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The shifted Jacobi-Gauss-Lobatto pseudospectral (SJGLP) method is applied to neutral functional-differential equations (NFDEs)
with proportional delays. The proposed approximation is based on shifted Jacobi collocation approximation with the nodes of
Gauss-Lobatto quadrature. The shifted Legendre-Gauss-Lobatto Pseudo-spectral and Chebyshev-Gauss-Lobatto Pseudo-spectral
methods can be obtained as special cases of the underlying method. Moreover, the SJGLP method is extended to numerically
approximate the nonlinear high-order NFDE with proportional delay. Some examples are displayed for implicit and explicit forms
ofNFDEs to demonstrate the computation accuracy of the proposedmethod.We also compare the performance of themethodwith
variational iteration method, one-leg 𝜃-method, continuous Runge-Kutta method, and reproducing kernel Hilbert space method.

1. Introduction

In the last four decades, spectral method has become increas-
ingly popular and been successfully applied in solving all
types of differential equations owing to its high order of
accuracy (see, for instance, [1–5]). Recently there has been
a growing interest in applying spectral methods for the
numerical solution of fractional differential equations and
delay differential equations (DDEs). Moreover, the principal
difficulty in studying NFDEs with proportional delays lies
in their special transcendental nature. Thus we propose
an efficient technique to solve such differential equations
numerically based on shifted Jacobi polynomials.

In the last two decades, some numerical approaches for
treating several types of DDEs were presented in [6–12]. In
this direction, Zhao et al. [13] studied the stability of Runge-
Kutta approach and applied it for solving the NFDEs with
proportional delays. Tohidi et al. [12] derived the operational
matrix of Bernoulli polynomial and used it with collocation

method to solve the pantograph type equation.The one-leg 𝜃
approach was implemented to solve nonlinear NFDEs in [14].
Meanwhile, Trif [15] proposed a direct solution technique
by using the Chebyshev Tau operational matrix method for
solving the pantograph type equation.More recently, Bhrawy
et al. [16] proposed the Legendre pseudospectral algorithm
with studying the error analysis and stability of the proposed
algorithm for a class of DDEs. Sun and Zhang [17] proposed
a compact difference method for solving nonlinear partial
DDE. Cordero and Escalante [18] extended the application
of segmented tau approach for solving a class of NFDEs,
meanwhile, the history-valued NFDEs were approximated in
[19]. Işik et al. [20] introduced a new Bernstein collocation
method for the numerical solution of DDEs of pantograph-
type with retarded case. The existence of solutions of neutral
functional-differential equations with proportional delays
had been discussed in [21–24].

The aim of this paper is to develop a direct solution
technique to approximate the linear high-order NFDEs with
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proportional delays using the shifted Jacobi polynomials on
the interval [0, 𝐿]; we dedicate the shifted Jacobi-Gauss-
Lobatto pseudospectral (SJGLP) method to find the approx-
imate solution 𝑢

𝑁
(𝑥). Approximate semianalytical solution

with high accuracy can be obtained by selecting a limited
number of Gauss-Lobatto collocation points for the linear
and nonlinear high-order NFDEs with proportional delays.
For suitable collocation points we use the (𝑁 − 𝑚 + 1) nodes
of the shifted Jacobi-Gauss-Lobatto interpolation on (0, 𝐿) in
which the nodes are distinct and lie between 0 and 𝐿, and
the two endpoints of the domain (0 and 𝐿) are used as the
first and last collocation points, respectively. The algorithms
given in [16] can be obtained as special cases from the
proposed algorithms. Finally, the accuracy of the proposed
method is showed by test problems. From the results, these
algorithms are extremely efficient and accurate for solving
NFDEs.

The paper is arranged in the following way. In the
next section, some basic properties of Jacobi polynomials
which are required in the present paper are given, and
in Section 3, the way of constructing the pseudospectral
technique for NFDEs with proportional delays is described
using the shifted Jacobi polynomials. In Section 4, we
investigate the shifted Jacobi-Gauss-Lobatto pseudo-spectral
(SJGLP) method for solving nonlinear high-order NFDEs
with proportional delays. Some numerical results exhibit-
ing the accuracy of the proposed algorithm are given in
Section 5. Finally, a conclusion is given in Section 6.

2. Preliminaries

In this section, we briefly recall some properties of the Jacobi
polynomials (𝐽(𝜃,𝜗)

𝑘
(𝑥), 𝑘 = 0, 1, . . ., 𝜃 > −1, 𝜗 > −1), which

satisfy the following relations:

𝐽
(𝜃,𝜗)

𝑘
(−𝑥) = (−1)

𝑘
𝐽
(𝜃,𝜗)

𝑘
(𝑥) ,

𝐽
(𝜃,𝜗)

𝑘
(−1) =

(−1)
𝑘
Γ (𝑘 + 𝜗 + 1)

𝑘!Γ (𝜗 + 1)
,

𝐽
(𝜃,𝜗)

𝑘
(1) =

Γ (𝑘 + 𝜃 + 1)

𝑘!Γ (𝜃 + 1)
.

(1)

The 𝑞th derivative of Jacobi polynomials of degree 𝑘 can be
given by

𝐷
(𝑞)
𝐽
(𝜃,𝜗)

𝑘
(𝑥) =

Γ (𝑗 + 𝜃 + 𝜗 + 𝑞 + 1)

2𝑞Γ (𝑗 + 𝜃 + 𝜗 + 1)
𝐽
(𝜃+𝑞,𝜗+𝑞)

𝑘−𝑞
(𝑥) . (2)

These polynomials are the only polynomials arising as eigen-
functions of the following singular Sturm-Liouville equation:

(1 − 𝑥
2
) 𝜙

(𝑥) + [𝜗 − 𝜃 + (𝜃 + 𝜗 + 2) 𝑥] 𝜙


(𝑥)

+ 𝑛 (𝑛 + 𝜃 + 𝜗 + 1) 𝜙 (𝑥) = 0.

(3)

Let 𝑤(𝜃,𝜗)(𝑥) = (1 − 𝑥)
𝜃
(1 + 𝑥)

𝜗; then we define the weighted
space 𝐿

2

𝑤
(𝜃,𝜗) as usual. The inner product and the norm of

𝐿
2

𝑤
(𝜃,𝜗) with respect to the weight function are defined as

follows:

(𝑢, V)
𝑤
(𝜃,𝜗) = ∫

1

−1

𝑢 (𝑥) V (𝑥)𝑤(𝜃,𝜗) (𝑥) 𝑑𝑥,

‖𝑢‖
𝑤
(𝜃,𝜗) = (𝑢, 𝑢)

1/2

𝑤
(𝜃,𝜗) .

(4)

The set of Jacobi polynomials forms a complete 𝐿
2

𝑤
(𝜃,𝜗)-

orthogonal system, and


𝐽
(𝜃,𝜗)

𝑘

𝑤(𝜃,𝜗)
:= ℎ
𝑘

=
2
𝜃+𝜗+1

Γ (𝑘 + 𝜃 + 1) Γ (𝑘 + 𝜗 + 1)

(2𝑘 + 𝜃 + 𝜗 + 1) Γ (𝑘 + 1) Γ (𝑘 + 𝜃 + 𝜗 + 1)
.

(5)

Let us denote 𝑃(𝛼,𝛽)
𝐿,𝑘

(𝑥) = 𝐽
(𝛼,𝛽)

𝑘
((2𝑥/𝐿) − 1), 𝐿 > 0. By the

shifted Jacobi polynomial of degree 𝑘 and by using (1) and (2);
then we deduce that

𝑃
(𝛼,𝛽)

𝐿,𝑘
(0) = (−1)

𝑘
Γ (𝑘 + 𝛽 + 1)

Γ (𝛽 + 1) 𝑘!
, (6)

𝐷
𝑞
𝑃
(𝛼,𝛽)

𝐿,𝑘
(0) =

(−1)
𝑘−𝑞

Γ (𝑘 + 𝛽 + 1) (𝑘 + 𝛼 + 𝛽 + 1)
𝑞

𝐿𝑞Γ (𝑘 − 𝑞 + 1) Γ (𝑞 + 𝛽 + 1)
, (7)

𝐷
𝑚
𝑃
(𝛼,𝛽)

𝐿,𝑘
(𝑥) =

Γ (𝑚 + 𝑘 + 𝛼 + 𝛽 + 1)

𝐿𝑚Γ (𝑘 + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑘−𝑚
(𝑥) . (8)

The following inner product and norm

(𝑢, V)
𝑤
(𝛼,𝛽)

𝐿

= ∫

𝐿

0

𝑢 (𝑥) V (𝑥)𝑤
(𝛼,𝛽)

𝐿
(𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼,𝛽)

𝐿

= (V, V)1/2
𝑤
(𝛼,𝛽)

𝐿

,

(9)

are defined on the weighted space 𝐿2
𝑤
(𝛼,𝛽)

𝐿

(0, 𝐿) subject to the

weight function 𝑤
(𝛼,𝛽)

𝐿
(𝑥) = (𝐿 − 𝑥)

𝛼
𝑥
𝛽. Moreover, 𝑃(𝛼,𝛽)

𝐿,𝑘
(𝑥)

forms a complete 𝐿2
𝑤
(𝛼,𝛽)

𝐿

(0, 𝐿)-orthogonal system.
According to (5), we get


𝑃
(𝛼,𝛽)

𝐿,𝑘



2

𝑤
(𝛼,𝛽)

𝐿

= (
𝐿

2
)

𝛼+𝛽+1

ℎ
(𝛼,𝛽)

𝑘
:= ℎ
(𝛼,𝛽)

𝐿,𝑘
. (10)

3. Linear High-Order NFDE with
Proportional Delay

In this section, we shall investigate solutions to NFDEs with
proportional delays of the form

(𝑢(𝑥) + 𝑎 (𝑥) 𝑢 (𝛾𝑚𝑥))
(𝑚)

= 𝛽𝑢 (𝑥) +

𝑚−1

∑

𝑛=0

𝑏
𝑛 (𝑥) 𝑢

(𝑛)
(𝛾
𝑛
𝑥) + 𝑓 (𝑥) , 𝑥 ≥ 0,

(11)
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with the initial conditions

𝑚−1

∑

𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)

(0) = 𝜆
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1, (12)

where 𝑎 and 𝑏
𝑛
(𝑛 = 0, 1, . . . , 𝑚 − 1) are given functions,

meanwhile, 𝛽, 𝛾
𝑛
, 𝑐
𝑖𝑛
, and 𝜆

𝑖
are constants with 0 < 𝛾

𝑛
< 1

(𝑛 = 0, 1, . . . , 𝑚). This class of equations plays an important
role in modeling phenomena of the real world.

In the pseudo-spectral methods [25–28], one needs to
exactly satisfy the differential equation at specified collo-
cation points in the domain of solution. Generally, the
distribution of the collocation nodes can be freely chosen,
but an accurate approximations are obtained by selecting the
collocation nodes as the zeros of the orthogonal polynomials.
For shifted Jacobi polynomials, two commonly used quadra-
ture and collocation nodes, namely, (i) shifted Jacobi-Gauss
nodes (in the interior of the domain) and (ii) shifted Jacobi-
Gauss-Lobatto nodes (in the interior and at the two endpoints
of the domain).

Now, we will present the shifted Jacobi-Gauss-Lobatto
type quadratures. Let 𝑥(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁, be the nodes of the

Jacobi-Gauss-Lobatto interpolation on (−1, 1), and let 𝜛(𝛼,𝛽)
𝑁,𝑗

,
0 ⩽ 𝑗 ⩽ 𝑁, be the corresponding weights. Throughout
this paper, we assume that 𝑥

𝐿,𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁, stands for

the nodes of the shifted Jacobi-Gauss-Lobatto interpolation
on the interval (0, 𝐿). Thus 𝑥(𝛼,𝛽)

𝐿,𝑁,𝑗
, 0 ⩽ 𝑗 ⩽ 𝑁, and their

corresponding weights are 𝜛(𝛼,𝛽)
𝐿,𝑁,𝑗

= (𝐿/2)
𝛼+𝛽+1

𝜛
(𝛼,𝛽)

𝑁,𝑗
, 0 ⩽ 𝑗 ⩽

𝑁. Let 𝑆
𝑁
(0, 𝐿) be the set of all polynomials of degree ≤ 𝑁.

One gets for any 𝜙 ∈ 𝑆
2𝑁−1

(0, 𝐿),

∫

𝐿

0

(𝐿 − 𝑥)
𝛼
𝑥
𝛽
𝜙 (𝑥) 𝑑𝑥

= (
𝐿

2
)

𝛼+𝛽+1

∫

1

−1

(1 − 𝑥)
𝛼
(1 + 𝑥)

𝛽
𝜙(

𝐿

2
(𝑥 + 1)) 𝑑𝑥

= (
𝐿

2
)

𝛼+𝛽+1 𝑁

∑

𝑗=0

𝜛
(𝛼,𝛽)

𝑁,𝑗
𝜙(

𝐿

2
(𝑥
(𝛼,𝛽)

𝑁,𝑗
+ 1))

=

𝑁

∑

𝑗=0

𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
𝜙 (𝑥
(𝛼,𝛽)

𝐿,𝑁,𝑗
) .

(13)

Let us first introduce some basic notations that will be
used in the sequel. We set

𝑆
𝑁 (0, 𝐿) = span {𝑃(𝛼,𝛽)

𝐿,0
(𝑥) , 𝑃

(𝛼,𝛽)

𝐿,1
(𝑥) , . . . , 𝑃

(𝛼,𝛽)

𝐿,𝑁
(𝑥)} . (14)

The discrete inner product and norm are defined by

(𝑢, V)
𝑤
(𝛼,𝛽)

𝐿
,𝑁

=

𝑁

∑

𝑗=0

𝑢 (𝑥
(𝛼,𝛽)

𝐿,𝑁,𝑗
) V (𝑥(𝛼,𝛽)
𝐿,𝑁,𝑗

) 𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
,

‖𝑢‖
𝑤
(𝛼,𝛽)

𝐿
,𝑁

= √(𝑢, 𝑢)
𝑤
(𝛼,𝛽)

𝐿
,𝑁
,

(15)

where 𝑥(𝛼,𝛽)
𝐿,𝑁,𝑗

and 𝜛
(𝛼,𝛽)

𝐿,𝑁,𝑗
are the nodes and the corresponding

weights of the shifted Jacobi-Gauss-Lobatto quadrature for-
mula on the interval (0, 𝐿), respectively. Obviously,

(𝑢, V)
𝑤
(𝛼,𝛽)

𝐿
,𝑁

= (𝑢, V)
𝑤
(𝛼,𝛽)

𝐿

, ∀𝑢, V ∈ 𝑆
2𝑁−1

. (16)

The shifted Jacobi-Gauss-Lobatto pseudo-spectral meth-
od for solving (28) and (29) is to seek 𝑢

𝑁
(𝑥) ∈ 𝑆

𝑁
(0, 𝐿), such

that

(𝑢 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) + 𝑎 (𝑥

(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) 𝑢 (𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
))
(𝑚)

= 𝛽𝑢 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

+

𝑚−1

∑

𝑛=0

𝑏
𝑛
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) 𝑢
(𝑛)

(𝛾
𝑛
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

+ 𝑓 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑚−1

∑

𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)

(0) = 𝜆
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1,

(17)

where the 𝑥(𝛼,𝛽)
𝐿,𝑁−𝑚,𝑘

, 𝑘 = 1, 2, . . . , 𝑁 − 𝑚 − 1, are distinct and
lie between 0 and 𝐿, 𝑥(𝛼,𝛽)

𝐿,𝑁−𝑚,0
= 0, and 𝑥

(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑁−𝑚
= 𝐿.

For simplicity in presentation and without loss of generality,
assume that 𝑎(𝑥) ≡ 1. We now derive the collocation
algorithm for solving (28) and (29). To do this, consider the
solution is approximated by a truncated Jacobi expansion

𝑢
𝑁 (𝑥) =

𝑁

∑

ℎ=0

𝑎
ℎ
𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝑥) , a = (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑁
)
𝑇
. (18)

We first approximate 𝑢(𝑥) and 𝑢𝑛(𝑥) as (32). By substitut-
ing these approximation in (28), we get

𝑁

∑

ℎ=0

𝑎
ℎ
𝐷
(𝑚)

𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝑥) +

𝑁

∑

ℎ=0

𝑎
ℎ
𝐷
(𝑚)

𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝛾
𝑚
𝑥)

= 𝛽

𝑁

∑

ℎ=0

𝑎
ℎ
𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝑥)

+

𝑚−1

∑

𝑛=0

𝑁

∑

ℎ=0

𝑏
𝑛 (𝑥) 𝑎ℎ𝐷

(𝑛)
𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝛾
𝑛
𝑥) + 𝑓 (𝑥) .

(19)
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Then, by virtue of (8), we deduce that

𝑁

∑

ℎ=0

𝑎
ℎ
(
Γ (ℎ + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (ℎ + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,ℎ−𝑚
(𝑥)

+ 𝛾
𝑚

𝑚

Γ (ℎ + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑚Γ (ℎ + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,ℎ−𝑚
(𝛾
𝑚
𝑥))

= 𝛽

𝑁

∑

ℎ=0

𝑎
ℎ
𝑃
(𝛼,𝛽)

𝐿,ℎ
(𝑥)

+

𝑚−1

∑

𝑛=0

𝑁

∑

ℎ=0

𝛾
(𝑛)

𝑛
𝑏
𝑛 (𝑥) 𝑎ℎ

Γ (ℎ + 𝛼 + 𝛽 + 𝑛 + 1)

𝐿𝑛Γ (ℎ + 𝛼 + 𝛽 + 1)

× 𝑃
(𝛼+𝑛,𝛽+𝑛)

𝐿,ℎ−𝑛
(𝛾
𝑛
𝑥) + 𝑓 (𝑥) .

(20)

Also, by substituting (32) in (29), we obtain

𝑚−1

∑

𝑛=0

𝑁

∑

ℎ=0

𝑐
𝑖𝑛
𝑎
ℎ
𝐷
(𝑛)
𝑃
(𝛼,𝛽)

𝐿,ℎ
(0) = 𝜆

𝑖
. (21)

To find the solution 𝑢
𝑁
(𝑥), we first collocate (20) at the

(𝑁 − 𝑚 + 1) shifted Jacobi roots that yields

𝑁

∑

𝑗=0

𝑎
𝑗
(
Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

+ 𝛾
𝑚

𝑚

Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑚Γ (𝑗 + 𝛼 + 𝛽 + 1)

× 𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
))

= 𝛽

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

+

𝑚−1

∑

𝑛=0

𝑁

∑

𝑗=0

𝛾
(𝑛)

𝑛
𝑏
𝑛
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) 𝑎
𝑗

×
Γ (𝑗 + 𝛼 + 𝛽 + 𝑛 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑛,𝛽+𝑛)

𝐿,𝑗−𝑛
(𝛾
𝑛
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

+ 𝑓 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(22)

Next, (21), after using (7), can be written as

𝑚−1

∑

𝑛=0

𝑁

∑

𝑗=0

(−1)
𝑗−𝑛

𝑐
𝑖𝑛
𝑎
𝑗

Γ (𝑗 + 𝛽 + 1) (𝑗 + 𝛼 + 𝛽 + 1)
𝑛

𝐿𝑛Γ (𝑗 − 𝑛 + 1) Γ (𝑛 + 𝛽 + 1)
= 𝜆
𝑖
,

𝑖 = 0, 1, . . . , 𝑚 − 1.

(23)

Thus (22) with relation (23) can be written as a linear
algebraic system. To do this, let us consider

a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
)
𝑇
,

𝑓
𝑘
= 𝑓 (𝑥

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

f = (𝑓
0
, 𝑓
1
, . . . , 𝑓

𝑁−𝑚
, 𝜆
0
, . . . , 𝜆

𝑚−1
)
𝑇
.

(24)

Thematrix system associated with (22) and (23) becomes

(𝐴 + 𝛾
𝑚

𝑚
𝐵 + 𝛽𝐶 +

𝑚−1

∑

𝑛=0

𝛾
𝑛

𝑛
𝐷
𝑛
+ 𝐸) a = f , (25)

where the matrices 𝐴, 𝐵, 𝐶, 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1, and

𝐸 are given explicitly in the following. If we denote that
𝐴 = (𝑎

𝑘𝑗
)
0<𝑘,𝑗<𝑁

, 𝐵 = (𝑏
𝑘𝑗
)
0<𝑘,𝑗<𝑁

, 𝐶 = (𝑐
𝑘𝑗
)
0<𝑘,𝑗<𝑁

, 𝐷
𝑛
=

(𝑑
𝑛

𝑘𝑗
)
0<𝑘,𝑗<𝑁

, 𝑛 = 1, 2, . . . , 𝑚−1, and 𝐸 = (𝑒
𝑘𝑗
)
0<𝑘,𝑗<𝑁

, then the
elements 𝑎

𝑘𝑗
, 𝑏
𝑘𝑗
, 𝑐
𝑘𝑗
, and 𝑑𝑛

𝑘𝑗
are given by

𝑎
𝑘𝑗

=

{{{{{{{{{

{{{{{{{{{

{

Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)

×𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑗 = 0, 1, . . . , 𝑁,

0, 𝑘 = 𝑁 − 𝑚 + 1, . . . , 𝑁,

𝑗 = 0, 1, . . . , 𝑁,

𝑏
𝑘𝑗

=

{{{{{{{{{

{{{{{{{{{

{

Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑚Γ (𝑗 + 𝛼 + 𝛽 + 1)

×𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑗 = 0, 1, . . . , 𝑁,

0, 𝑘 = 𝑁 − 𝑚 + 1, . . . , 𝑁,

𝑗 = 0, 1, . . . , 𝑁,

𝑐
𝑘𝑗

=

{{

{{

{

−𝑃
(𝛼,𝛽)

𝐿,𝑗

× (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
), 𝑘 = 0, 1, . . . , 𝑁 − 𝑚, 𝑗 = 0, 1, . . . , 𝑁,

0, 𝑘 = 𝑁 − 𝑚 + 1, . . . , 𝑁, 𝑗 = 0, 1, . . . , 𝑁,

𝑑
𝑛

𝑘𝑗

=

{{{{{{{{{{{

{{{{{{{{{{{

{

−𝑏
𝑛
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

×
Γ (𝑗 + 𝛼 + 𝛽 + 𝑛 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)

×𝑃
(𝛼+𝑛,𝛽+𝑛)

𝐿,𝑗−𝑛
(𝛾
𝑛
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑗 = 0, 1, . . . , 𝑁,

0, 𝑘 = 𝑁 − 𝑚 + 1, . . . , 𝑁,

𝑗 = 0, 1, . . . , 𝑁.

(26)
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Moreover, the elements of the matrix corresponding to the
mixed initial conditions are given by

𝑒
𝑘𝑗

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

0, 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑗 = 0, 1, . . . , 𝑁,

𝑚−1

∑

𝑛=0

(−1)
𝑗−𝑛

×𝑐
𝑘−𝑁−𝑚+1,𝑛

×
Γ(𝑗+𝛽+1)(𝑗+𝛼+𝛽+1)

𝑛

𝐿𝑛Γ(𝑗−𝑛+1) Γ(𝑛+𝛽+1)
, 𝑘=𝑁−𝑚+1, . . . , 𝑁,

𝑗 = 0, 1, . . . , 𝑁.

(27)

In the case of 𝑎(𝑥) ̸= 0, 𝑏
𝑛
(𝑥) ̸= 0, 𝑛 = 0, 1, . . . , 𝑚 − 1, and

𝛽 ̸= 0, the linear system (25) can be solved by forming explic-
itly the LU factorization; that is,𝐴+𝛾

𝑚

𝑚
𝐵+𝛽𝐶+∑

𝑚−1

𝑛=0
𝛾
𝑛

𝑛
𝐷
𝑛
+

𝐸 = LU.The expense of calculating LU factorization is𝑂(𝑁3)
operations, and the expense of solving the linear system (25),
provided that the factorization is known, is 𝑂(𝑁2).

4. Nonlinear High-Order NFDE with
Proportional Delay

In this section, we investigate the shifted Jacobi-Gauss-
Lobatto pseudospectral method to numerically approximate
the nonlinear high-order NFDE with proportional delay;
namely,

𝑑
𝑚
𝑢 (𝑥)

𝑑𝑥𝑚

= 𝐺(𝑥, 𝑢 (𝑥) , 𝑢 (𝛾0𝑥) ,
𝑑𝑢 (𝛾
1
𝑥)

𝑑𝑥
, . . . ,

𝑑
𝑚
𝑢 (𝛾
𝑚
𝑥)

𝑑𝑥𝑚
) ,

0 ≤ 𝑥 ≤ 𝐿,

(28)

subject to

𝑚−1

∑

𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)

(0) = 𝜆
𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1, (29)

where 𝛾
𝑛
, 𝑐
𝑖𝑛
, and 𝜆

𝑖
are constants with 0 < 𝛾

𝑛
< 1 (𝑛 = 0,

1, . . . , 𝑚),meanwhile,𝐺 is nonlinear in general.This equation
is a generalized form of the proportional delay differential
equations given in [14, 29, 30] and plays an important role
in modeling phenomena of the real world.

The shifted Jacobi-Gauss-Lobatto pseudospectral approx-
imation for (28) is to find 𝑢

𝑁
(𝑥) ∈ 𝑆

𝑁
(0, 𝐿) such that

𝑑
𝑚

𝑑𝑥𝑚
𝑢 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

= 𝐺(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
, 𝑢 (𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑢 (𝛾
0
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑑

𝑑𝑥
𝑢 (𝛾
1
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , . . . ,

𝑑
𝑚

𝑑𝑥𝑚
𝑢 (𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(30)

Now, we approximate the numerical solution as a trun-
cated series expansion of shifted Jacobi polynomial in the
form

𝑢
𝑁 (𝑥) =

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥) . (31)

Accordingly, (30) can be written as

𝑁

∑

𝑗=0

𝑎
𝑗

𝑑
𝑚

𝑑𝑥𝑚
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

= 𝐺(𝑥,

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝛾
0
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑁

∑

𝑗=0

𝑎
𝑗

𝑑

𝑑𝑥
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝛾
1
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) , . . . ,

𝑁

∑

𝑗=0

𝑎
𝑗

𝑑
𝑚

𝑑𝑥𝑚
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)) ,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(32)

Next, making use of relation (8), thus the high-order
derivatives of the proposed solutionwith proportional delays,
(𝑑𝑢(𝛾
1
𝑥)/𝑑𝑥), . . . , (𝑑

𝑚
𝑢(𝛾
𝑚
𝑥)/𝑑𝑥

𝑚
), can be expressed explic-

itly in terms of the shifted Jacobi polynomials and the
expansion coefficients 𝑎

𝑗
; consequently

𝑁

∑

𝑗=0

𝑎
𝑗

Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)
𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)

= 𝐺(𝑥,

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑁

∑

𝑗=0

𝑎
𝑗
𝑃
(𝛼,𝛽)

𝐿,𝑗
(𝛾
0
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
) ,

𝑁

∑

𝑗=0

𝑎
𝑗
𝛾
1
(
Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)



6 Abstract and Applied Analysis

× 𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝛾
1
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
)) , . . . ,

𝑁

∑

𝑗=0

𝑎
𝑗
𝛾
𝑚

𝑚
(
Γ (𝑗 + 𝛼 + 𝛽 + 𝑚 + 1)

𝐿𝑛Γ (𝑗 + 𝛼 + 𝛽 + 1)

× 𝑃
(𝛼+𝑚,𝛽+𝑚)

𝐿,𝑗−𝑚
(𝛾
𝑚
𝑥
(𝛼,𝛽)

𝐿,𝑁−𝑚,𝑘
))) ,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚.

(33)

Finally, to find the unknown expansion coefficients 𝑎
𝑗
, 𝑗 =

0, 1, . . . , 𝑁, we implement any iteration technique to solve a
system of𝑁+ 1 nonlinear algebraic equations resulting from
the combination of𝑁 − 𝑚 + 1 nonlinear algebraic equations
resulting from (33) and𝑚 linear algebraic equations resulting
from (29).

5. Numerical Results

In this section, we will carry out three test examples to study
the validity and effectiveness of the proposed method and
also show that high accurate solutions are achieved using a
few number of the Jacobi Gauss-Lobatto points. Moreover,
comparisons with other methods reveal that the present
method is accurate and convenient. All the numerical com-
putations have been performed by the symbolic computation
software Mathematica 8.0.

Example 1. Consider the first-order NFDEwith proportional
delay considered in [31]

𝑢

(𝑥) = − 𝑢 (𝑥) + 0.1𝑢 (0.8𝑥) + 0.5𝑢


(0.8𝑥)

+ (0.32𝑥 − 0.5) 𝑒
−0.8𝑥

+ 𝑒
−𝑥
, 𝑥 ≥ 0,

𝑢 (0) = 0,

(34)

which has the exact solution 𝑥𝑒
−𝑥.

Table 1 lists the absolute error using Jacobi pseudospectral
method for three choices of 𝛼, 𝛽 at 𝑁 = 20 in the interval
[0, 1]. We compare the errors obtained by the proposed
method with variational iteration (VI) method [32], the one-
leg 𝜃method [14, 33] with 𝜃 = 0.8, and RKHSMmethod [31].
The graph of analytical solution and approximate solution in
long interval [0, 10] for 𝑁 = 28 and 𝛼 = −1/2, 𝛽 = 1/2

is displayed in Figure 1 to make it easier to compare with
analytical solution. Moreover, in this case the graph of the
error is given in Figure 2. Consequently, we conclude that the
approximate solution by Jacobi pseudospectral method agree
very well with the exact solution.

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Exact solution

x

u
(
x
)

Approximate method at N = 20

Figure 1: Comparison of the approximate solution with the exact
solution for 𝛼 = −1/2, 𝛽 = 1/2 at𝑁 = 28 for Example 1.

0 2 4 6 8 10

Er
ro

r

x

4.0

3.0

2.0

1.0

0

−1.0

−2.0

−3.0

×10
−12

Figure 2:The error between the approximate solution and the exact
solution in the interval [0, 10] for 𝛼 = −1/2, 𝛽 = 1/2 at𝑁 = 28 for
Example 1.

Example 2. Let us consider the second-order NFDE with
proportional delay

𝑢

(𝑥) = 𝑢


(
𝑥

2
) −

1

2
𝑥𝑢

(
𝑥

2
) −

𝜋

2

× (2 cos(𝜋𝑥
2
) + 𝜋𝑥 sin(𝜋𝑥

2
)

+ 2𝜋 sin (𝜋𝑥) ) , 𝑥 ∈ [0, 6] ,

𝑢 (0) = 0, 𝑢

(0) = 𝜋,

(35)

which enjoys exact solution 𝑢(𝑥) = sin(𝜋𝑥).

In Table 2, we introduce the absolute error using the
proposed method at 𝑁 = 24 with various choices of 𝛼 and
𝛽. The resulting graph of (35) for the presented method in
the case of 𝛼 = 𝛽 = 1 at𝑁 = 24 and the analytic solution are
shown in Figure 3.
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Table 1: Absolute errors using SJGLP method with various choices of𝑁, 𝛼, and 𝛽 for Example 1.

𝑥 𝛼 𝛽
SJGLP method

𝑁 = 20
In [31] In [32] In [33]

𝑛 = 5 𝑛 = 6

0.1 1/2 1/2 1.58 ⋅ 10
−17 1.42 ⋅ 10

−4
2.63 ⋅ 10

−3
1.30 ⋅ 10

−3
4.65 ⋅ 10

−3

0 0 2.23 ⋅ 10
−17

0.2 1/2 1/2 2.90 ⋅ 10
−18 1.17 ⋅ 10

−4
4.36 ⋅ 10

−3
2.14 ⋅ 10

−3
1.45 ⋅ 10

−2

0 0 4.16 ⋅ 10
−17

0.3 1/2 1/2 9.21 ⋅ 10
−18 9.45 ⋅ 10

−4
5.40 ⋅ 10

−3
2.63 ⋅ 10

−3
2.57 ⋅ 10

−2

0 0 4.65 ⋅ 10
−17

0.4 1/2 1/2 7.09 ⋅ 10
−17 7.59 ⋅ 10

−4
5.89 ⋅ 10

−3
2.84 ⋅ 10

−3
3.60 ⋅ 10

−2

0 0 3.52 ⋅ 10
−17

0.5 1/2 1/2 1.94 ⋅ 10
−17 6.03 ⋅ 10

−4
5.96 ⋅ 10

−3
2.83 ⋅ 10

−3
4.43 ⋅ 10

−2

0 0 4.85 ⋅ 10
−17

0.6 1/2 1/2 1.68 ⋅ 10
−17 4.73 ⋅ 10

−4
5.71 ⋅ 10

−3
2.67 ⋅ 10

−3
5.03 ⋅ 10

−2

0 0 5.83 ⋅ 10
−17

0.7 1/2 1/2 1.22 ⋅ 10
−18 3.64 ⋅ 10

−4
5.23 ⋅ 10

−3
2.39 ⋅ 10

−3
5.37 ⋅ 10

−2

0 0 1.62 ⋅ 10
−17

0.8 1/2 1/2 2.42 ⋅ 10
−17 2.75 ⋅ 10

−4
4.59 ⋅ 10

−3
2.04 ⋅ 10

−3
5.47 ⋅ 10

−2

0 0 6.88 ⋅ 10
−17

0.9 1/2 1/2 3.93 ⋅ 10
−17 2.03 ⋅ 10

−4
3.84 ⋅ 10

−3
1.64 ⋅ 10

−3
5.35 ⋅ 10

−2

0 0 5.46 ⋅ 10
−18

1.0 1/2 1/2 1.33 ⋅ 10
−17 1.43 ⋅ 10

−4
3.04 ⋅ 10

−3
1.22 ⋅ 10

−3
5.03 ⋅ 10

−2

0 0 1.25 ⋅ 10
−16

Table 2: Absolute errors using SJGLP method with various choices
of 𝛼 and 𝛽 for Example 2.

𝑥 𝛼 = 𝛽 = −1/2 𝛼 = 𝛽 = 1/2 𝛼 = 𝛽 = 0

0.0 4.13 ⋅ 10
−16

3.92 ⋅ 10
−16

1.11 ⋅ 10
−16

0.1 6.76 ⋅ 10
−10

1.29 ⋅ 10
−9

3.57 ⋅ 10
−10

0.2 5.01 ⋅ 10
−9

3.70 ⋅ 10
−9

5.86 ⋅ 10
−10

0.3 3.24 ⋅ 10
−9

9.52 ⋅ 10
−9

1.71 ⋅ 10
−9

0.4 4.14 ⋅ 10
−8

5.17 ⋅ 10
−7

2.16 ⋅ 10
−9

0.5 2.61 ⋅ 10
−8

2.88 ⋅ 10
−8

2.27 ⋅ 10
−9

1.0 3.72 ⋅ 10
−8

1.01 ⋅ 10
−8

2.13 ⋅ 10
−8

2.0 7.32 ⋅ 10
−8

3.89 ⋅ 10
−9

3.59 ⋅ 10
−8

3.0 2.19 ⋅ 10
−9

2.84 ⋅ 10
−8

1.85 ⋅ 10
−7

4.0 3.52 ⋅ 10
−7

7.78 ⋅ 10
−7

3.01 ⋅ 10
−7

5.0 3.73 ⋅ 10
−6

1.24 ⋅ 10
−6

1.80 ⋅ 10
−6

6.0 3.42 ⋅ 10
−6

2.97 ⋅ 10
−6

8.74 ⋅ 10
−6

Example 3. Consider the third-order NFDE with propor-
tional delays

𝑢

(𝑥) = (𝑢 (𝑥))

2
+ 𝑢

(
𝑥

2
)

+ 𝑢

(
𝑥

3
) +

1

2
𝑢

(
𝑥

4
) + 𝑓 (𝑥) , 𝑥 ≥ 0,

𝑢 (0) = 1, 𝑢

(0) =

1

3
, 𝑢


(0) = −

575

9
,

(36)

where

𝑓 (𝑥) =
1

54
𝑒
𝑥/12

( − 13752 sin (2𝑥) − 54𝑒
7𝑥/12cos2 (8𝑥)

+ 1727 cos (2𝑥) + 6𝑒
𝑥/36

× (48 sin(8𝑥
3
) + 575 cos(8𝑥

3
))

− 18𝑒
𝑥/12

(cos (4𝑥) − 24 sin (4𝑥))

+ 2𝑒
𝑥/4

(13752 sin (8𝑥) −1727 cos (8𝑥)) ).
(37)

The exact solution of the problem is 𝑢(𝑥) = 𝑒
𝑥/3 cos(8𝑥).

Table 3 lists the maximum absolute errors using SJGLP
method in the interval [0, 1] at 𝛼 = −𝛽 = 0.5 and different
choices of 𝛼 and 𝛽.

In case of Chebyshev polynomials of the second kind
(𝛼 = 𝛽 = 1/2), the graph of exact solution and approximate
solution for𝑁 = 24 is plotted in Figure 4 in the interval [0, 3].

6. Conclusion

In this paper, we have demonstrated the feasibility of SJGLP
for solving linear NFDEs with proportional delays. We also
have discussed the resulting linear system.Moreover, we have
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Figure 3: Graph of exact solution and approximate solution for 𝛼 =

𝛽 = 1 and𝑁 = 24 for Example 2.
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x
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Figure 4: Graph of exact solution and approximate solution for 𝛼 =

𝛽 = 1/2 and𝑁 = 24 for Example 3.

Table 3: Maximum absolute errors using SJGLP method with
various choices of 𝛼, 𝛽, and𝑁 for Example 3.

𝑡 𝛼 = −𝛽 = 0.5 𝛼 = −𝛽 = −0.5 𝛼 = 𝛽 = −0.5

12 1.74 ⋅ 10
−2

3.86 ⋅ 10
−3

5.07 ⋅ 10
−3

16 1.40 ⋅ 10
−6

2.65 ⋅ 10
−6

3.54 ⋅ 10
−6

20 4.38 ⋅ 10
−9

6.96 ⋅ 10
−10

9.40 ⋅ 10
−10

24 8.25 ⋅ 10
−13

1.63 ⋅ 10
−12

8.76 ⋅ 10
−13

28 4.35 ⋅ 10
−13

3.44 ⋅ 10
−13

3.22 ⋅ 10
−13

implemented the SJGLPmethod to numerically approximate
the nonlinear high-order NFDE with proportional delay.

All the given examples reveal that the results of SJGLP
method are in excellent agreement with the analytical solu-
tions. It is concluded from the aforementioned tables and
figures that SJGLPmethod is an accurate and efficientmethod
to solve NFDEs when compared with those generated by
some other methods.

In the future work, we address the Jacobi pseudospectral
approximation for the solution of linear and nonlinear delay
partial differential equations in two and three dimensions
(see, e.g., [17, 34]).
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