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The spectral collocation approximations based on Legendre polynomials are used to compute the numerical solution of time-
dependent Fisher’s type problems. The spatial derivatives are collocated at a Legendre-Gauss-Lobatto interpolation nodes. The
proposed method has the advantage of reducing the problem to a system of ordinary differential equations in time. The four-stage
A-stable implicit Runge-Kutta scheme is applied to solve the resulted system of first order in time. Numerical results show that the
Legendre-Gauss-Lobatto collocation method is of high accuracy and is efficient for solving the Fisher’s type equations. Also the
results demonstrate that the proposed method is powerful algorithm for solving the nonlinear partial differential equations.

1. Introduction

Spectral methods (see, for instance, [1–5]) are powerful tech-
niques that we use to numerically solve linear and nonlinear
partial differential equations either in their strong or weak
forms. What sets spectral methods apart from others like
finite difference methods or finite element methods is that to
get a spectral method we approximate the solutions by high
order orthogonal polynomial expansions. The orthogonal
polynomial approximations can have very high convergence
rates, which allow us to use fewer degrees of freedom for a
desired level of accuracy.Themost common spectral method
from the strong formof the equations is known as collocation.
In collocation techniques, the partial differential equation
must be satisfied at a set of grid, ormore precisely, collocation
points (see, for instance, [6–10]). Spectral methods also have
become increasingly popular for solving fractional differen-
tial equations [11–21].

In this paper, we present an accurate numerical solution
based on Legendre-Gauss-Lobatto collocation method for
Fisher’s type equations. The Fisher equation in the form

𝑢
𝑡
= 𝐷𝑢
𝑥𝑥

+ ]𝑢 (1 − 𝑢) (1)

was firstly introduced by Fisher in [22] to describe the propa-
gation of amutant gene. Fisher equations have awide applica-
tion in a large number of the chemical kinetics [23], logistic
population growth [24], flame propagation [25], population
in one-dimensional habitual [26], neutron population in
a nuclear reaction [27], neurophysiology [28], branching
Brownian motion [23], autocatalytic chemical reactions [29],
and nuclear reactor theory [30].

In recent years, many physicists andmathematicians have
paid much attention to the Fisher equations due to their
importance in mathematical physics. In [31], Öǧün and Kart
utilized truncated Painlevè expansions for presenting some
exact solutions of Fisher and generalized Fisher equations.
Tan et al. [28] proposed the homotopy analysis method to
find analytical solution of Fisher equations. Gunzburger et
al. [32] applied the discrete finite element approximation for
obtaining a numerical solution of the forced Fisher equation.
Dag et al. [33] discussed and applied the B-spline Galerkin
method for Fisher’s equation. Bastani and Salkuyeh [34]
proposed the compact finite difference approach in combi-
nation with third-order Runge-Kutta scheme to solve Fisher’s
equation. More recently, Mittal and Jain [35] investigated the
cubic B-spline scheme for solving Fisher’s reaction-diffusion
problem. However, the fisher equations have been studied in
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many other articles by numerous numerical methods such
as pseudospectral method [36, 37], finite difference method
[38–44], finite element method [45], B-spline algorithm [46],
and Galerkin method [47, 48].

To increase the numerical solution accuracy, spectral
collocation methods based on orthogonal polynomials are
often chosen. Doha et al. [49] proposed and developed a
new numerical algorithm for solving the initial-boundary
system of nonlinear hyperbolic equations based on spec-
tral collocation method; a Chebyshev-Gauss-Radau colloca-
tion method in combination with the implicit Runge-Kutta
scheme are employed to obtain highly accurate approxi-
mations to this system of nonlinear hyperbolic equations.
In [50], Bhrawy proposed an efficient Jacobi-Gauss-Lobatto
collocation method for approximating the solution of the
generalized Fitzhugh-Nagumo equation in which the Jacobi-
Gauss-Lobatto points are used as collocation nodes for
spatial derivatives. Moreover, the Jacobi spectral collocation
methods are used to solve some problems in mathematical
physics, (see, for instance, [51–53]).

Indeed, there are no results on Legendre-Gauss-Lobatto
collocation method for solving nonlinear Fisher-type equa-
tions subject to initial-boundary conditions. Therefore, the
objective of this work is to present a numerical algorithm
for solving such equation based on Legendre-Gauss-Lobatto
pseudospectral method. The spatial derivatives are approx-
imated at these grid points by approximating the deriva-
tives of Legendre polynomial that interpolates the solutions.
Moreover, we set the boundary conditions in the collocation
method. The problem is then reduced to system of first-
order ordinary differential equations in time. The four-
stage A-stable implicit Runge-Kutta scheme is proposed for
treating the this system of equations. Finally, some illustrative
examples are implemented to illustrate the efficiency and
applicability of the proposed approach.

The rest of this paper is structured as follows. In the next
section, some properties of Legendre polynomials, which
are required for implementing our algorithm, are presented.
Section 3 is devoted to the development of Gauss-Lobatto
collocation technique for a general form of Fisher-type equa-
tions based on the Legendre polynomials, and in Section 4 the
proposed method is implemented to obtain some numerical
results for three problems of Fisher-type equations with
known exact solutions. Finally, a brief conclusion is provided
in Section 5.

2. Legendre Polynomials

The Legendre polynomials 𝐿
𝑘
(𝑥) (𝑘 = 0, 1, . . .,) satisfy the

following Rodrigues’ formula:

𝐿
𝑘
(𝑥) =

(−1)
𝑘

2
𝑘
𝑘!

𝐷
𝑘
((1 − 𝑥

2
)

𝑘

) ; (2)

we recall also that 𝐿
𝑘
(𝑥) is a polynomial of degree 𝑘, and

therefore, the 𝑞th derivative of 𝐿
𝑘
(𝑥) is given by

𝐿
(𝑞)

𝑘
(𝑥) =

𝑘−𝑞

∑

𝑖=0(𝑘+𝑖=even)
𝐶
𝑞
(𝑘, 𝑖) 𝐿

𝑖
(𝑥) , (3)

where

𝐶
𝑞
(𝑘, 𝑖)

=

2
𝑞−1

(2𝑖 + 1) Γ [(𝑞 + 𝑘 − 𝑖) /2] Γ [(𝑞 + 𝑘 + 𝑖 + 1) /2]

Γ [𝑞] Γ [(2 − 𝑞 + 𝑘 − 𝑖) /2] Γ [(3 − 𝑞 + 𝑘 + 𝑖) /2]

.

(4)

The analytical form of Legendre polynomial is

𝐿
𝑛
(𝑥) =

[𝑛/2]

∑

𝑖=0

𝑐
(𝑛)

𝑘
𝑥
𝑛−2𝑘

, (5)

where 𝑐
(𝑛)

𝑘
= (−1)

𝑘
(2𝑛 − 2𝑘)!/2

𝑛
(𝑛 − 𝑘)!(𝑛 − 2𝑘)!𝑘!, and

[

𝑛

2

] =

{
{

{
{

{

𝑛

2

, even,
𝑛 − 1

2

, odd.
(6)

It is also generating from the following relation:

𝐿
𝑘+2

(𝑥) =

2𝑘 + 3

𝑘 + 2

𝑥𝐿
𝑘+1

(𝑥) −

𝑘 + 1

𝑘 + 2

𝐿
𝑘
(𝑥) , (7)

with 𝐿
0
(𝑥) = 1, 𝐿

1
(𝑥) = 𝑥, and satisfies the orthogonality

condition

(𝐿
𝑘
(𝑥), 𝐿

𝑙
(𝑥))
𝑤
= ∫

1

−1

𝐿
𝑘
(𝑥) 𝐿
𝑙
(𝑥) 𝑤 (𝑥) = ℎ

𝑘
𝛿
𝑙𝑘
. (8)

where 𝑤(𝑥) = 1, ℎ
𝑘
= 2/(2𝑘 + 1). Let 𝑆

𝑁
be the space of all

polynomials of degree ≤ 𝑁, then for any 𝜙 ∈ 𝑆
2𝑁−1

(0, 𝐿),

∫

1

−1

𝑤 (𝑥) 𝜙 (𝑥) 𝑑𝑥 =

𝑁

∑

𝑗=0

𝜛
𝑁,𝑗

𝜙 (𝑥
𝑁,𝑗

) . (9)

Let us define the following discrete inner product and norm:

(𝑢, V)
𝑤
=

𝑁

∑

𝑗=0

𝑢 (𝑥
𝑁,𝑗

) V (𝑥
𝑁,𝑗

) 𝜛
𝑁,𝑗

, (10)

where 𝑥
𝑁,𝑗

and 𝜛
𝑁,𝑗

are the nodes and the corresponding
weights of the Legendre-Gauss-Lobatto quadrature formula
on the interval (−1, 1), respectively.

3. Legendre Spectral Collocation Method

Because of the pseudospectral method is an efficient and
accurate numerical scheme for solving various problems in
physical space, including variable coefficient and singularity
(see, [54, 55]), we propose this method based on Legendre
polynomials for approximating the solution of the nonlinear
generalized Burger-Fisher model equation and Fisher model
with variable coefficient.

3.1. (1+1)-Dimensional Generalized Burger-Fisher Equation.
In this subsection, we derive a Legendre pseudospectral
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algorithm to solve numerically the generalized Burger-Fisher
problem:

𝑢
𝑡
+ ]𝑢𝛿𝑢

𝑥
− 𝑢
𝑥𝑥

− 𝛾𝑢 (1 − 𝑢
𝛿
) = 0, (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇] ,

(11)

where 𝐷 = {𝑥 : −1 ≤ 𝑥 ≤ 1}. Subject to

𝑢 (𝑥, 𝑡) = 𝑔 (𝑡) , 𝑥 = −1, 1, (12)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ 𝐷. (13)

In the following, we shall derive an efficient algorithm for
the numerical solution of (11)–(13). Let the approximation
of 𝑢(𝑥, 𝑡) be given in terms of the Legendre polynomials
expansion:

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑗=0

𝑎
𝑗
(𝑡) 𝐿
𝑗
(𝑥) , a = (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑁
)
𝑇

. (14)

Making use of relations (8) and (10) gives

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑗=0

(

1

ℎ
𝑗

𝑁

∑

𝑖=0

𝐿
𝑗
(𝑥
𝑖
) 𝐿
𝑗
(𝑥) 𝜛
𝑁,𝑖

𝑢 (𝑥
𝑖
, 𝑡)) (15)

or equivalently

𝑢 (𝑥, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝐿
𝑗
(𝑥
𝑖
) 𝐿
𝑗
(𝑥) 𝜛
𝑁,𝑖

)𝑢 (𝑥
𝑖
, 𝑡) . (16)

The Gauss-Lobatto points were introduced by way
of (9). We then saw that the polynomial approximation
𝑢(𝑥, 𝑡) can be characterized by (𝑁 + 1) nodal values 𝑢(𝑥

𝑖
, 𝑡).

The approximation of the spatial partial derivatives of first-
order for 𝑢(𝑥, 𝑡) can be computed at the Legendre Gauss-
Lobatto interpolation nodes as

𝑢
𝑥
(𝑥
𝑛
, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝐿
𝑗
(𝑥
𝑖
) (𝐿
𝑗
(𝑥
𝑛
))

󸀠

𝜛
𝑁,𝑖

)𝑢 (𝑥
𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢 (𝑥
𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡) , 𝑛 = 0, 1, . . . , 𝑁,

(17)

where

𝐴
𝑛𝑖
=

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝐿
𝑗
(𝑥
𝑖
) (𝐿
𝑗
(𝑥
𝑛
))

󸀠

𝜛
𝑁,𝑖

,

𝑢
𝑖
(𝑡) = 𝑢 (𝑥

𝑖
, 𝑡) .

(18)

Subsequently, the second-order spatial partial derivatives
of 𝑢(𝑥, 𝑡) may be written at the same collocation nodes as

𝑢
𝑥𝑥

(𝑥
𝑛
, 𝑡) =

𝑁

∑

𝑖=0

(

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝐿
𝑗
(𝑥
𝑖
) (𝐿
𝑗
(𝑥
𝑛
))

󸀠󸀠

𝜛
𝑁,𝑖

)𝑢 (𝑥
𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢 (𝑥
𝑖
, 𝑡)

=

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢
𝑖
,

(19)

where

𝐵
𝑛𝑖
=

𝑁

∑

𝑗=0

1

ℎ
𝑗

𝐿
𝑗
(𝑥
𝑖
) (𝐿
𝑗
(𝑥
𝑛
))

󸀠󸀠

𝜛
𝑁,𝑖

. (20)

In collocationmethods, one specifically seeks the approx-
imate solution such that the problem (11) is satisfied exactly
at the Legendre Gauss-Lobatto set of interpolation points 𝑥

𝑛
;

𝑛 = 1, . . . , 𝑁 − 1. The approximation is exact at the 𝑁 −

1 collocation points.Therefore, (11) after using relations (17)–
(20), can be written as

𝑢
⋅

𝑛
(𝑡) + ]𝑢𝛿

𝑛
(𝑡)

𝑁

∑

𝑖=0

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡)

−

𝑁

∑

𝑖=0

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡) − 𝛾𝑢

𝑛
(𝑡) (1 − 𝑢

𝛿

𝑛
(𝑡)) = 0,

𝑛 = 1, . . . , 𝑁 − 1,

(21)

where 𝑢
𝑛
(𝑡) = 𝑢(𝑥

𝑛
, 𝑡) and 𝑢

⋅

𝑛
(𝑡) = 𝜕𝑢

⋅

𝑛
(𝑡)/𝜕𝑡.

Now the two values 𝑢
0
(𝑡) and 𝑢

𝑁
(𝑡) can be determined

from the boundary conditions (12), then (21) can be reformu-
lated as

𝑢
⋅

𝑛
(𝑡) + ]𝑢𝛿

𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡)

−

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡) + ]𝑢𝛿

𝑛
(𝑡) 𝑑
𝑛
(𝑡) −

̃
𝑑
𝑛
(𝑡)

− 𝛾𝑢
𝑛
(𝑡) (1 − 𝑢

𝛿

𝑛
(𝑡)) = 0, 𝑛 = 1, . . . , 𝑁 − 1,

(22)

where

𝑑
𝑛
(𝑡) = 𝐴

𝑛0
𝑢
0
(𝑡) + 𝐴

𝑛𝑁
𝑢
𝑁
(𝑡),

̃
𝑑
𝑛
(𝑡) = 𝐵

𝑛0
𝑢
0
(𝑡) + 𝐵

𝑛𝑁
𝑢
𝑁
(𝑡).

(23)

Approximation (22) automatically satisfies the boundary
conditions (12), but we need an initial condition for each
of the 𝑢

𝑛
(𝑡) to integrate (22) in time. The initial condi-

tion is usually taken to be the interpolant of the initial
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function 𝑓(𝑥); that is 𝑢
𝑛
(0) = 𝑓(𝑥

𝑛
). Therefore, the approx-

imation of (11)–(13) is reduced to the solution of system of
ordinary differential equations in time. Consider

𝑢
⋅

𝑛
(𝑡) + ]𝑢𝛿

𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡) −

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡)

+ ]𝑢𝛿
𝑛
(𝑡) 𝑑
𝑛
(𝑡) −

̃
𝑑
𝑛
(𝑡) − 𝛾𝑢

𝑛
(𝑡) (1 − 𝑢

𝛿

𝑛
(𝑡)) = 0,

𝑛 = 1, . . . , 𝑁 − 1,

𝑢
𝑛
(0) = 𝑓 (𝑥

𝑛
) .

(24)

Let us denote

𝑈
⋅
(𝑡) = [𝑢

⋅

1
(𝑡) , 𝑢
⋅

2
(𝑡) , . . . , 𝑢

⋅

𝑁−1
(𝑡)]
𝑇

,

𝑈 (0) = [𝑢
1
(0), 𝑢
2
(0), . . . , 𝑢

𝑁−1
(0)]
𝑇

,

𝑓 = [𝑓(𝑥
1
), 𝑓(𝑥

2
), . . . , 𝑓(𝑥

𝑁−1
)]
𝑇

,

𝐹 (𝑡, 𝑢 (𝑡)) = [𝐹
1
(𝑡, 𝑢 (𝑡)) , 𝐹

2
(𝑡, 𝑢 (𝑡)) , . . . , 𝐹

𝑁−1
(𝑡, 𝑢 (𝑡))]

𝑇

,

𝐹
𝑛
(𝑡, 𝑢 (𝑡)) = − ]𝑢𝛿

𝑛
(𝑡)

𝑁−1

∑

𝑖=1

𝐴
𝑛𝑖
𝑢
𝑖
(𝑡) +

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡)

− ]𝑢𝛿
𝑛
(𝑡) 𝑑
𝑛
(𝑡) +

̃
𝑑
𝑛
(𝑡) + 𝛾𝑢

𝑛
(𝑡) (1 − 𝑢

𝛿

𝑛
(𝑡)) ,

𝑛 = 1, . . . , 𝑁 − 1.

(25)

Then (24) can be written in the matrix form

𝑈
⋅
(𝑡) = 𝐹 (𝑡, 𝑢 (𝑡))

𝑈 (0) = 𝑓.

(26)

This system of ordinary differential equations can be solved
by using four-stage A-stable implicit Runge-Kutta scheme.

3.2. (1+1)-Dimensional Fisher Equation with Variable Coef-
ficient. In this subsection, we extend the application of the
Legendre pseudospectral method to solve numerically the
Fisher equation with variable coefficient,

𝑢
𝑡
− 𝑏 (𝑡) 𝑢

𝑥𝑥
− 𝑐𝑢 (1 − 𝑢) = 0, (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇] , (27)

subject to the initial-boundary conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ 𝐷,

𝑢 (𝑥, 𝑡) = 𝑔 (𝑡) .

(28)

Proceeding as in the previous subsection we can obtain 𝑢
𝑥𝑥

in the same form as (19), and then (27) can be collocated in
the Legendre Gauss-Lobatto points as:

𝑢
⋅

𝑛
(𝑡) − 𝑏 (𝑡)

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡) − 𝑏 (𝑡)

̃
𝑑
𝑛
(𝑡) − 𝑐𝑢

𝑛
(𝑡) (1 − 𝑢

𝑛
(𝑡))

= 0, 𝑛 = 1, . . . , 𝑁 − 1,

(29)

Table 1: Absolute errors for Example 1.

𝑥 𝑡 𝐸(𝑥, 𝑡) 𝑥 𝑡 𝐸(𝑥, 𝑡)

−1

0.1

5.56 × 10
−11

−1

0.2

8.93 × 10
−11

−0.5 1.46 × 10
−8

−0.5 8.23 × 10
−9

0 1.95 × 10
−8 0 1.41 × 10

−8

0.5 1.55 × 10
−8 0.5 1.17 × 10

−8

1 5.56 × 10
−11 1 8.93 × 10

−11

which can be written in the matrix form

𝑈
⋅
(𝑡) = 𝐹 (𝑡, 𝑢 (𝑡)) ,

𝑈 (0) = 𝑓,

(30)

where

𝐹
𝑛
(𝑡, 𝑢 (𝑡))

= 𝑏 (𝑡)

𝑁−1

∑

𝑖=1

𝐵
𝑛𝑖
𝑢
𝑖
(𝑡) + 𝑏 (𝑡)

̃
𝑑
𝑛
(𝑡) + 𝑐𝑢

𝑛
(𝑡) (1 − 𝑢

𝑛
(𝑡)) ,

𝑛 = 1, . . . , 𝑁 − 1.

(31)

4. Numerical Examples

In this section, three nonlinear time-dependent Fisher-type
equations on finite interval are implemented to demonstrate
the accuracy and capability of the proposed algorithm, and all
of them were performed on the computer using a program
written in Mathematica 8.0. The absolute errors in the
given tables are 𝐸(𝑥, 𝑡) = |𝑢(𝑥, 𝑡) − 𝑢̃(𝑥, 𝑡) where 𝑢(𝑥, 𝑡)

and 𝑢̃(𝑥, 𝑡) are the exact and numerical solution at selected
points (𝑥, 𝑡).

Example 1. Consider the nonlinear time-dependent one-
dimensional Fisher-type equations

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝑢 (1 − 𝑢) (𝑢 − 𝛾) , (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇] , (32)

where 𝐷 = {𝑥 : −1 < 𝑥 < 1}. Subject to

𝑢 (1, 𝑡) =

1 + 𝛾

2

−

𝛾 − 1

2

tanh [
𝛾 − 1

2√2

(1 −

1 + 𝛾

√2

𝑡)] ,

𝑢 (−1, 𝑡) =

1 + 𝛾

2

+

𝛾 − 1

2

tanh [
𝛾 − 1

2√2

(1 +

1 + 𝛾

√2

𝑡)] ,

𝑢 (𝑥, 0) =

1 + 𝛾

2

−

𝛾 − 1

2

tanh [
𝛾 − 1

2√2

(𝑥)] , 𝑥 ∈ 𝐷.

(33)

The exact solution is

𝑢 (𝑥, 𝑡) =

1 + 𝛾

2

−

𝛾 − 1

2

tanh [
𝛾 − 1

2√2

(𝑥 −

1 + 𝛾

√2

𝑡)] . (34)

In Table 1, we introduce the absolute errors between the
approximate and exact solutions for problem (32) using the
proposed method for different values of 𝑥 and 𝑡, with 𝛾 =

10
−2 and 𝑁 = 20.
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Figure 1: The result of the L-GL-C method at 𝛾 = 10
−2 and 𝑁 = 20. (a) The approximate solution. (b) The absolute error.

1.00.50.0

0.5

−1.0

0.4

−0.5

0.6

0.7

0.8

x

u
an
d
ũ
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Figure 2: The curves of approximate solutions and the exact
solutions of problem (32) at 𝑡 = 0.0, 𝑡 = 0.5, and 𝑡 = 0.9 with 𝛾 =

10
−2 and 𝑁 = 20.

In case of 𝛾 = 10
−2 and 𝑁 = 20, the approximate solu-

tion and absolute errors of problem (32) are displayed in
Figures 1(a) and 1(b), respectively. In Figure 2, we plotted the
curves of approximate solutions and exact solutions of pro-
blem (32) for different values of 𝑡 (0.0,0.5 and 0.9) with 𝛾 =

10
−2 and𝑁 = 20. It is clear from this figure that approximate

solutions and exact solutions completely coincide for the
chosen values of 𝑡.

Example 2. Consider the nonlinear time-dependent one-
dimensional generalized Burger-Fisher-type equations

𝑢
𝑡
= 𝑢
𝑥𝑥

− ]𝑢𝛿𝑢
𝑥
+ 𝛾𝑢 (1 − 𝑢

𝛿
) , (𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇] ,

(35)

where 𝐷 = {𝑥 : −1 < 𝑥 < 1}. Subject to

𝑢 (1, 𝑡)

= (

1

2

−

1

2

tanh [

]𝛿

2 (𝛿 + 1)

× (1 − (

]

𝛿 + 1

+

𝛾 (𝛿 + 1)

]
) 𝑡)])

1/𝛿

,

𝑢 (−1, 𝑡)

= (

1

2

+

1

2

tanh [ ]𝛿

2 (𝛿 + 1)

× (1 + (

]

𝛿 + 1

+

𝛾 (𝛿 + 1)

]
) 𝑡)])

1/𝛿

,

𝑢 (𝑥, 0) = (

1

2

−

1

2

tanh [ ]𝛿

2 (𝛿 + 1)

𝑥])

1/𝛿

, 𝑥 ∈ 𝐷.

(36)
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Figure 3: The result of the L-GL-C method at ] = 𝛾 = 10
−2, 𝛿 = 1, and 𝑁 = 20. (a) The approximate solution. (b)The absolute error.
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Figure 4: The curves of approximate solutions and the exact
solutions of problem (35) at 𝑡 = 0.0, 𝑡 = 0.5, and 𝑡 = 0.9 with
] = 𝛾 = 10

−2, 𝛿 = 1, and𝑁 = 20.

The exact solution of (35) is

𝑢 (𝑥, 𝑡)

= (

1

2

−

1

2

tanh( ]𝛿

2 (𝛿 + 1)

×(𝑥 − (

]

𝛿 + 1

+

𝛾 (𝛿 + 1)

]
) 𝑡)))

1/𝛿

.

(37)

The absolute errors for problem (35) are listed in Table 2
using the L-GL-C method with ] = 𝛾 = 10

−2, 𝑁 = 20, and
various choices of 𝛿.

To illustrate the effectiveness of the Legendre pseudospec-
tralmethod for problem (35), we displayed in Figures 3(a) and
3(b) the approximate solution and the absolute error with ] =

𝛾 = 10
−2, 𝛿 = 1, and 𝑁 = 20. The graph of curves of exact

and approximate solutions with different values of 𝑡 (0.0,
0.5, and 0.9) is given in Figure 4. Moreover, the approximate
solution and the absolute error with ] = 𝛾 = 10

−2, 𝛿 = 2, and
𝑁 = 20 are displayed in Figures 5(a) and 5(b), respectively.
The curves of exact and approximate solutions of problem
(35) with 𝛿 = 2 are displayed in Figure 6 with values of
parameters listed in its caption.

Example 3. Consider the nonlinear time-dependent one-
dimensional Fisher-type equations with variable coefficient

𝑢
𝑡
= −

𝑎

6𝜇
2
coth(𝑎

6

𝑡 + 𝑐) 𝑢
𝑥𝑥

+ 𝑎𝑢 (1 − 𝑢) ,

(𝑥, 𝑡) ∈ 𝐷 × [0, 𝑇] ,

(38)

where 𝐷 = {𝑥 : −1 < 𝑥 < 1}. Subject to

𝑢 (1, 𝑡) =

1

4

coth(𝑎
6

𝑡 + 𝑐) sech2 (
𝜇

2

+

5𝑎

12

𝑡)

+

1

2

tanh(
𝜇

2

+

5𝑎

12

𝑡) +

1

2

,
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Figure 5: The result of the L-GL-C method at ] = 𝛾 = 10
−2, 𝛿 = 2, and 𝑁 = 20. (a) The approximate solution. (b)The absolute error.

Table 2: Absolute errors for Example 2.

𝛿 = 1 𝛿 = 2 𝛿 = 3

𝑥 𝑡 𝐸(𝑥, 𝑡) 𝑥 𝑡 𝐸(𝑥, 𝑡) 𝑥 𝑡 𝐸(𝑥, 𝑡)

−1

0.1

8.51 × 10
−11

−1

0.1

1.26 × 10
−10

−1

0.1

6.91 × 10
−11

−0.5 1.16 × 10
−10

−0.5 2.34 × 10
−8

−0.5 1.09 × 10
−8

0 5.36 × 10
−12 0 2.61 × 10

−8 0 1.30 × 10
−8

0.5 1.53 × 10
−11 0.5 2.33 × 10

−8 0.5 1.09 × 10
−8

1 8.51 × 10
−11 1 1.26 × 10

−10 1 6.91 × 10
−11

−1

0.5

8.71 × 10
−11

−1

0.5

1.22 × 10
−10

−1

0.5

1.41 × 10
−10

−0.5 7.77 × 10
−10

−0.5 8.24 × 10
−9

−0.5 4.27 × 10
−9

0 6.49 × 10
−10 0 1.16 × 10

−8 0 5.89 × 10
−9

0.5 3.81 × 10
−10 0.5 8.26 × 10

−9 0.5 4.28 × 10
−9

1 8.71 × 10
−11 1 1.22 × 10

−10 1 1.41 × 10
−10

𝑢 (−1, 𝑡) =

1

4

coth(𝑎
6

𝑡 + 𝑐) sech2 (−
𝜇

2

+

5𝑎

12

𝑡)

+

1

2

tanh(−
𝜇

2

+

5𝑎

12

𝑡) +

1

2

,

(39)

𝑢 (𝑥, 0) =

1

4

coth (𝑐) sech2 (
𝜇𝑥

2

)

+

1

2

tanh(
𝜇𝑥

2

) +

1

2

, 𝑥 ∈ 𝐷.

(40)

The exact solution of (38) is

𝑢 (𝑥, 𝑡) =

1

4

coth(𝑎
6

𝑡 + 𝑐) sech2 (
𝜇𝑥

2

+

5𝑎

12

𝑡)

+

1

2

tanh(
𝜇𝑥

2

+

5𝑎

12

𝑡) +

1

2

.

(41)

Table 3 lists the absolute errors for problem (38) using
the L-GL-C method. From numerical results of this table, it
can be concluded that the numerical solutions are in excellent
agreement with the exact solutions.
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Figure 6: The curves of approximate solutions and the exact
solutions of problem (35) at 𝑡 = 0.0, 𝑡 = 0.5, and 𝑡 = 0.9 with
] = 𝛾 = 10

−2, 𝛿 = 2, and 𝑁 = 20.

Table 3: Absolute errors for Example 3.

𝑥 𝑡 𝐸(𝑥, 𝑡) 𝑥 𝑡 𝐸(𝑥, 𝑡)

−1

0.1

9.81 × 10
−10

−1

0.5

7.05 × 10
−9

−0.5 1.00 × 10
−7

−0.5 1.93 × 10
−6

0 1.45 × 10
−7 0 2.84 × 10

−6

0.5 1.19 × 10
−7 0.5 2.12 × 10

−6

1 9.81 × 10
−10 1 7.06 × 10

−9

5. Conclusion

In this paper, based on the Legendre-Gauss-Lobatto pseudos-
pectral approximation we proposed an efficient numerical
algorithm to solve nonlinear time-dependent Fisher-type
equationswith constant and variable coefficients.Themethod
is based upon reducing the nonlinear partial differential
equation into a system of first-order ordinary differential
equations in the expansion coefficient of the spectral solution.
Numerical examples were also provided to illustrate the
effectiveness of the derived algorithms.Thenumerical experi-
ments show that the Legendre pseudospectral approximation
is simple and accurate with a limited number of collocation
nodes.
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