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We show that the Smale spaces from self-similar groups are topologicallymixing and their stable algebra and stableRuelle algebra are
strongly Morita equivalent to groupoid algebras of Anantharaman-Delaroche and Deaconu. And we show that 𝐶∗(𝑅

∞
) associated

to a postcritically finite hyperbolic rational function is an AT-algebra of real-rank zero with a unique trace state.

1. Introduction

Nekrashevych has developed a theory of dynamical systems
and𝐶

∗-algebras for self-similar groups in [1, 2].These groups
include groups acting on rooted trees and finite automata and
iterated monodromy groups of self-covering on topological
spaces. From self-similar groups, Nekrashevych constructed
Smale spaces of Ruelle and Putnam with their corresponding
stable and unstable algebras and those of Ruelle algebras for
various equivalence relations on the Smale spaces [3–7].

Main approach to 𝐶
∗-algebras structures in [2] is based

on Cuntz-Pimsner algebras generated by self-similar groups.
However Smale spaces and their corresponding 𝐶

∗-algebras
have rich dynamical structures, and it is conceivable that
dynamical systems associated with self-similar groups may
give another way to study 𝐶

∗-algebras from self-similar
groups. Our intention is to elucidate self-similar groups from
the perspective of dynamical systems.

This paper is concerned with groupoids and their
groupoid 𝐶

∗-algebras from the stable equivalence relation
on the limit solenoid (𝑆

𝐺
, 𝜎) of a self-similar group (𝐺,𝑋).

Instead of using the groupoids 𝐺
𝑠
and 𝐺

𝑠
⋊ Z on the Smale

space (𝑆
𝐺
, 𝜎) as Putnam [3, 4] and Nekrashevych [2] did,

we consider the essentially principal groupoids 𝑅
∞

and
Γ(𝐽
𝐺
, 𝜎) of Anantharaman-Delaroche [8] andDeaconu [9] on

a presentation (𝐽
𝐺
, 𝜎) of (𝑆

𝐺
, 𝜎). While 𝐺

𝑠
and 𝐺

𝑠
⋊Z are not

𝑟-discrete groupoids,𝑅
∞
and Γ(𝐽

𝐺
, 𝜎) are 𝑟-discrete. And𝑅

∞

and Γ(𝐽
𝐺
, 𝜎) are defined on (𝐽

𝐺
, 𝜎) so that we do not need

to entail the inverse limit structure of (𝑆
𝐺
, 𝜎). Thus 𝑅

∞
and

Γ(𝐽
𝐺
, 𝜎) are more manageable than 𝐺

𝑠
and 𝐺

𝑠
⋊ Z for the

structures of their 𝐶∗-algebras.
In this paper, we prove that, for a self-similar group

(𝐺,𝑋), its limit dynamical system (𝐽
𝐺
, 𝜎) is topologically

mixing so that (𝑆
𝐺
, 𝜎) is an irreducible Smale space. And we

show that 𝑅
∞

is equivalent to 𝐺
𝑠
and Γ(𝐽

𝐺
, 𝑠) is equivalent to

𝐺
𝑠
⋊ Z in the sense of Muhly et al. [10]. Consequently, the

groupoid 𝐶
∗-algebras 𝐶

∗

(𝑅
∞

) and 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) are strongly

Morita equivalent to the stable algebra 𝑆 and the stable Ruelle
algebra 𝑅

𝑠
, respectively, of (𝑆

𝐺
, 𝜎). Then we use 𝑅

∞
and

Γ(𝐽
𝐺
, 𝜎) to study structures of𝐶∗-algebras from a self-similar

group (𝐺,𝑋). Finally we show that groupoid algebras of 𝑅
∞

from postcritically finite hyperbolic rational functions are
𝐴𝑇-algebras of real-rank zero.

The outline of the paper is as follows. In Section 2, we
review the notions of self-similar groups and their groupoids
and show that the induced limit dynamical system and
the limit solenoid of a self-similar group are topologically
mixing. In Section 3, we observe that 𝑅

∞
is equivalent

to 𝐺
𝑠
and Γ(𝐽

𝐺
, 𝑠) is equivalent to 𝐺

𝑠
⋊ Z. In Section 4,

we give a proof that its groupoid algebra 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is

simple, purely infinite, separable, stable, and nuclear and
satisfies the Universal CoefficientTheorem. For 𝑅

∞
, we show

that 𝐶
∗

(𝑅
∞

) is simple and nuclear. And, when self-similar
group is defined by a postcritically finite hyperbolic rational
function and its Julia set, we show that 𝐶

∗

(𝑅
∞

) is an 𝐴𝑇-
algebra.
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2. Self-Similar Groups

We review the properties of self-similar groups. As for general
references for the notions of self-similar groups, we refer to
[1, 2].

Suppose that 𝑋 is a finite set. We denote by 𝑋
𝑛 the set

of words of length 𝑛 in 𝑋 with 𝑋
0

= {0}, and define 𝑋
∗

=

∪
∞

𝑛=0
𝑋
𝑛. A self-similar group (𝐺,𝑋) consists of an 𝑋 and a

faithful action of a group 𝐺 on 𝑋 such that, for all 𝑔 ∈ 𝐺

and 𝑥 ∈ 𝑋, there exist unique 𝑦 ∈ 𝑋 and ℎ ∈ 𝐺 such that

𝑔 (𝑥𝑤) = 𝑦ℎ (𝑤) for every 𝑤 ∈ 𝑋
∗

. (1)

The above equality is written formally as

𝑔 ⋅ 𝑥 = 𝑦 ⋅ ℎ. (2)

We observe that for any 𝑔 ∈ 𝐺 and V ∈ 𝑋
∗, there exists a

unique element ℎ ∈ 𝐺 such that 𝑔(V𝑤) = 𝑔(V)ℎ(𝑤) for every
𝑤 ∈ 𝑋

∗. The unique element ℎ is called the restriction of 𝑔 at
V and is denoted by 𝑔|V. For 𝑢 = 𝑔(V) and ℎ = 𝑔|V, we write

𝑔 ⋅ V = 𝑢 ⋅ ℎ. (3)

A self-similar group (𝐺,𝑋) is called recurrent if, for all
𝑥, 𝑦 ∈ 𝑋, there is a 𝑔 ∈ 𝐺 such that 𝑔 ⋅ 𝑥 = 𝑦 ⋅ 1; that is,
𝑔(𝑥𝑤) = 𝑦𝑤 for every 𝑤 ∈ 𝑋

∗. We say that (𝐺,𝑋) is
contracting if there is a finite subset 𝑁 of 𝐺 satisfying the
following: for every 𝑔 ∈ 𝐺, there is 𝑛 ≥ 0 such that 𝑔|V ∈ 𝑁 for
every V ∈ 𝑋

∗ of length |V| ≥ 𝑛. If the group is contracting, the
smallest set 𝑁 satisfying this condition is called the nucleus
of the group.

Standing Assumption.We assume that our self-similar group
(𝐺,𝑋) is a contracting, recurrent, and regular group and that
the group 𝐺 is finitely generated.

Path Spaces. For a self-similar group (𝐺,𝑋), the set 𝑋∗ has a
natural structure of a rooted tree: the root is 0, the vertices
are words in𝑋

∗, and the edges are of the form V to V𝑥, where
V ∈ 𝑋

∗ and 𝑥 ∈ 𝑋. Then the boundary of the tree 𝑋
∗ is

identifiedwith the space𝑋𝜔 of right-infinite paths of the form
𝑥
1
𝑥
2
⋅ ⋅ ⋅ , where 𝑥

𝑖
∈ 𝑋. The product topology of discrete set

𝑋 is given on 𝑋
𝜔.

We say that a self-similar group (𝐺,𝑋) is regular if, for
every 𝑔 ∈ 𝐺 and every 𝑤 ∈ 𝑋

𝜔, either 𝑔(𝑤) ̸=𝑤 or there is a
neighborhoodof𝑤 such that every point in the neighborhood
is fixed by 𝑔.

We also consider the space 𝑋
−𝜔 of left-infinite paths

⋅ ⋅ ⋅ 𝑥
−2

𝑥
−1

over 𝑋 with the product topology. Two paths
⋅ ⋅ ⋅ 𝑥
−2

𝑥
−1

and ⋅ ⋅ ⋅ 𝑦
−2

𝑦
−1

in 𝑋
−𝜔 are said to be asymptotically

equivalent if there is a finite set 𝐼 ⊂ 𝐺 and a sequence 𝑔
𝑛
∈ 𝐼

such that
𝑔
𝑛
(𝑥
−𝑛

⋅ ⋅ ⋅ 𝑥
−1

) = 𝑦
−𝑛

⋅ ⋅ ⋅ 𝑦
−1

, (4)

for every 𝑛 ∈ N. The quotient of the space 𝑋
−𝜔 by the

asymptotic equivalence relation is called the limit space of
(𝐺,𝑋) and is denoted by 𝐽

𝐺
. Since the asymptotic equivalence

relation is invariant under the shift map ⋅ ⋅ ⋅ 𝑥
−2

𝑥
−1

󳨃→

⋅ ⋅ ⋅ 𝑥
−3

𝑥
−2
, the shift map induces a continuous map 𝜎 : 𝐽

𝐺
→

𝐽
𝐺
. We call the induced dynamical system (𝐽

𝐺
, 𝜎) the limit

dynamical system of (𝐺,𝑋) (see [1, 2] for details).

Remark 1. Recurrent and finitely generated conditions imply
that 𝐽
𝐺
is a compact, connected, locally connected,metrizable

space of a finite dimension by Corollary 2.8.5 and Theorem
3.6.4 of [1]. And regular condition implies that 𝜎 is an |𝑋|-
fold self-covering map by Proposition 6.1 of [2].

A cylinder set 𝑍(𝑢) for each 𝑢 ∈ 𝑋
∗

= ∪
𝑛≥0

𝑋
𝑛 is defined

as follows:

𝑍 (𝑢) = {𝜉 ∈ 𝑋
−𝜔

: 𝜉 = ⋅ ⋅ ⋅ 𝑥
−𝑛−1

𝑥
−𝑛

⋅ ⋅ ⋅ 𝑥
−1

such that 𝑥
−𝑛

⋅ ⋅ ⋅ 𝑥
−1

= 𝑢} .

(5)

Then the collection of all such cylinder sets forms a basis for
the product topology on𝑋

−𝜔. And we recall that a dynamical
system (𝑌, 𝑓) is called topologically mixing if, for every pair
of nonempty open sets 𝐴, 𝐵 in 𝑌, there is an 𝑛 ∈ N such that
𝑓
𝑘

(𝐴) ∩ 𝐵 ̸= 0 for every 𝑘 ≥ 𝑛.

Theorem 2. (𝐽
𝐺
, 𝜎) is a topologically mixing system.

Proof. As 𝑋
−𝜔 has the product topology and 𝐽

𝐺
has the quo-

tient topology induced from asymptotic equivalence relation,
it is sufficient to show that, for arbitrary cylinder sets𝑍(𝑢) and
𝑍(V) of𝑋−𝜔, there are infinite paths 𝜉 = ⋅ ⋅ ⋅ 𝑥

−2
𝑥
−1

∈ 𝑍(𝑢) and
𝜂 = ⋅ ⋅ ⋅ 𝑦

−2
𝑦
−1

∈ 𝑍(V) such that 𝜉 is asymptotically equivalent
to 𝜂. Moreover we can assume that 𝑢, V ∈ 𝑋

𝑛 for some 𝑛 ∈ N

so that 𝑢 = 𝑥
−𝑛

⋅ ⋅ ⋅ 𝑥
−1

and V = 𝑦
−𝑛

⋅ ⋅ ⋅ 𝑦
−1
.

We choose sufficiently large𝑚 and let 𝑎, 𝑏 ∈ 𝑋
𝑚−𝑛 so that

𝑎𝑢 and 𝑏V are elements of 𝑋𝑚. Then by recurrent condition
and [1, Corollary 2.8.5], for 𝑎𝑢 and 𝑏V in𝑋

𝑚, there is a 𝑔 ∈ 𝐺

such that 𝑔(𝑎𝑢) = 𝑔(𝑎)𝑔|
𝑎
(𝑢) = 𝑏V. Since we chose large 𝑚,

by contracting condition, 𝑔|
𝑎
is an element of the nucleus of

(𝐺,𝑋).
We remind that the nucleus of (𝐺,𝑋) is a finite set and

equal to

𝑁 = ∪
𝑔∈𝐺

∩
𝑛≥0

{𝑔|V : V ∈ 𝑋
∗

, |V| ≥ 𝑛} . (6)

So an element of the nucleus is a restriction of another
element of the nucleus. Hence𝑔|

𝑎
∈ 𝑁 implies that there exist

a letter 𝑥
−𝑛−1

and a 𝑔
−𝑛−1

∈ 𝑁 such that 𝑔
−𝑛−1

|
𝑥
−𝑛−1

= 𝑔|
𝑎
.

Then, for 𝑔
−𝑛−1

(𝑥
−𝑛−1

) = 𝑦
−𝑛−1

, we have

𝑔
−𝑛−1

(𝑥
−𝑛−1

𝑢) = 𝑦
−𝑛−1

V. (7)

So by induction there are a letter 𝑥
−𝑚

and a 𝑔
−𝑚

∈ 𝑁 for every
𝑚 ≥ 𝑛 such that

𝑔
−𝑚

(𝑥
−𝑚

⋅ ⋅ ⋅ 𝑥
−𝑛−1

𝑢) = 𝑦
−𝑚

⋅ ⋅ ⋅ 𝑦
−𝑛−1

V. (8)

Let 𝜉 = ⋅ ⋅ ⋅ 𝑥
−2

𝑥
−1

and let 𝜂 = ⋅ ⋅ ⋅ 𝑦
−2

𝑦
−1
. Then it is trivial

that 𝜉 ∈ 𝑍(𝑢) and 𝜂 ∈ 𝑍(V). And 𝜉 is asymptotically
equivalent to 𝜂. Therefore the limit dynamical system (𝐽

𝐺
, 𝜎)

is topologically mixing.

Let𝑋Z be the space of bi-infinite paths ⋅ ⋅ ⋅ 𝑥
−1

𝑥
0
⋅ 𝑥
1
𝑥
2
⋅ ⋅ ⋅

over the alphabet 𝑋. The direct product topology of the
discrete set𝑋 is given on𝑋

Z. We say that two paths ⋅ ⋅ ⋅ 𝑥
−1

𝑥
0
⋅

𝑥
1
𝑥
2
⋅ ⋅ ⋅ and ⋅ ⋅ ⋅ 𝑦

−1
𝑦
0
⋅ ⋅ ⋅ 𝑦
1
𝑦
2
⋅ ⋅ ⋅ in 𝑋

Z are asymptotically
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equivalent if there is a finite set 𝐼 ⊂ 𝐺 and a sequence 𝑔
𝑛
∈ 𝐼

such that

𝑔
𝑛
(𝑥
𝑛
𝑥
𝑛+1

⋅ ⋅ ⋅ ) = 𝑦
𝑛
𝑦
𝑛+1

. . . , (9)

for every 𝑛 ∈ Z. The quotient of 𝑋
Z by the asymptotic

equivalence relation is called the limit solenoid of (𝐺,𝑋) and
is denoted by 𝑆

𝐺
. As in the case of 𝐽

𝐺
, the shift map on 𝑋

Z is
transferred to an induced homeomorphism on 𝑆

𝐺
, which we

will denote by 𝜎.

Theorem 3 (see [1, 2]). The limit solenoid 𝑆
𝐺
is homeomorphic

to the inverse limit space of (𝐽
𝐺
, 𝜎)

𝐽
𝐺

𝜎

← 𝐽
𝐺

𝜎

← ⋅ ⋅ ⋅ = {(𝜉
0
, 𝜉
1
, 𝜉
2
, . . .) ∈

∞

∏

𝑛≥0

𝐽
𝐺

: 𝜎 (𝜉
𝑛+1

)

= 𝜉
𝑛
for every 𝑛 ≥ 0} ,

(10)

and 𝜎 : 𝑆
𝐺

→ 𝑆
𝐺
is the induced homeomorphism defined by

(𝜉
0
, 𝜉
1
, 𝜉
2
, . . .) 󳨃󳨀→ (𝜎 (𝜉

0
) , 𝜎 (𝜉

1
) , 𝜎 (𝜉

2
) , . . .)

= (𝜎 (𝜉
0
) , 𝜉
0
, 𝜉
1
, . . .) .

(11)

Moreover, the limit solenoid system (𝑆
𝐺
, 𝜎) is a Smale space.

Then we have the following fromTheorem 2.

Corollary 4. (𝑆
𝐺
, 𝜎) is topologically mixing.

We have a natural projection 𝜋 : 𝑆
𝐺

→ 𝐽
𝐺
induced from

the map

⋅ ⋅ ⋅ 𝑥
−1

𝑥
0
⋅ 𝑥
1
𝑥
2
⋅ ⋅ ⋅ 󳨃󳨀→ ⋅ ⋅ ⋅ 𝑥

−1
𝑥
0
, (12)

and the relation that ⋅ ⋅ ⋅ 𝑥
𝑛−1

𝑥
𝑛

∈ 𝑋
−𝜔 represents 𝜉

𝑛
∈ 𝐽
𝐺
.

Then it is easy to check 𝜋 ∘ 𝜎 = 𝜎 ∘ 𝜋. The stable equivalence
relation on (𝑆

𝐺
, 𝜎) is defined as follows [2, Proposition 6.8]:

Definition 5. One says that two elements 𝛼 and 𝛽 in 𝑆
𝐺
are

stably equivalent and write 𝛼∼
𝑠
𝛽 if there is a 𝑘 ∈ Z such that

𝜋𝜎
𝑘

(𝛼) = 𝜋𝜎
𝑘

(𝛽).

In other words, when 𝛼 and 𝛽 are represented by infinite
paths (𝑥

𝑛
)
𝑛∈Z and (𝑦

𝑛
)
𝑛∈Z in 𝑋

Z, 𝛼∼
𝑠
𝛽 if and only if the

corresponding left-infinite paths ⋅ ⋅ ⋅ 𝑥
𝑘−1

𝑥
𝑘
and ⋅ ⋅ ⋅ 𝑦

𝑘−1
𝑦
𝑘
in

𝑋
−𝜔 are asymptotically equivalent for some 𝑘 ∈ Z.

Groupoids on (𝐽
𝐺
, 𝜎) and (𝑆

𝐺
, 𝜎). Suppose that (𝐺,𝑋) is a self-

similar group and (𝑆
𝐺
, 𝜎) is its corresponding limit solenoid.

We recall from [3] that the stable equivalence groupoid𝐺
𝑠
on

𝑆
𝐺
and its semidirect product by Z are defined to be

𝐺
𝑠
= {(𝛼, 𝛽) ∈ 𝑆

𝐺
× 𝑆
𝐺

: 𝛼∼
𝑠
𝛽} ,

𝐺
𝑠
⋊ Z = {(𝛼, 𝑛, 𝛽) ∈ 𝑆

𝐺
× Z × 𝑆

𝐺
: 𝑛 ∈ Z,

(𝜎
𝑛

(𝛼) , 𝛽) ∈ 𝐺
𝑠
} .

(13)

Then 𝐺
𝑠
and 𝐺

𝑠
⋊Z are groupoids with the natural structure

maps.The unit spaces of 𝐺
𝑠
and 𝐺

𝑠
⋊Z are identified with 𝑆

𝐺

via themaps𝛼 ∈ 𝑆
𝐺

󳨃→ (𝛼, 𝛼) ∈ 𝐺
𝑠
and𝛼 󳨃→ (𝛼, 0, 𝛼) ∈ 𝐺

𝑠
⋊Z,

respectively.
To give topologies on these groupoids, we consider

subgroupoids of 𝐺
𝑠
. For each 𝑛 ≥ 0, set

𝐺
𝑠,𝑛

= {(𝛼, 𝛽) ∈ 𝑆
𝐺
× 𝑆
𝐺

: 𝜋𝜎
𝑛

(𝛼) = 𝜋𝜎
𝑛

(𝛽)} . (14)

Then 𝐺
𝑠,𝑛

is a subgroupoid of 𝐺
𝑠
. Note that if 𝜇 and ] in 𝑆

𝐺

are stably equivalent with 𝜋𝜎
𝑙

(𝜇) = 𝜋𝜎
𝑙

(]) for some negative
integer 𝑙, then

𝜋 (𝜇) = 𝜎
−𝑙

𝜋𝜎
𝑙

(𝜇) = 𝜎
−𝑙

𝜋𝜎
𝑙

(]) = 𝜋 (]) (15)

implies that (𝜇, ]) ∈ 𝐺
𝑠,0
. So we obtain the stable equivalence

groupoid

𝐺
𝑠
= ⋃

𝑛≥0

𝐺
𝑠,𝑛

. (16)

Each 𝐺
𝑠,𝑛

is given the relative topology from 𝑆
𝐺
× 𝑆
𝐺
, and 𝐺

𝑠

is given the inductive limit topology. Under this topology, it
is not difficult to check that𝐺

𝑠
is a locally compact Hausdorff

principal groupoid with the natural structure maps. For 𝐺
𝑠
⋊

Z, we transfer the product topology of 𝐺
𝑠
× Z to 𝐺

𝑠
⋊ Z

via the map ((𝛼, 𝛽), 𝑛) 󳨃→ (𝛼, 𝑛, 𝜎(𝛽)). Amenability and Haar
systems on 𝐺

𝑠
and 𝐺

𝑠
× Z are explained in [2–4]. We denote

the groupoid 𝐶
∗-algebra of 𝐺

𝑠
by 𝑆 and that of 𝐺

𝑠
⋊ Z by 𝑅

𝑠

and call it stable Ruelle algebra on (𝑆
𝐺
, 𝜎).

For the limit dynamical system (𝐽
𝐺

⋅ 𝜎) of a self-similar
group (𝐺,𝑋), we construct groupoids 𝑅

∞
and Γ(𝐽

𝐺
, 𝜎) of

Anantharaman-Delaroche [8] and Deaconu [9]. Let 𝑅
𝑛

=

{(𝜉, 𝜂) ∈ 𝐽
𝐺
× 𝐽
𝐺

: 𝜎
𝑛

(𝜉) = 𝜎
𝑛

(𝜂)} for 𝑛 ≥ 0 and define

𝑅
∞

= ⋃

𝑛≥0

𝑅
𝑛
,

Γ (𝐽
𝐺
, 𝜎) = { (𝜉, 𝑛, 𝜂) ∈ 𝐽

𝐺
× Z × 𝐽

𝐺
: ∃𝑘, 𝑙 ≥ 0,

𝑛 = 𝑘 − 𝑙, 𝜎
𝑘

(𝜉) = 𝜎
𝑙

(𝜂)}

(17)

with the natural structure maps. The unit spaces of 𝑅
∞

and
Γ(𝐽
𝐺
, 𝜎) are identified with 𝐽

𝐺
via 𝜉 󳨃→ (𝜉, 𝜉) and 𝜉 󳨃→ (𝜉, 0, 𝜉).

We give the relative topology from 𝐽
𝐺

× 𝐽
𝐺
on 𝑅
𝑛
and

the inductive limit topology on 𝑅
∞
. Then 𝑅

∞
is a second

countable, locally compact, Hausdorff, 𝑟-discrete groupoid
with the Haar system given by the counting measures. A
topology on Γ(𝐽

𝐺
, 𝜎) is given by basis of the form

Λ (𝑈,𝑉, 𝑘 ⋅ 𝑙) = {(𝜉, 𝑘 − 𝑙, (𝜎
𝑙

|
𝑉
)

−1

∘ 𝜎
𝑘

(𝜉)) : 𝜉 ∈ 𝑈} , (18)

where𝑈 and 𝑉 are open sets in 𝐽
𝐺
and 𝑘, 𝑙 ≥ 0 such that 𝜎𝑘|

𝑈

and 𝜎
𝑙

|
𝑉
are homeomorphisms with the same range. Then

Γ(𝐽
𝐺
, 𝜎) is a second countable, locally compact, Hausdorff,

𝑟-discrete groupoid, and the counting measure is a Haar
system [9, 11]. Amenability of 𝑅

∞
and Γ(𝐽

𝐺
, 𝜎) is explained in

Proposition 2.4 of [12]. We denote the groupoid 𝐶
∗-algebras

of 𝑅
∞
and Γ(𝐽

𝐺
, 𝜎) by 𝐶

∗

(𝑅
∞

) and 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)), respectively.
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3. Groupoid Equivalence

We follow Kumjian and Pask [13, Section 5] to obtain
equivalence of groupoids between 𝐺

𝑠
and 𝑅

∞
and between

𝐺
𝑠
⋊ Z and Γ(𝐽

𝐺
, 𝜎), respectively, in the sense of Muhly et al.

[10].
We repeat Kumjian and Pask’s observation [13]. Suppose

that 𝑌 is a locally compact Hausdorff space and that Γ is a
locally compact Hausdorff groupoid. For a continuous open
surjection 𝜙 : 𝑌 → Γ

0, we set a topological space

𝑍 = 𝑌 ∗ Γ = {(𝑦, 𝛾) : 𝑦 ∈ 𝑌, 𝛾 ∈ Γ, 𝜙 (𝑦) = 𝑠 (𝛾)} (19)

with the relative topology in 𝑌 × Γ and a locally compact
Hausdorff groupoid

Γ
𝜙

= {(𝑦
1
, 𝛾, 𝑦
2
) : 𝑦
1
, 𝑦
2
∈ 𝑌, 𝛾 ∈ Γ,

𝜙 (𝑦
1
) = 𝑠 (𝛾) , 𝑟 (𝛾) = 𝜙 (𝑦

2
)}

(20)

with the relative topology.

Theorem6 (see [13, Lemma 5.1]). Suppose that𝑌, Γ, 𝜙,𝑍, and
Γ
𝜙 are as previous.Then𝑍 implements an equivalence between

Γ and Γ
𝜙 in the sense of Muhly-Renault-Williams.

Now we consider 𝜙 : 𝑆
𝐺

→ 𝑅
0

∞
defined by 𝛼 󳨃→

(𝜋(𝛼), 𝜋(𝛼)). Since 𝜙 is the composition of the projectionmap
𝜋 : 𝑆

𝐺
→ 𝐽
𝐺
and the identity map from 𝐽

𝐺
to 𝑅
0

∞
, 𝜙 is a

continuous open surjection. Then we have

𝑅
𝜙

∞
= {(𝛼, (𝜋 (𝛼) , 𝜋 (𝛽)) , 𝛽) : 𝛼, 𝛽 ∈ 𝑆

𝐺
,

(𝜋 (𝛼) , 𝜋 (𝛽)) ∈ 𝑅
∞

} .

(21)

It is not difficult to check that 𝑅𝜙
∞

= ∪
𝑛≥0

𝑅
𝜙

𝑛
, where

𝑅
𝜙

𝑛
= {(𝛼, (𝜋 (𝛼) , 𝜋 (𝛽)) , 𝛽) : 𝛼, 𝛽 ∈ 𝑆

𝐺
,

𝜎
𝑛

(𝜋 (𝛼)) = 𝜎
𝑛

(𝜋 (𝛽))} ,

(22)

and that the relative topology on 𝑅
𝜙

∞
is equivalent to the

inductive limit topology.

Lemma 7. Suppose that (𝑆
𝐺
, 𝜎) is the limit solenoid system

induced from a self-similar group (𝐺,𝑋) and that 𝐺
𝑠
is the

stable equivalence groupoid associated with (𝑆
𝐺
, 𝜎). Then ̃

𝜙 :

𝐺
𝑠

→ 𝑅
𝜙

∞
defined by (𝛼, 𝛽) 󳨃→ (𝛼, (𝜋(𝛼), 𝜋(𝛽)), 𝛽) is a

groupoid isomorphism.

Proof. Remember that 𝐺
𝑠

= ∪
𝑛≥0

𝐺
𝑠,𝑛

and 𝑅
𝛼

∞
= ∪
𝑛≥0

𝑅
𝛼

𝑛
.

From the commutative relation 𝜎𝜋 = 𝜋𝜎, we observe
(𝛼, 𝛽) ∈ 𝐺

𝑠,𝑛
⇐⇒ 𝜋𝜎

𝑛

(𝛼) = 𝜋𝜎
𝑛

(𝛽) ⇐⇒ 𝜎
𝑛

𝜋 (𝛼)

= 𝜎
𝑛

𝜋 (𝛽) .

(23)

Hence ̃
𝜙|
𝐺
𝑠,𝑛

is a well-defined bijective map between 𝐺
𝑠,𝑛

and
𝑅
𝜙

𝑛
.
Since topologies on 𝐺

𝑠,𝑛
and 𝑅

𝜙

𝑛
are relative topologies

from 𝑆
𝐺

× 𝑆
𝐺
, ̃
𝜙|
𝐺
𝑠,𝑛

is a homeomorphism. Then ̃
𝜙 is a

homeomorphism as the inductive limit topologies are given
on 𝐺
𝑠
and 𝑅

𝜙

∞
. It is routine to check that ̃

𝜙 is a groupoid
morphism.

The groupoid equivalence between 𝑅
∞

and 𝐺
𝑠
follows

from Theorem 6 and Lemma 7. Strong Morita equivalence
is from [10, Proposition 2.8] as both groupoids have Haar
systems.

Theorem 8. Suppose that (𝐺,𝑋) is a self-similar group, that
𝑅
∞

is the groupoid associated with (𝐽
𝐺
, 𝜎), and that 𝐺

𝑠
is the

stable equivalence groupoid associated with (𝑆
𝐺
, 𝜎). Then 𝑅

∞

and 𝐺
𝑠
are equivalent in the sense of Muhly-Renault-Williams.

Therefore 𝐶
∗

(𝑅
∞

) is strongly Morita equivalent to the stable
algebra 𝑆 on the limit solenoid system (𝑆

𝐺
, 𝜎).

Analogous assertions hold for Γ(𝐽
𝐺
, 𝜎) and𝐺

𝑠
⋊Z. For𝜓 :

𝑆
𝐺

→ Γ(𝐽
𝐺
, 𝜎)
0 defined by 𝛼 󳨃→ (𝜋(𝛼), 0, 𝜋(𝛼)), we observe

Γ(𝐽
𝐺
, 𝜎)

𝜓

= {(𝛼, (𝜋 (𝛼) , 𝑛, 𝜋 (𝛽)) , 𝛽) : 𝛼, 𝛽 ∈ 𝑆
𝐺
,

(𝜋 (𝛼) , 𝑛, 𝜋 (𝛽)) ∈ Γ (𝐽
𝐺
, 𝜎)} .

(24)

Lemma 9. Suppose that 𝐺
𝑠
is the stable equivalence groupoid

of (𝑆
𝐺
, 𝜎) and that 𝐺

𝑠
⋊ Z is the semidirect product groupoid.

Then 𝜓̃ : 𝐺
𝑠
⋊ Z → Γ(𝐽

𝐺
, 𝜎)
𝜓 defined by (𝛼, 𝑛, 𝛽) 󳨃→

(𝛼, (𝜋(𝛼), 𝑛, 𝜋(𝛽)), 𝛽) is a groupoid isomorphism.

Proof. Recall that (𝛼, 𝑛, 𝛽) ∈ 𝐺
𝑠
⋊Z ⇔ (𝜎

𝑛

(𝛼), 𝛽) ∈ 𝐺
𝑠
. Then

𝐺
𝑠
= ∪
𝑛≥0

𝐺
𝑠,𝑛

implies that (𝜎𝑛(𝛼), 𝛽) ∈ 𝐺
𝑠,𝑙
for some 𝑙 ≥ 0. So

from the proof of Lemma 7, we obtain that

(𝜎
𝑛

(𝛼) , 𝛽) ∈ 𝐺
𝑠,𝑙

⇐⇒ 𝜎
𝑛+𝑙

(𝜋 (𝛼))

= 𝜎
𝑙

(𝜋 (𝛽)) ⇐⇒ (𝜋 (𝛼) , 𝑛, 𝜋 (𝛽)) ∈ Γ (𝐽
𝐺
, 𝜎) .

(25)

Thus 𝜓̃ is a well-defined bijectivemap. As𝐺
𝑠
⋊Z has the prod-

uct topology, we notice that 𝜓̃|
𝐺
𝑠

⋊{0}
is the homeomorphism

̃
𝜙 defined in Lemma 7 and that 𝜓̃|

𝐺
𝑠

⋊{𝑛}
is homeomorphism

onto

{ (𝛼, (𝜋 (𝛼) , 𝑛, 𝜋 (𝛽)) , 𝛽) : 𝛼, 𝛽 ∈ 𝑆
𝐺
,

𝜎
𝑛+𝑙

(𝜋 (𝛼)) = 𝜎
𝑙

(𝜋 (𝛽))} .

(26)

It is trivial that 𝜓̃ is a groupoid morphism.

Theorem 10. Suppose that (𝐺,𝑋) is a self-similar group. Then
Γ(𝐽
𝐺
, 𝜎) and 𝐺

𝑠
⋊ Z are equivalent in the sense of Muhly-

Renault-Williams. Therefore 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is strongly Morita

equivalent to the stable Ruelle algebra 𝑅
𝑠
on (𝑆
𝐺
, 𝜎).

Remark 11. In [11], Chen and Hou showed similar result
under an extra condition that a Smale space is the inverse
limit of an expanding surjection on a compact metric space.

4. Groupoid Algebras

Suppose that (𝐺,𝑋) is a self-similar group. We use its corre-
sponding 𝑅

∞
and Γ(𝐽

𝐺
, 𝜎) to study𝐶

∗-algebraic structures of
stable algebra and stable Ruelle algebra from (𝐺,𝑋).

Following Renault [15], we say that a topological groupoid
Γ with an open range map is essentially principal if Γ is locally
compact and, for every closed invariant subset 𝐸 of its unit
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space Γ
0, {𝑢 ∈ 𝐸 : 𝑟

−1

(𝑢) ∩ 𝑠
−1

(𝑢) = {𝑢}} is dense in 𝐸. A
subset 𝐸 of Γ0 is called invariant if 𝑟 ∘ 𝑠

−1

(𝐸) = 𝐸. And Γ is
calledminimal if the only open invariant subsets of Γ0 are the
empty set 0 and Γ

0 itself. We refer [15] for details.

Proposition 12. The groupoid Γ(𝐽
𝐺
, 𝜎) is essentially principal.

Proof. Let

𝐴 = {𝜉 ∈ 𝐽
𝐺

: for 𝑘, 𝑙 ≥ 0, 𝜎
𝑘

(𝜉) = 𝜎
𝑙

(𝜉) implies 𝑘 = 𝑙} ,

𝐵 = {𝑏 ∈ Γ(𝐽
𝑓
, 𝑓)

0

: 𝑟
−1

(𝑏) ∩ 𝑠
−1

(𝑏) = {𝑏}} .

(27)

Then we observe 𝜉 ∈ 𝐴 ⇔ (𝜉, 0, 𝜉) ∈ 𝐵. Hence 𝐴 is dense
in 𝑋 implying that 𝐵 is dense in Γ(𝐽

𝑓
, 𝑓)
0 so that Γ(𝐽

𝐺
, 𝜎) is

essentially principal.
To show that𝐴 is dense in 𝐽

𝐺
, we assume𝐴 is not dense in

𝐽
𝐺
. Then we can find an open set 𝑈 ⊂ 𝐽

𝐺
such that 𝑈 ∩ 𝐴 = 0

as 𝐽
𝐺
is a compact Hausdorff space. Since

𝐽
𝐺
− 𝐴 =

∞

⋃

𝑛=1

∞

⋃

𝑘=0

𝜎
−𝑘

(Per
𝑛
) , (28)

where Per
𝑛
= {𝜉 ∈ 𝐽

𝐺
: 𝜎
𝑛

(𝜉) = 𝜉}, we have

𝑈 = 𝑈 ∩ (𝐽
𝑓
− 𝐴) =

∞

⋃

𝑛=1

∞

⋃

𝑘=0

𝑈 ∩ 𝜎
−𝑘

(Per
𝑛
) . (29)

Then by Baire category theorem, there exist some integers 𝑛 ≥

1 and 𝑘 ≥ 0 such that 𝑈 ∩ 𝜎
−𝑘

(Per
𝑛
) has nonempty interior.

But Per
𝑛

= {𝜉 ∈ 𝐽
𝐺

: 𝜎
𝑛

(𝜉) = 𝜉} is a finite set because 𝑋

is a finite set, and 𝜎
−𝑘

(Per
𝑛
) is a finite set as 𝜎 is an |𝑋|-fold

coveringmap, a contradiction.Therefore𝐴 is dense in 𝐽
𝐺
, and

Γ(𝐽
𝐺
, 𝜎) is an essentially principal groupoid.

There are excellent criteria for groupoid algebras from
dynamical systems to be simple and purely infinite developed
by Renault [12].

Lemma 13 (see [12]). For a topological space 𝑋 and a local
homeomorphism 𝑇 : 𝑋 → 𝑋, let Γ(𝑋, 𝑇) be the groupoid of
Anantharaman-Delaroche and Deaconu. Suppose that Γ(𝑋, 𝑇)

is an essentially principal groupoid and𝐶
∗

(𝑋, 𝑇) is its groupoid
algebra.

(1) Assume that for every nonempty open set 𝑈 ⊂ 𝑋 and
every 𝑥 ∈ 𝑋, there exist 𝑚, 𝑛 ∈ N such that 𝑇𝑛(𝑥) ∈

𝑇
𝑚

(𝑈). Then 𝐶
∗

(𝑋, 𝑇) is simple.
(2) Assume that for every nonempty open set𝑈 ⊂ 𝑋, there

exist an open set𝑉 ⊂ 𝑈 and𝑚, 𝑛 ∈ N such that 𝑇𝑚(𝑉)

is strictly contained in 𝑇
𝑛

(𝑉). Then 𝐶
∗

(𝑋, 𝑇) is purely
infinite.

As Γ(𝐽
𝐺
, 𝜎) is an essentially principal groupoid, we have

an alternative proof for Theorem 6.5 of [2].

Theorem 14. The algebra 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is simple, purely infi-

nite, separable, stable, and nuclear and satisfies the Universal
Coefficient Theorem of Rosenberg-Schochet.

Proof. Suppose that 𝑈 is an open set in 𝐽
𝐺
. Then the inverse

image of 𝑈 in 𝑋
−𝜔, say 𝑈

󸀠, is open, and there is a cylinder
set 𝑍(𝑢) defined by some 𝑢 ∈ 𝑋

𝑛 such that 𝑍(𝑢) ⊂ 𝑈
󸀠. By

definition of cylinder sets, we have𝜎𝑛(𝑍(𝑢)) = 𝑋
−𝜔

⊆ 𝜎
𝑛

(𝑈
󸀠

),
which implies that 𝜎𝑛(𝑈) = 𝐽

𝐺
on the quotient space.Thus for

every 𝜉 ∈ 𝐽
𝐺
, 𝜉 ∈ 𝜎

𝑛

(𝑈) and 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is simple.

For an open set𝑈 of 𝐽
𝐺
, let𝑉 be an open subset of𝑈 such

that the inverse image of𝑉 in𝑋
−𝜔 is equal to the cylinder set

𝑍(V), where V ∈ 𝑋
𝑛 for some 𝑛 ≥ 2. Then we obtain 𝜎

𝑛

(𝑉) =

𝐽
𝐺
as in the previous, and 𝜎

𝑚

(𝑉) is a proper subset of 𝜎𝑛(𝑉)

for every 1 ≤ 𝑚 ⪇ 𝑛. Hence 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is purely infinite.

Since Γ(𝐽
𝐺
, 𝜎) is locally compact and second countable,

𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is 𝜎-unital, nonunital, and separable. So Zhang’s

dichotomy [16, Theorem 1.2] implies that 𝐶∗(Γ(𝐽
𝐺
, 𝜎)) is sta-

ble. By Proposition 2.4 of [12], nuclear is an easy consequence
from amenability of Γ(𝐽

𝐺
, 𝜎). Because Γ(𝐽

𝐺
, 𝜎) is a locally

compact amenable groupoid with Haar system, 𝐶∗(Γ(𝐽
𝐺
, 𝜎))

satisfied the Universal Coefficient Theorem by Lemma 3.5
and Proposition 10.7 of [17].

Corollary 15. 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) is∗-isomorphic to the stable Ruelle

algebra 𝑅
𝑠
.

Proof. Because 𝐶
∗

(Γ(𝐽
𝐺
, 𝜎)) and 𝑅

𝑠
are stable, this is trivial

fromTheorem 10.

For 𝐶∗(𝑅
∞

), we use the fact that 𝑅
∞

= ∪𝑅
𝑛
is a principal

groupoid representing an AP equivalence relation [18].

Proposition 16. The groupoid 𝑅
∞

is minimal, and its
groupoid algebra 𝐶

∗

(𝑅
∞

) is simple.

Proof. In the proof ofTheorem 14, we observed that for every
cylinder set 𝑍(𝑢) of 𝑋

−𝜔, there is an 𝑛 > 0 such that
𝜎
𝑛

(𝑍(𝑢)) = 𝑋
−𝜔. Since the inverse image of a nonempty

open set𝑈 in 𝐽
𝐺
contains a cylinder set𝑍(𝑢), this observation

induces that 𝜎𝑛(𝑈) = 𝐽
𝐺
on the quotient space. Then 𝑅

∞
is a

minimal groupoid by [19, Proposition 2.1]. And simplicity of
𝐶
∗

(𝑅
∞

) follows from [15, Proposition II.4.6] as 𝑅
∞

is an 𝑟-
discrete principal groupoid.

Proposition 17. 𝐶
∗

(𝑅
∞

) is the inductive limit of𝐶∗(𝑅
𝑛
). And

each 𝐶
∗

(𝑅
𝑛
) is strongly Morita equivalent to 𝐶(𝑅

0

𝑛
/𝑅
𝑛
) =

𝐶(𝐽
𝐺
/𝑅
𝑛
).

Proof. Note that 𝑅
∞

= ∪
𝑛≥0

𝑅
𝑛
is the groupoid representing

an AP equivalence relation on stationary sequence 𝐽
𝐺

𝜎

󳨀→

𝐽
𝐺

𝜎

󳨀→ ⋅ ⋅ ⋅ . Thus it is easy to check that Corollary 2.2 of [18]
implies the inductive limit structure.

Clearly 𝑅
𝑛

= {(𝑢, V) ∈ 𝐽
𝐺

× 𝐽
𝐺

: 𝜎
𝑛

(𝑢) = 𝜎
𝑛

(V)} is the
groupoid representing an equivalence relation on 𝐽

𝐺
defined

by 𝑢∼
𝑛
V if and only if 𝜎

𝑛

(𝑢) = 𝜎
𝑛

(V). And (𝑠 × 𝑟)(𝑅
𝑛
) =

(𝜎
−𝑛

× 𝜎
−𝑛

)(Δ), where Δ = {(𝑢, 𝑢) ∈ 𝐽
𝐺

× 𝐽
𝐺
} implies that

(𝑠 × 𝑟)(𝑅
𝑛
) is a closed subset of 𝐽

𝐺
× 𝐽
𝐺
. Thus we have

strong Morita equivalence of 𝐶
∗

(𝑅
𝑛
) and 𝐶(𝐽

𝐺
/𝑅
𝑛
) by [20,

Proposition 2.2].
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Corollary 18. 𝐶
∗

(𝑅
∞

) is a nuclear algebra.

Proof. Since 𝐶(𝐽
𝐺
/𝑅
𝑛
) is nuclear, 𝐶∗(𝑅

𝑛
) is also nuclear by

[21, Theorem 15]. And it is a well-known fact that the class
of nuclear 𝐶

∗-algebras is closed under inductive limit. So
𝐶
∗

(𝑅
∞

) is nuclear.

Postcritically Finite Rational Maps. Suppose that 𝑓 : C → C

is a postcritically finite hyperbolic rational function of degree
more than one, that is, a rational function of degree more
than one such that the orbit of every critical point of 𝑓

eventually belongs to a cycle containing a critical point.Then
𝑓 is expanding on a neighborhood of its Julia set 𝐽

𝑓
, the

group IMG(𝑓) is contracting, recurrent, regular, and finitely
generated, and the limit dynamical system 𝜎 : 𝐽IMG(𝑓) →

𝐽IMG(𝑓) is topologically conjugate with the action of 𝑓 on its
Julia set 𝐽

𝑓
(see [2, Sections 2 and 6] for details).

We borrowed the following theorem from Theorem 3.16
and Remark 4.23 of [22].

Theorem 19. Let 𝑓 : C → C be a postcritically finite
hyperbolic rational function of degree more than one and
let 𝑅
∞

be the groupoid on its limit dynamical system as in
Section 2. Then 𝐶

∗

(𝑅
∞

) is an 𝐴𝑇-algebra of real-rank zero
with a unique trace state.

Proof. To show that 𝐶
∗

(𝑅
∞

) is an 𝐴𝑇-algebra, we use the
work of Gong [23, Corollary 6.7]. By Propositions 16 and
17, 𝐶∗(𝑅

∞
) is a simple algebra which is an inductive limit

of an 𝐴𝐻 system with uniformly bounded dimensions of
local spectra. And Nekrashevych showed that 𝐾-groups of
𝐶
∗

(𝑅
∞

) for postcritically finite hyperbolic rational functions
are torsion free in [2,Theorem 6.6]. Hence𝐶

∗

(𝑅
∞

) is an𝐴𝑇-
algebra.

As 𝑓 : 𝐽
𝑓

→ 𝐽
𝑓
is an expanding local homeomorphism

(see [2, Section 6.4]) and exact by Proposition 16 and [19,
Proposition 2.1], 𝐶∗(𝑅

∞
) has a unique trace state by Remark

3.6 of [19]. Simplicity and uniformly bounded dimension
conditions imply that 𝐶

∗

(𝑅
∞

) is approximately divisible in
the sense of Blackadar et al. [24] as shown by Elliot et al.
[14]. Therefore 𝐶

∗

(𝑅
∞

) has real-rank zero by Theorem 1.4 of
[24].

Corollary 20. 𝐶
∗

(𝑅
∞

) associated with postcritically finite
hyperbolic rational functions of degreemore than one belongs to
the class of𝐶∗-algebras covered by Elliot classification program.
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