝑡
0
, where 𝑦(𝑡, 𝑡

0
, 𝑥
0
) is any solution of (6).

Now, we define 𝑋(𝑡, 𝑡
0
, 𝑋
0
), 𝑌(𝑡, 𝑡

0
, 𝑋
0
), and 𝑅(𝑡, 𝑌) by

𝑥 = vec (𝑋), 𝑦 = vec (𝑌), and 𝑟 = vec (𝑅). Thus, we have
that

𝑌 (𝑡, 𝑡
0
, 𝑋
0
) = 𝑋 (𝑡, 𝑡

0
, 𝑋
0
)

+ ∫

𝑡

𝑡
0

𝑊(𝑡, 𝑠) 𝑅 (𝑠, 𝑌 (𝑠, 𝑡
0
, 𝑋
0
)) 𝑍 (𝑡, 𝑠) 𝑑𝑠,

(24)

for 𝑡 ≥ 𝑡
0
, where 𝑋(𝑡, 𝑡

0
, 𝑋
0
) is the unique solution of (1) for

𝑡 ≥ 𝑡
0
.

The proof is completed.

3. Main Results

We firstly give some notions.

Definition 5. Ageneralizedmatrix valued norm from𝑅
𝑚×𝑛 to

𝑅
+ is a mapping ‖ ⋅ ‖ : 𝑅𝑚×𝑛 → 𝑅

+ such that

(a) ‖𝑋‖ ≥ 0, ‖𝑋‖ = 0 if and only if𝑋 = 0,
(b) ‖𝜆𝑋‖ = |𝜆|‖𝑋‖, 𝜆 is a constant,
(c) ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖.

Definition 6. The zero solution of (1) is said to be

(hS) ℎ-stability if there exist 𝑐 ≥ 1, 𝛿 > 0, and a positive
bounded continuous function ℎ on 𝑅+ such that

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≤ 𝑐

𝑋0
 ℎ (𝑡) ℎ

−1

(𝑡
0
) , (25)

for 𝑡 ≥ 𝑡
0
≥ 0 and ‖𝑋

0
‖ ≤ 𝛿, ℎ−1(𝑡

0
) = 1/ℎ(𝑡

0
).

(hSV) ℎ-stability in variation if there exist 𝑐
1
, 𝑐
2
≥ 1, 𝛿 > 0,

and a positive bounded continuous function ℎ on 𝑅+
satisfying

𝑊 (𝑡, 𝑡
0
)
 ≤ 𝑐1ℎ (𝑡) ℎ

−1

(𝑡
0
) ,

𝑍 (𝑡, 𝑡0)
 ≤ 𝑐2ℎ (𝑡) ℎ

−1

(𝑡
0
) ,

(26)

provided ‖𝑋
0
‖ ≤ 𝛿, where 𝑊(𝑡, 𝑡

0
) and 𝑍(𝑡, 𝑡

0
) are

given inTheorem 4.

Lemma 7 (see [4]). The linear system

𝑥


= 𝐴 (𝑡) 𝑥, 𝑥 (𝑡
0
) = 𝑥
0
, (27)

is ℎ𝑆 if and only if there exist a constant 𝑐 ≥ 1 and a positive
continuous bounded function ℎ defined on 𝑅

+ such that for
every 𝑥

0
in 𝑅𝑛,

Φ (𝑡, 𝑡
0
, 𝑥
0
)
 ≤ 𝑐ℎ (𝑡) ℎ

−1

(𝑡
0
) (28)

for all 𝑡 ≥ 𝑡
0
≥ 0, where𝐴(𝑡) is an 𝑛×𝑛 continuous matrix and

Φ(𝑡, 𝑡
0
, 𝑥
0
) is a fundamental matrix of (27).

Theorem 8. The solution 𝑋 = 0 of (1) is ℎ𝑆 if and only if the
solution 𝑥 = 0 of (5) is ℎ𝑆.

Proof. Necessity. Since the solution 𝑋 = 0 of (1) is ℎ𝑆, there
exist 𝑐 ≥ 1, 𝛿 > 0, and a positive bounded continuous func-
tion ℎ on 𝑅+ such that

𝑋 (𝑡, 𝑡
0
, 𝑋
0
)
 ≤ 𝑐

𝑋0
 ℎ (𝑡) ℎ

−1

(𝑡
0
) (29)

for every 𝑡 ≥ 𝑡
0
≥ 0, ‖𝑋

0
‖ ≤ 𝛿, where 𝑋(𝑡, 𝑡

0
, 𝑋
0
) is the solu-

tion of (1), satisfying

𝑋


= 𝐴 (𝑡)𝑋 + 𝑋𝐵 (𝑡) , 𝑋 (𝑡
0
) = 𝑋

0
, (30)

then we obtain

vec (𝑋) = vec (𝐴 (𝑡)𝑋 + 𝑋𝐵 (𝑡)) . (31)

It follows that

[vec (𝑋)] = (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵
𝑇

) vec (𝑋) , (32)

Thus,
𝑥 (𝑡, 𝑡0, 𝑥0)

 =
vec (𝑋 (𝑡, 𝑡

0
, 𝑋
0
))


=
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)
 ≤ 𝑐

𝑥0
 ℎ (𝑡) ℎ

−1

(𝑡
0
) .

(33)

Sufficiency. It can be easily proved by the same method. The
proof is completed.

Theorem 9. The solution 𝑋 = 0 of (1) is ℎ𝑆 if and only if
there exist a constant 𝑐 ≥ 1 and a positive continuous bounded
function ℎ defined on 𝑅+ such that for every 𝑋

0
in 𝑅𝑛×𝑛,


𝑊 (𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
)

≤ 𝑐ℎ (𝑡) ℎ

−1

(𝑡
0
) (34)

for all 𝑡 ≥ 𝑡
0
≥ 0.

Proof. Sufficiency. Following Lemma 3 and Theorem 4, we
have

𝑥 (𝑡, 𝑡
0
, 𝑥
0
) = [∫

1

0

Φ(𝑡, 𝑡
0
, 𝑠𝑥
0
)𝑑𝑠] 𝑥

0
,

Φ (𝑡, 𝑡
0
, 𝑥
0
) = 𝑊(𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
) .

(35)
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It follows that

𝑥 (𝑡, 𝑡
0
, 𝑥
0
) = [∫

1

0

𝑊(𝑡, 𝑡
0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
)𝑑𝑠]𝑥

0
. (36)

Hence,
𝑥 (𝑡, 𝑡0, 𝑥0)

 ≤
𝑥0

 ∫

1

0


𝑊 (𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
)

𝑑𝑠

≤ 𝑐
𝑥0

 ℎ (𝑡) ℎ
−1

(𝑡
0
) , 𝑡 ≥ 𝑡

0
.

(37)

Therefore, the solution 𝑥 = 0 of (5) is ℎ𝑆. By Theorem 8, it
implies that the solution𝑋 = 0 of (1) is ℎ𝑆.

Necessity. If the solution 𝑋 = 0 of (1) is ℎ𝑆, then the solution
𝑥 = 0 of (5) is ℎ𝑆 usingTheorem 8. By Lemma 7, we have

Φ (𝑡, 𝑡
0
, 𝑥
0
)
 ≤ 𝑐ℎ (𝑡) ℎ

−1

(𝑡
0
) . (38)

FromTheorem 4, we obtain that

Φ(𝑡, 𝑡
0
, 𝑥
0
) = 𝑊(𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
) , (39)

Thus,

𝑊 (𝑡, 𝑡

0
) ⊗ 𝑍
𝑇

(𝑡, 𝑡
0
)

≤ 𝑐ℎ (𝑡) ℎ

−1

(𝑡
0
) . (40)

This completes the proof.

Corollary 10. If the zero solution of (1) is ℎ𝑆𝑉, then the zero
solution of (1) is ℎ𝑆.

Next, we offer sufficient conditions for the ℎ-stability of
linearmatrix differential systems by using the Lyapunov func-
tions.

Defining the Lyapunov functions

𝐷
+

𝑉
(5)
(𝑡, 𝑥) = lim

𝛿→0

sup 1
𝛿

× [𝑉 (𝑡 + 𝛿, 𝑥 + 𝛿 (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐵
𝑇

) 𝑥)

−𝑉 (𝑡, 𝑥) ] ,

(41)

for (𝑡, 𝑥) ∈ 𝑅+ × 𝑅𝑛
2

and for the solution 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝑥
0
) of

(5),

𝐷
+

𝑉 (𝑡, 𝑥) = lim
𝛿→0

sup 1
𝛿
[𝑉 (𝑡 + 𝛿, 𝑥 (𝑡 + 𝛿)) − 𝑉 (𝑡, 𝑥)] .

(42)

Then, it is well known that

𝐷
+

𝑉
(5)
(𝑡, 𝑥) = 𝐷

+

𝑉 (𝑡, 𝑥) , (43)

if 𝑉(𝑡, 𝑥) is the Lipschitzian in 𝑥 for each 𝑡 ∈ 𝑅+.

Theorem 11. Suppose that ℎ(𝑡) is a positive bonded continu-
ously differentiable function on 𝑅+. Furthermore, assume that
there exists a function 𝑉(𝑡, 𝑥) satisfying the following proper-
ties:

(i) 𝑉 ∈ 𝐶(𝑅
+

× 𝑅
𝑛
2

, 𝑅
+

), and 𝑉(𝑡, 𝑥) is Lipschitzian in 𝑥
for each 𝑡 ∈ 𝑅+,

(ii) ‖𝑥‖ ≤ 𝑉(𝑡, 𝑥) ≤ 𝑐‖𝑥‖, (𝑡, 𝑥) ∈ 𝑅+ × 𝑅𝑛
2

, 𝑐 ≥ 1,
(iii) 𝐷+𝑉

(5)
(𝑡, 𝑥) ≤ ℎ



(𝑡)ℎ
−1

(𝑡)𝑉(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑅+ × 𝑅𝑛
2

.
Then, the solution𝑋 = 0 of (1) is ℎ𝑆.

Proof. Let 𝑥(𝑡, 𝑡
0
, 𝑥
0
) be the solution of (5). As a consequence

of (iii), we obtain

𝑉 (𝑡, 𝑋 (𝑡, 𝑡
0
, 𝑥
0
)) ≤ 𝑉 (𝑡

0
, 𝑥
0
) exp∫

𝑡

𝑡
0

ℎ


(𝑠)

ℎ (𝑠)
𝑑𝑠

= 𝑉 (𝑡
0
, 𝑥
0
) ℎ (𝑡) ℎ

−1

(𝑡
0
) .

(44)

From the condition (ii), we have
𝑥 (𝑡, 𝑡0, 𝑥0)

 ≤ 𝑐
𝑥0

 ℎ (𝑡) ℎ
−1

(𝑡
0
) , 𝑡 ≥ 𝑡

0
≥ 0. (45)

ByTheorem 8, we can easily get that the solution𝑋 = 0 of (1)
is ℎ𝑆. The proof is completed.

Now, we examine the properties of the perturbed linear
matrix differential system.

Lemma 12 (see [9]). Suppose that 𝑘(𝑡, 𝑥) ∈ 𝐶(𝑅+ × 𝑅𝑛, 𝑅𝑛) is
strictly increasing in 𝑥 for 𝑡 ≥ 𝑡

0
≥ 0 with the property

𝑥 (𝑡) − ∫

𝑡

𝑡
0

𝑘 (𝑠, 𝑥 (𝑡))𝑑𝑠 ≤ 𝑦 (𝑡) − ∫

𝑡

𝑡
0

𝑘 (𝑠, 𝑦 (𝑡)) 𝑑𝑠,

𝑡 ≥ 𝑡
0
≥ 0

(46)

for 𝑥, 𝑦 ∈ 𝐶([𝑡
0
,∞), 𝑅

𝑛

). If 𝑥(𝑡
0
) < 𝑦(𝑡

0
), then 𝑥(𝑡) < 𝑦(𝑡) for

all 𝑡 ≥ 𝑡
0
≥ 0.

Theorem 13. Assume that 𝑋 = 0 of (1) is ℎ𝑆𝑉 with the non-
increasing function ℎ

1
and ℎ

2
. Consider the scalar differential

equation

𝑢


= 𝑐𝑙 (𝑡, 𝑢) , 𝑢 (𝑡
0
) = 𝑢
0
, 𝑤ℎ𝑒𝑟𝑒 𝑐 ≥ 1. (47)

Suppose that

‖𝑅 (𝑡, 𝑌)‖ ≤ 𝑙 (𝑡, ‖𝑌‖) , (48)

where 𝑙 ∈ 𝐶(𝑅
+

× 𝑅
+

, 𝑅
+

) is strictly increasing in 𝑢 for each
fixed 𝑡 ≥ 𝑡

0
≥ 0 with 𝑙(𝑡, 0) = 0.

If 𝑢 = 0 is ℎ𝑆, then the solution 𝑌 = 0 of (2) is also ℎ𝑆,
whenever 𝑢

0
= 𝑐‖𝑌
0
‖.

Proof. By Theorem 4, the solutions of (1) and (2) with the
same initial values are related by

𝑌 (𝑡, 𝑡
0
, 𝑌
0
) = 𝑋 (𝑡, 𝑡

0
, 𝑌
0
)

+ ∫

𝑡

𝑡
0

𝑊(𝑡, 𝑠) 𝑅 (𝑠, 𝑌 (𝑠, 𝑡
0
, 𝑌
0
)) 𝑍 (𝑡, 𝑠)𝑑𝑠.

(49)

Then, we have

𝑌 (𝑡, 𝑡0, 𝑌0)
 ≤

𝑋 (𝑡, 𝑡
0
, 𝑌
0
)
 + ∫

𝑡

𝑡
0

‖𝑊 (𝑡, 𝑠)‖

×
𝑅 (𝑠, 𝑌 (𝑠, 𝑡0, 𝑌0))

 ‖Z (𝑡, 𝑠)‖ 𝑑𝑠.
(50)
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From Corollary 10, it easily follows that
𝑌 (𝑡, 𝑡0, 𝑌0)

 ≤ 𝑐1
𝑌0

 ℎ1 (𝑡) ℎ
−1

1
(𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑐
2
𝑐
3
[ℎ
2
(𝑡) ℎ
−1

2
(𝑠)]
2

×
𝑅 (𝑠, 𝑌 (𝑠, 𝑡0, 𝑌0))

𝑑𝑠

≤ 𝑐
𝑌0

 + 𝑐∫

𝑡

𝑡
0

𝑙 (𝑠, ‖𝑌 (𝑠)‖) 𝑑𝑠,

(51)

where 𝑐 = max{𝑐
1
, 𝑐
2
𝑐
3
}. Since ℎ

1
(𝑡) and ℎ

2
(𝑡) are nonincreas-

ing, we obtain

𝑌 (𝑡, 𝑡0, 𝑌0)
 − 𝑐∫

𝑡

𝑡
0

𝑙 (𝑠, ‖𝑌 (𝑠)‖)𝑑𝑠

≤ 𝑐
𝑌0

 = 𝑢0 = 𝑢 (𝑡) − ∫

𝑡

𝑡
0

𝑐𝑙 (𝑠, 𝑢 (𝑠))𝑑𝑠.

(52)

By Lemma 12, we have ‖𝑌(𝑡)‖ < 𝑢(𝑡) for all 𝑡 ≥ 𝑡
0
≥ 0. Since

𝑢 = 0 of (47) is ℎ𝑆,

‖𝑌 (𝑡)‖ < 𝑢 (𝑡) ≤ 𝑐
4
𝑢
0
ℎ (𝑡) ℎ

−1

(𝑡
0
)

= 𝑐
4
𝑐
𝑌0

 ℎ (𝑡) ℎ
−1

(𝑡
0
)

= 𝑀
𝑌0

 ℎ (𝑡) ℎ
−1

(𝑡
0
) , 𝑐

4
≥1, 𝑀=𝑐

4
𝑐 ≥ 1.

(53)

This completes the proof.

Theorem 14. Assume that
(i) the zero solution of (1) is ℎ𝑆𝑉,
(ii) ‖𝑅(𝑡, 𝑌(𝑡))‖ ≤ 𝛾(𝑡)‖𝑌(𝑡)‖ provided that 𝛾(𝑡) > 0 and

∫
∞

𝑡
0

𝛾(𝑡)𝑑𝑡 < ∞ for 𝑡
0
≥ 0.

Then, the solution 𝑌 = 0 of (2) is ℎ𝑆.

Proof. By Theorem 4, the solutions of (1) and (2) with the
same initial values are related by

𝑌 (𝑡, 𝑡
0
, 𝑋
0
) = 𝑋 (𝑡, 𝑡

0
, 𝑋
0
)

+ ∫

𝑡

𝑡
0

𝑊(𝑡, 𝑠) 𝑅 (𝑠, 𝑌 (𝑠, 𝑡
0
, 𝑋
0
)) 𝑍 (𝑡, 𝑠)𝑑𝑠.

(54)

The assumptions (i) and (ii) yield
𝑌 (𝑡, 𝑡0, 𝑋0)

 ≤
𝑋 (𝑡, 𝑡

0
, 𝑋
0
)


+ ∫

𝑡

𝑡
0

‖𝑊 (𝑡, 𝑠)‖
𝑅 (𝑠, 𝑌 (𝑠, 𝑡0, 𝑋0))



× ‖𝑍 (𝑡, 𝑠)‖ 𝑑𝑠 ≤ 𝑐
𝑋0

 ℎ (𝑡) ℎ
−1

(𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑐
1
𝑐
2
[ℎ
1
(𝑡) ℎ
−1

1
(𝑠)]
2

× 𝛾 (𝑠)
𝑌 (𝑠, 𝑡0, 𝑋0)

 𝑑𝑠.

(55)

Then, by Gronwall’s inequality, we get
𝑌 (𝑡, 𝑡0, 𝑋0)

 ≤ 𝑐
𝑋0

 ℎ (𝑡) ℎ
−1

(𝑡
0
)

× exp(∫
∞

𝑡
0

𝑐
1
𝑐
2
[ℎ
1
(𝑡) ℎ
−1

1
(𝑠)]
2

𝛾 (𝑠) 𝑑𝑠)

≤ 𝑀
𝑋0

 ℎ (𝑡) ℎ
−1

(𝑡
0
) ,

(56)

where𝑀 = max{𝑐 exp(∫∞
𝑡
0

𝑐
1
𝑐
2
[ℎ
1
(𝑡)ℎ
−1

1
(𝑠)]
2

𝛾(𝑠)𝑑𝑠)}.

The proof is completed.

4. Example

In this section, we give a simple but illustrative example. Con-
sider the matrix differential equation

𝑋


(𝑡) = (
−1 1

0 −2
)𝑋 (𝑡) + 𝑋 (𝑡) (

−1 0

0 −1
) ,

𝑋 (0) = (
1 0

0 1
) .

(57)

Then, we can obtain the following equations:

𝑊


= (
−1 1

0 −2
)𝑊, 𝑊 (0) = 𝐼, (58)

𝑍


= 𝑍(
−1 0

0 −1
) , 𝑍 (0) = 𝐼. (59)

The solutions of (58) and (59) are

𝑊(𝑡) = (
𝑒
−𝑡

𝑒
−𝑡

− 𝑒
−2𝑡

0 𝑒
−2𝑡

) , 𝑍 (𝑡) = (
𝑒
−𝑡

0

0 𝑒
−𝑡) ,

(60)

respectively.
Then,

𝑊(𝑡) ⊗ 𝑍
𝑇

(𝑡) = (

𝑒
−2𝑡

0 𝑒
−2𝑡

− 𝑒
−3𝑡

0

0 𝑒
−2𝑡

0 𝑒
−2𝑡

− 𝑒
−3𝑡

0 0 𝑒
−3𝑡

0

0 0 0 𝑒
−3𝑡

).

(61)

Thus, we have

𝑊 (𝑡) ⊗ 𝑍

𝑇

(𝑡)

≤ 𝑐ℎ (𝑡) ℎ

−1

(0) , (62)

where ℎ(𝑡) = 𝑒
−2𝑡, 𝑐 = 5, ‖𝑊(𝑡) ⊗ 𝑍

𝑇

(𝑡)‖ = 4𝑒
−2𝑡, ‖𝐷‖ =

∑
𝑚,𝑛

𝑖,𝑗
|𝑑
𝑖𝑗
|, 𝐷 ∈ 𝑅

𝑚×𝑛, and 𝐼 is an identity matrix. So, from
Theorem 9, we can conclude that the solution 𝑋 = 0 of (57)
is ℎ𝑆.
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